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Abstract

Background & Objective: In this work, we focus on estimating the parameters

of the widely used Gompertz tumor growth model, based on measurements of

the tumor’s volume. Being able to accurately describe the dynamics of tumor

growth on an individual basis is very important both for growth prediction and

designing personalized, optimal therapy schemes (e.g. when using model pre-

dictive control).

Methods: Our analysis aims to compute both the growth rate and the carrying

capacity of the Gompertz function, along with the characteristics of the additive

Gaussian process and measurement noise of the system. Three methods based

on Maximum Likelihood estimation are proposed. The first utilizes an assump-

tion regarding the measurement noise that simplifies the problem, the second

combines the Extended Kalman Filter and Maximum Likelihood estimation,

and the third is a nonstandard exact form of Maximum Likelihood estimation,
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where numerical integration is used to approximate the likelihood of the mea-

surements, along with a novel way to reduce the required computations.

Results: Synthetic data were used in order to perform extensive simulations

aiming to compare the methods’ effectiveness, with respect to the accuracy of

the estimation. The proposed methods are able to estimate the growth dynam-

ics, even when the noise characteristics are not estimated accurately. Another

very important finding is that the methods perform best in the case that cor-

responds to the problem needed to be solved when dealing with experimental

data.

Conclusion: Using nonstandard, problem specific techniques can improve the

estimation accuracy and best exploit the available data.

Keywords: Tumor Growth Modeling, Nonlinear Systems, Parameter

Estimation, Maximum Likelihood, Extended Kalman Filter.

1. Introduction

Cancer is a disease that can affect most of the tissues in the human body. It

is defined by uncontrolled cell growth and the potential to invade surrounding

tissues. As an additional feature, many cancers, but not all, can also experience

migration of tumor cells from the primary site to a distant one where they settle,5

a phenomenon called metastasis. Cancer also includes benign tumors that show

uncontrolled cell growth but no invasion, and in most cases do not threaten the

patient’s life [1]. According to [2], cancer is a major cause of morbidity and mor-

tality, affecting populations in all countries and regions. The predicted global

cancer burden is expected to exceed 20 million new cases annually by 2025,10

compared with the estimated 14.1 million cases worldwide in 2012. Treatment

depends on the type of cancer and commonly consists of one or a combination

of therapies, such as surgery, chemotherapy, radiotherapy, immunotherapy and

hormone therapy.

Mathematical modeling combined with optimal control techniques have been15
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proposed to improve the outcome of chemotherapy or radiation therapy [3–6]

predict the success or failure of immunotherapy [7], and illustrate the potential

synergism between different treatment methods [8]. Recent findings also suggest

that mathematical modeling can provide useful clues about the impact of surgery

on metastasis and may help to predict the risk of cancer spread [9]. An extensive20

literature review on the topic of how mathematical modeling can be applied to

deliver better drug administration regimes is presented in [10].

Tumor growth modeling is a topic that has been studied extensively. The

authors of [11] present a concise history of the study of solid tumor growth

by reviewing some of the important mathematical contributions since the early25

decades of the twentieth century. More recent studies about mathematical mod-

els that are used to describe tumor growth can be found in [12–15]. In the

present study, the Gompertz model is utilized to describe tumor growth. The

Gompertzian equation originates from the actuarial model developed by Ben-

jamin Gompertz in 1825 [16], and has been also applied to the study of growth30

in biological and economic contexts [17]. It has been shown that the Gompertz

model can describe the growth of several tumor types [18]. This is also indi-

cated by several recent studies where the Gompertz model is compared with

other classical mathematical models (e.g. exponential, Von Bertalanffy, power

law, etc) [15, 19, 20]. Therefore, it is a frequent choice for modeling tumor35

growth in recent experimental studies [3–5], [21–23].

According to the Gompertz model, the growth of a solid tumor is charac-

terized by two main features, the growth rate and the carrying capacity. The

growth rate refers to the time needed for the tumor cells to produce new cells,

while the carrying capacity to the fact that a tumor cannot grow indefinitely.40

When fitting experimental tumor data to the Gompertz equation, several stud-

ies [22–24] have used the findings of Brunton and Wheldon [25–27], that the

carrying capacity of a tumor is a species–specific parameter. However, the the-

oretical assumption that any given tumor will approach the same asymptotic

value has not been proven experimentally.45

Tumor growth modeling is inherently difficult as cancer is a complex bio-
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logical phenomenon. The fact that its presentation, development and outcome

varies from one patient to the other necessitates the need of tumor growth mod-

eling to be done on an individualized basis, in order to better understand the

underlying biology and design better therapies. Towards this direction, non-50

standard, problem specific techniques can provide very accurate models and

improve the modeling procedure. An accurate patient-specific growth model

combined with mathematical models that simulate the pharmacokinetic and

pharmacodynamic processes of drugs and optimal control techniques, can help

to predict and optimize the patient’s response to various dose schedules and55

treatment combinations. Moreover, since clinical trials are limited due to their

high cost, combining mathematical modeling with numerical simulations is a

low cost and safe (since there is no immediate threat for the patient) way to

evaluate different strategies.

In this study, it is assumed that both the growth rate and the carrying60

capacity are unknown (the proposed methods, could also be used if the carry-

ing capacity is considered a species–specific parameter). Using the Gompertz

equation, a stochastic state–space model with additive Gaussian process and

measurement noise is created. Based on this stochastic model, we try to es-

timate the growth rate, the carrying capacity and the noise characteristics of65

tumors. Synthetic data are used because they provide the major advantage that

the methods’ ability to estimate the unknown parameters can be evaluated ob-

jectively. The methods we use to estimate the unknown parameters are based on

Maximum Likelihood estimation [28–30]. According to Kay [28], this technique

is overwhelmingly the most popular approach to obtain practical estimators.70

Additionally, the successful application of Maximum Likelihood estimation on

problems within a biological or economic context where the estimation of the

unknown parameters of stochastic Gompertz-type systems is required [31–33],

suggests that it can also be successfully applied for the study of tumor growth.

The main focus of this work is to examine the cases where the characteristics75

of one or both the process and measurement noise are unknown. A prior work

for the case where the characteristics of both process and measurement noise
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are known has already been published (see [34]). For the sake of completeness,

we also include this case here. Three methods are described in this manuscript.

The first will be referred to as Naive Maximum Likelihood (NaML). In this80

method, a simplification considering the measurement noise has been made in

order to obtain the system’s states and avoid solving time consuming recursive

equations. The second method uses the Extended Kalman Filter (EKF) [35–37],

to compute estimates of the system’s states and Maximum Likelihood estimation

to compute the parameters that maximize the joint density of the observations,85

and will be referred to as EKF–ML. The third one, which will be referred to as

Numerical Maximum Likelihood (NuML), is the method that overall yielded the

best results. This method uses numerical integration to compute the integrals

that compose the joint density function. We also propose an effective way to

reduce the interval of integration and thus the method’s execution time, without90

any significant approximation error. Overall, we were able to achieve good model

prediction and accurate parameter estimation.

In the following sections, we present the model used to describe the tumor

growth (Section 2), analyze the proposed methods (Section 3.1) and the test

cases (Section 3.2), describe the simulations and present their results (Section95

4), as well as explain our findings (Section 5) and discuss future work (Section

6).

2. Tumor Growth Model

The Gompertz model has been widely used because of its simplicity and

its ability to describe experimental data reasonably well. The discrete time

state-space representation of the model is given by:

xk+1 = f(xk, θ1, θ2) = θ2 exp

(
log
(xk
θ2

)
exp

(
− 1

θ1
T
))

, (1)

where xk (mm3) is the tumor size, θ1 (days) is a constant related to the pro-

liferative ability of the cells, θ2 (mm3) is the carrying capacity ( lim
k→∞

xk = θ2),100

T (days) is the time interval between k and k + 1, and k ∈ N [38]. For sim-

plicity reasons, throughout this work, a constant sampling period T is assumed.
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Nonetheless, the results of the following sections can be applied to the case of

nonconstant sampling intervals.

Assuming random additive process and measurement noise the model can

be formulated as follows:

xk+1 = f(xk, θ1, θ2) + wk, (2a)

yk = xk + υk, (2b)

where yk is a measurement taken at time step k. The random variables wk and

υk, k ∈ N are mutually independent and normally distributed with zero mean

and unknown standard deviation: wk ∼ N (0, θ3x
θ4
k ) and υk ∼ N (0, θ5x

θ6
k ).

The notation X ∼ N (µ, σ) is used in this manuscript to denote a normally

distributed random variable X with mean µ and standard deviation σ. Mea-

surements are available from time k=1 onwards and known x0, y0 are assumed.

Because of the random components wk and υk, the model of Eq. (2) also cor-

responds to the description:

xk+1 ∼ pθa(xk+1|xk), (3a)

yk ∼ pθb(yk|xk), (3b)

where pθa(xk+1|xk) is the probability density function describing the dynamics105

for given values of xk and pθb(yk|xk) is the probability density function de-

scribing the measurements [30],[35]. In Eq. (3a), θa = [θ1; θ2; θ3; θ4]T , where

θa ∈ Θa with Θa ⊆ R4
>0 denoting a compact set of permissible values of the un-

known vector θa and in Eq. (3b), θb = [θ5; θ6]T , where θb ∈ Θb with Θb ⊆ R2
>0

denoting a compact set of permissible values of the unknown vector θb. We also110

define the vector θ = θa × θb, where θ ∈ Θ with Θ ⊆ R6
>0

3. Methods

The problem addressed in this section is to obtain an estimate θ̂ based on N

measurements Y N = [y1, . . . , yn]. However, as the value of the state variable xk

is not directly measurable, Maximum Likelihood estimation cannot be applied115

6



directly to Eq. (2b) and Eq. (2b). To overcome this difficulty, in Section (3.1),

we propose three methods. The first is a naive approach where, for the sake of

simplicity, it is assumed that there is no measurement noise and thus the states

xk equal the measurements yk. In the second approach, an Extended Kalman

Filter is used to estimate the unknown states xk and then Maximum Likelihood120

to estimate the system’s parameters. Lastly, the third approach, decomposes

the likelihood of the observations and approximates it by using one–dimensional

recursive numerical integration.

3.1. Parameter Estimation Techniques

3.1.1. Naive Maximum Likelihood125

In this method, because of the assumption that there is no measurement

noise, Maximum Likelihood estimation can be applied directly, as if the mea-

surements were taken from a system of the form:

xk+1 = f(xk, θ1, θ2) + dk, (4a)

yk = xk, (4b)

where dk ∼ N (0, σk) and σk = θ3x
θ4
k + θ5x

θ6
k . θ̂ is the estimate of the vector θ

that maximizes the joint density (likelihood) pθ(Y N ) of the observations:

θ̂ = arg max
θ∈Θ

pθ(Y N ). (5)

Using Bayes’ rule, the likelihood pθ(Y N ) can be decomposed according to

pθ(Y N ) =

N∏
k=1

pθ(yk|Y k−1) =

N∏
k=1

pθ(xk|xk−1), (6)

where x0 is considered known and pθ(xk|xk−1) is coming from Eq. (4a).

3.1.2. Extended Kalman Filter – Maximum Likelihood

In this method, the EKF is used to provide an approximation x̂k of the

state xk. In order for the filter to approximate the non-linearities of the system

dynamics, a linearized version of the nonlinear system model around the last

state estimate is created. Once the state estimates X̂N = [x̂1, . . . , x̂n] are
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available, the maximum likelihood approach can be used to find an estimate

θ̂a of the vector θa, that maximizes the joint density pθa(X̂N ) of the state

estimates:

θ̂a = arg max
θa∈Θa

pθa
(X̂N ), (7)

and an estimate θ̂b of the vector θb, that maximizes the joint density pθb
(Y N )

of the measurements:

θ̂b = arg max
θb∈Θb

pθb
(Y N ). (8)

If Bayes’ rule is applied, the likelihoods pθa
(X̂N ) and pθb

(Y N ) can be decom-

posed according to

pθa
(X̂N ) =

N∏
k=1

pθa
(x̂k|x̂k−1) (9)

and

pθb
(Y N ) =

N∏
k=2

pθb
(yk|x̂k), (10)

where pθa
(x̂k|x̂k−1) comes from Eq. (2a), pθb

(yk|x̂k) from Eq. (2b) and x̂0 is

considered known.

The EKF used in this work is an implementation of the classical EKF [36].130

Moreover, it has been observed that when this procedure is used repeatedly, θ̂

will converge to a better estimate than the initial one. The reason behind this

behavior is that the vector θ̂ is considered known for the EKF and the state

estimation is based on this θ̂. However, when the state estimates are used to

maximize Eq. (9) and (10) the updated θ̂ is a better estimate of θ and when135

the EKF is used again with this new θ̂, the new states x̂k will be improved

estimates of the real states xk, and so on. In the first iteration, the estimate

θ̂ that results from NaML is used for the EKF, and in the following iterations

the latest estimate θ̂ of Eq. (7) and (8) is used. This procedure stops when two

consecutive estimates do not diverge over a specific threshold or after a preset140

number of iterations has been reached.
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3.1.3. Numerical Maximum Likelihood

This method is applied to the model described in Eq. (2) and is used to find

an estimate θ̂ of the vector θ that maximizes the joint density pθ(Y N ) of the

observation:

θ̂ = arg max
θ∈Θ

pθ(Y N ). (11)

Bayes’ rule can be used in order to decompose the joint density according to

pθ(Y N ) = pθ(y1)

N∏
k=2

pθ(yk|Y k−1), (12)

where

pθ(yk+1|Y k) =

∫
pθ(yk+1|xk+1)pθ(xk+1|Y k)dxk+1, (13)

pθ(xk+1|Y k) =

∫
pθ(xk+1|xk)pθ(xk|Y k)dxk, (14)

and

pθ(xk+1|Y k+1) =
pθ(yk+1|xk+1)pθ(xk+1|Y k)

pθ(yk+1|Y k)
. (15)

The distributions in Eq. (13) to (15) can be computed iteratively. Numerical

integration can be used to compute the integrals of Eq. (13) and (14). The

interval of integration is [0, Xmax], where Xmax is the maximum volume a tumor

can attain, and the definite integrals that come of, can be computed by using

the trapezoidal rule: ∫ b

a

f(x)dx ≈ (b− a)

[
f(a) + f(b)

2

]
. (16)

In Eq. (16), the smaller the interval [a, b] is, the smaller the approximation error

will be. The integral defined in [0, Xmax] can be divided into subintegrals, so

that the total integral comes as the summation of the individual subintegrals.145

However, due to the size of [0, Xmax] and the number of subintegrals needed for

an accurate approximation, such an approach is completely ineffective, because

making a huge number of calculations at every iteration is prohibitive. An

effective way to limit the interval of integration is of great importance, because

it reduces the number of subintegrals needed for the approximation and thus150

the execution time.
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Using the Gaussian property of the noise, the interval of integration can be

reduced in order to make the numerical integration by using the trapezoidal

rule applicable. At every iteration step, if xk is considered a normally dis-

tributed random variable with mean µ = yk and standard deviation σ = σ0y
e0
k155

( xk ∼ N (µ, σ)), then [µ − 5σ, µ + 5σ]
⋂

[0, Xmax] can be used as the interval

of integration, which is significantly smaller than [0, Xmax]. In this manuscript,

the maximum obtainable values of θ5 and θ6 are used as σ0 and e0 respectively.

The integral defined in the new interval can be divided in subintegrals, that can

be approximated by applying the trapezoidal rule. As a result, the distributions160

of Eq. (13) to (15) can be approximated very accurately.

3.2. Test Cases

In this work, we present four test cases. In all cases, the system parameters

are unknown. The test cases differ in terms of the available information about

the process and measurement noise characteristics. Case 1 has been studied in165

[34] and is included in order to be compared with the three new cases.

3.2.1. Case 1 - Known Noise Characteristics

In this case, the unknown parameters are the growth rate and the carrying

capacity (θ1, θ2), while the characteristics of the process (θ3, θ4) and measure-

ment noise (θ5, θ6) are considered known. This is the simplest case, because170

only two parameters need to be estimated. Parameters θ3, θ4, θ5 and θ6 are set

to their real values and the argument that maximizes the likelihood pθ(Y n) is

θ̂ = [θ̂1; θ̂2]T .

3.2.2. Case 2 - Known Process Noise Characteristics

In this case, the unknown parameters are θ1, θ2, θ5 and θ6, while θ3 and θ4175

are considered known. Parameters θ3 and θ4 are set to their real values and the

argument that maximizes the likelihood pθ(Y n) is θ̂ = [θ̂1; θ̂2; θ̂5; θ̂6]T .
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3.2.3. Case 3 - Known Measurement Noise Characteristics

In this case, the unknown parameters are θ1, θ2, θ3 and θ4, while θ5 and θ6

are considered known. Parameters θ5 and θ6 are set to their real values and the180

argument that maximizes the likelihood pθ(Y n) is θ̂ = [θ̂1; θ̂2; θ̂3; θ̂4]T .

3.2.4. Case 4 - Unknown Noise Characteristics

In this case, all parameters (θ1, θ2, θ3, θ4, θ5 and θ6) are unknown and the

techniques are used as described previously in this section.

3.3. Implementation185

The computational methods presented in this section, were implemented

in MATLAB (ver. R2015a, The MathWorks Inc., Natick, IL) by writing the

suitable functions. In order to maximize the likelihoods of Eq. (6), (9), (10)

and (12) the function fmincon [39] was used to find the argument that minimizes

the negative logarithm of the likelihood pθ(Data):

θ̂ = arg min
θ∈Θ

(
− log

(
pθ(Data)

))
, (17)

where Data stands in for Y N or X̂N depending on the applied method and

the parameters that need to be estimated. Maximizing the log-likelihood is

equivalent since the logarithm is a monotonic function. It has also been proved

numerically using the definition of convexity (e.g. [40]), that the likelihood

functions of this manuscript are generally not convex. In order to reduce the190

possibility of getting stuck to a local minimum, we ran fmincon for many dif-

ferent random initial conditions. The simulations were performed using an Intel

Core i7-6700K @ 4.00GHz and 16GB of DDR4 @ 3200 MHz.

4. Simulations & Results

In this section, we present the results from the simulations in MATLAB.195

The growth of 100 cancer tumors was simulated using Eq. (2a) and (2b). Each

tumor’s growth rate θj1 and its carrying capacity θj2, as well as the process and

measurement noise characteristics θj3, θ
j
4, θ

j
5, θ

j
6 (j = 1, ..., 100 is the identification
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number of the test subject) were chosen randomly from uniform distributions.

The minimum and maximum values for the parameters (see Table 1) were chosen200

so that the obtained dataset appears as realistic tumor measurements. The

sampling time between two consecutive measurements is T = 2 (days) and the

number of available measurements is N = 30.

Table 1

Minimum and maximum values for each parameter

Parameters θ1 θ2 θ3 θ4 θ5 θ6

Minimum 6 320 1 0.3 2 0.2

Maximum 16 800 4 0.5 6 0.5

In order to evaluate the performance of the methods described in Section

3.1 and applied to the cases of Section 3.2, the Mean Absolute Percentage Error

(MAPE) and the standard deviation of the Absolute Percentage Errors (APE)

are used. The MAPE is given by:

MAPE =
1

j

j∑
i=1

APEi(%), (18)

and the standard deviation by:

STD =

(
1

j − 1

j∑
i=1

|APEi −MAPE|2
)1/2

. (19)

In Eq. (18) and (19)

APEi =

∣∣∣∣Ai − EiAi

∣∣∣∣ , (20)

where Ai is the actual value of the parameter, Ei is the estimated value and

j(= 100) is the number of the tumors.205

As mentioned in Section 3.3, regarding the minimization of Eq. (17), fmincon

has been executed for many different random initial conditions. For all the ran-

dom initial condition, the difference between the parameter estimates is very

small, and especially for parameters θ1 and θ2 is practically negligible.

Fig. 1 presents MAPE and the standard deviation of the APE for the growth210

rate and the carrying capacity at each iteration step (each time a new measure-
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ment is added to the system) for each test case of Section 3.2 that were obtained

with the NuML. A comparison between the different methods is presented for

case 4 only, however similar figures are obtained and the same conclusions hold

when comparing the methods to the other test cases. In Fig. 2a and Fig. 2b,215

the MAPEs of the growth rate and carrying capacity respectively are shown,

while Fig. 2c shows the MAPE of the noise parameters. Fig. 3 shows the

STD for the previously mentioned parameters for all the estimation methods

used. The three vertical lines show the mean time needed to reach the 50%

(about 7 measurements), 75% (about 11 measurements) and 100% (about 21220

measurements) of the carrying capacity respectively.

Fig. 4 shows the tumor growth progression for two randomly chosen test

subjects, and the ability of Gompertz curves to fit the data. These curves are

created at different time-steps, meaning that the number of available measure-

ments differs. The unknown parameters were estimated with the NuML, which225

is the method that yielded the best results. However, both NaML and EKF-

ML yield similar results. The red curve is created by the parameters estimated

from all the measurement. The parameters used for the green curve are rees-

timated for every new measurement (practically, the one-step ahead prediction

of the growth). For the blue curve, the estimate is obtained by the three initial230

measurements. Likewise, for the magenta, the cyan and the black curve, the

measurements until the 50%, 75% and 100% of the carrying capacity respec-

tively are used in order to obtain an estimate for the unknown parameters and

predict future growth.

5. Discussion235

Despite the large number of studies in tumor growth, the widely used the-

oretical assumption that the carrying capacity is a species-specific parameter

has not been proved experimentally. On the other hand, even though there is

strong evidence that tumor growth is subject-specific since trying to estimate

the carrying capacity may lead to unrealistic results, it is preferred to keep a240
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fixed value for this parameter [22]. In this manuscript, our simulation results

show that the methods proposed in Section 3.1 can estimate accurately both

the growth rate and the carrying capacity. Realistic estimates for the carrying

capacity are obtained even when the number of available measurements is very

small.245

Four different cases have been studied depending on the available infor-

mation considering the noise. The metrics we used to evaluate the methods’

performance regarding the estimation of the growth dynamics on these cases

are presented in Fig. 1. The most important test case is the fourth, where both

the process and measurement noise characteristics are unknown. This case cor-250

responds to the problem needed to be solved when dealing with experimental

data. Even when the noise type is known, it is still difficult to know the char-

acteristics of the noise. The other three cases were studied in order to test

if knowing the exact values for the noise characteristics could lead in a more

accurate estimation of the growth dynamics. However, for all three methods,255

the results show that most times, knowing the exact values of the noise char-

acteristics does not considerably improve the estimation of the growth rate and

carrying capacity. On the contrary, considering the noise characteristics un-

known seems to give flexibility in finding estimates for the noise characteristics

that describe the noise realization better than the real values, which leads to260

more accurate estimates for the growth parameters. Eq. (17) seems to be more

sensitive to parameters θ1 and θ2 and can be further minimized by choosing

parameter values for θ3, θ4, θ5 and θ6, that differ from the real parameters. As

a result, the fact that the noise characteristics cannot be estimated accurately

does not affect the methods’ ability to provide accurate estimates for the growth265

rate and the carrying capacity.

In this work, three methods have been used to estimate the unknown param-

eters of the model described by Eq. (2a) and (2b). The simulation results are

shown in Fig. 2. Overall, NuML performs better than the other two methods

regarding the estimation of growth rate and carrying capacity. As regards the270

noise characteristics, there was no method that could estimate all the noise pa-

14



rameters consistently better than the others. In Fig. 2c, we can see that NuML

performs better in estimating parameters θ3 and θ6, while EKF–ML is better

at estimating θ4 and θ5.

Another important finding is that as new measurements become available,275

the estimates of growth rate and carrying capacity converge to a value that is

better than the previous values, but this does not happen for the estimates of the

noise characteristics. Of course, after the carrying capacity has been reached,

the new measurements do not provide much information about the growth rate,

so the growth rate estimates do not improve significantly after that point on. In280

the same manner, the initial measurements do not provide a lot of information

about the carrying capacity. As we can see, the estimation of carrying capacity

improves a lot after the 75% of the tumor’s maximum size has been reached, and

when the tumor has fully grown it can be estimated very accurately. However,

even though the initial estimates of the carrying capacity are not very accurate,285

they still provide realistic values for this parameter.

NaML is not as accurate as NuML and EKF-ML in estimating parameters

θ1 and θ2. This is due to the simplification concerning the way noise is added to

the system. However, this method is very useful because the estimates are rea-

sonably good, and most importantly, the execution time is extremely low (less290

than 0.15 secs when 30 measurements are available). The NaML estimates can

be used as initial conditions for the other methods, as it has been observed that

having a good initial guess instead of random one reduces the execution time of

NuML and the number of iterations needed for the EKF–ML to converge. Es-

pecially for NuML, there are cases where the execution time is reduced by half,295

when the NaML estimates are used. The EKF–ML method seems to perform

better than NaML in estimating the growth rate and carrying capacity. The ex-

ecution time of this methods is low (about 1.75 secs when 30 measurements are

available), but not as low as the execution time of NaML. The NuML method

gives the best estimates for the parameters θ1 and θ2 compared to NaML and300

EKF–ML. Even though all three methods can estimate the growth of a tumor

very well, the estimates from NuML create curves that fit better to the mea-
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sured data. Moreover, the one-step ahead prediction performance has promising

potential. However, the execution time of NuML is very high (about 125 secs

when 30 measurements are available) compared to the ones from NaML and305

EKF-ML due to the recursion and the computationally demanding approxima-

tions of the integrals, but yet far away from being prohibitive. Fig. 5 shows

the mean execution time of EKF–ML and NuML at every iteration step. In

our experiments, NuML improved the estimation accuracy of θ1 and θ2 by 0.3

to 2.3% and 0.3 to 1.75% respectively compared to EKF–ML. Even though the310

previous numbers imply that the improvement is small, waiting for a couple of

minutes in order to obtain a better estimate should not discourage the use of

NuML.

Cancer is a complex biological phenomenon that is affected by various factors

and occurs on many levels [41]. The lack of appropriate experimental data makes315

infeasible to fully validate dynamic cancer models, which would be the most

principled approach for capturing tumor growth [22]. Any attempt to model

cancer progression has to rely on incomplete information. Due to the fact that

no such thing as a universal model for all cancers exists and since all models

are bound by limitations, the model selection is usually based on the type of320

data that are used. In this study, the Gompertz model is utilized to describe

the tumor growth. The main criticism of this model is that the relative tumor

growth rate becomes arbitrary large for small tumor volumes [15]. Additionally,

it does not model any biological mechanism that underly cancer, which means

that it does not provide any insight about the biological procedures. It has325

been shown that it provides best fit for breast and lung cancer [15] and is very

popular for large animal tumor datasets, but it has not been shown that it

can model accurately all types of cancer. However, it is a simple model that

is suitable for macroscopic tumor growth modeling. The fact that it can be

used in optimal control algorithms during treatment optimization makes this330

model very popular. It has been shown to be appropriate for the prediction of

the average growth behavior of a tumor and that it fits tumor growth datasets

with accuracy [15, 18, 42, 43]. Moreover, the experimental data that we plan
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to work with in our future work and on which the synthetic data used here are

based are of macroscopic tumor size. In the majority of studies on this type of335

data the Gompertz model is used. Thus, we consider that our choice to use this

model is well justified. More information about the advantages and limitations

of some of the most popular tumor growth models and the possible reasons

why the Gompertz model ended up being the most widely applied one, can be

found in the work of P. Gerlee [14]. Nevertheless, the model’s selection does not340

restrict us from utilizing other models in the future if needed, as the methods

we propose are not limited by the model’s choice.

The evidence that cancer is a subject-specific disease [22] along with obser-

vations that the clinical response of individual patients to therapy still remains

uncertain [44] make the need for further research on individualized tumor pre-345

diction models more obvious than ever. Moreover, modern computers are able

to run nonstandard, problem specific techniques in reasonable time and provide

accurate personalized tumor prediction models. The methodology we propose

gives promising results towards this direction and can become a very useful tool

in cancer treatment research by allowing us to better predict individual tumor350

growth and response to treatment.

6. Conclusion

In this work, we developed three methods in order to estimate the unknown

parameters of the Gompertz function and the characteristics of the Gaussian

process and measurement noise. Synthetic data were used to test the meth-355

ods’ effectiveness and accuracy. It has been found that tumor growth can be

modeled adequately, even when the noise characteristics cannot be estimated

accurately. Simulation results show that, overall, NuML performs better com-

pared to NaML and EKF–ML. NuML can also provide realistic estimates for

the growth dynamics, even when a few measurements are available.360

During our work with the synthetic data, we observed that applying nonstan-

dard techniques provided improved estimates and better fitting curves compared
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to classical estimation techniques (e.g. Least Squares). This work constitutes

an important step towards our future research, the application and testing of

the methods we propose on experimental cancer data. Even though these tech-365

niques are computationally demanding, nowadays the available computational

power is more than enough. So, since even the slightest improvement in tumor

growth prediction could be really important, we believe that trading speed off

for accuracy is completely justified.
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Fig. 1. MAPE and STD of parameters θ1 and θ2 for the NuML method. 1a and 1b show

the MAPE for θ1 and θ2 respectively, while 1c shows the STD of θ1 and θ2.
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Fig. 2. MAPE of the unknown parameters for test case 4. 2a and 2b show the MAPE of θ1

and θ2 respectively. 2c shows the MAPE of θ3, θ4, θ5 and θ6. In 2c, the line representation

refers to the NuML method, the line-asterisk to the NaML method and the line-square to

the EKF–ML method.
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Fig. 3. STD of the unknown parameters for test case 4. 3a and 3b show the STD of θ1 and

θ2 respectively. 3c shows the STD of θ3, θ4, θ5 and θ6. In 3c, the line representation refers

to the NuML method, the line-asterisk to the NaML method and the line-square to the

EKF–ML method.
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Fig. 4. Growth curves for random test subjects. In each subfigure, the x marks represents

yk while the colored curves describe the tumor growth estimation based on the available

measurements. The unknown parameters have been estimated with the NuML.
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