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New GPU implementation of Separable Footprint
(SF) Projector and Backprojector : first results

Camille Chapdelaine, Nicolas Gac, Ali Mohammad-Djafari and Estelle Parra

Abstract—Model-based iterative reconstruction methods en-
able to improve the quality of reconstruction in 3D X-ray
Computed Tomography (CT). The main computational burden
of these methods lies in successive projection and backprojection
operations. Among existing pairs of projector and backprojector,
Separable Footprint (SF) pair combines computational efficiency
and accurate modelling of X-rays passing through the volume to
image. In order to accelerate these operators, implementations
on Graphical Processor Units (GPUs) for parallel-computing
have been proposed for SF pair. Due to a CPU-loop, these
implementations involve many memory transfers between CPU
and GPU which are known to be the main bottleneck for
GPU computing. In this paper, we investigate a new GPU
implementation of SF projector and backprojector in order to
minimize these memory transfers. Our proposed GPU SF projec-
tor and backprojector have no CPU-loop, and use two ray-driven
kernels for the projection and one voxel-driven kernel for the
backprojection. After having described their implementations,
we study these operators as single modules and validate it in a
MBIR method. Perspectives for this work are GPU optimizations
and comparisons with the other existing implementations of SF
pair.

Index Terms—Computed Tomography, Separable Footprint,
Graphical Processor Unit, iterative reconstruction methods

I. INTRODUCTION

Compared with conventional filtered backprojection (FBP)
methods, model-based iterative reconstruction (MBIR) meth-
ods have shown their advantages in terms of robustness and
reconstruction quality [1]. Their major drawback is that they
are highly computationally-costly due to successive projection
and backprojection operations. The projection operator models
the linear process of X-rays passing through the volume. The
backprojector is defined as the mathematical adjoint of the
projector.

Particularly in 3D applications, unmatched pairs of projector
and backprojector (P/BP pairs) [2] have been widely used in
order to alleviate the overall computational cost of iterative
reconstruction methods. Although it has been found sufficient
conditions for not having troubles when using an unmatched
P/BP pair [2], these conditions have been derived for very
simple iterative reconstruction methods which minimize the
Euclidean distance between theoretical and measured pro-
jections by a gradient descent. For regularized least-squares
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using more sophisticated optimization algorithms, it has been
highlighted in [3] that an unmatched P/BP pair can lead to
suboptimal solutions or to divergence of the reconstruction
algorithm. In order to avoid this mathematical approximation,
computationally-efficient matched pairs have been recently
proposed. The separable footprint (SF) pair [1] approximates
the footprint of a voxel on the detector as a separable function
which is trapezoidal in transaxial direction and rectangular
in axial direction. The distance-driven (DD) pair [4] does
the same kind of approximation, but models the footprint
as rectangular both in transaxial and axial directions, which
makes it less accurate than the SF pair [1].

To the best of our knowledge, two GPU implementations
of SF P/BP pair have been proposed in [5], [6], the one of [6]
having been shown faster than the one of [5]. Nevertheless,
both these implementations have a CPU-loop on projection
angles. This implies many memory transfers between CPU
and GPU which are known to be the main bottleneck for
accelerating computations on GPU. In order to minimize these
memory transfers, in this paper, we investigate a new GPU
implementation of SF P/BP pair and present first results. Our
GPU implementation of SF projector is ray-driven and runs
two independent kernels. Each of these kernels projects rays
if the source is closer to x- or y-axis respectively. Our GPU SF
backprojector is voxel-driven and runs only one kernel. These
implementations have no CPU-loop.

In the following, we first present our SF projector and
backprojector on GPU. Next, we analyze these operators as
single modules, and validate it in simulation in a full MBIR
method we detailed in [7]. Compared with an unmatched pair,
we show the reconstruction converges in less global iterations
with better convergence properties.

II. SF PAIR ON GPU

A. SF projection

We consider a volume f = {f(xe, ye, ze)} discretized in
cubic voxels of side δ. Centers of voxels have normalized
coordinates (xe, ye, ze). On the detector, each cell’s center has
(u, v)-coordinates (ueδu, veδv). The volume is put between
the detector and a source modeled as a point from which X-
rays are sent in a conic beam. To acquire several perspectives,
the source and the detector are rotated by an angle φ around z-
axis. The rotation center has normalized (x, y, z)-coordinates
(x0e , y0e , z0e). After X-rays have crossed the volume and



reached the detector, the SF projection on a cell at angle φ
reads

g(ue, ve, φ) = lθc(ue, ve)
∑
xe,ye

lψv (φ;xe, ye)Ft(ue, φ;xe, ye)

×
∑
ze

Fa(ve, φ;xe, ye, ze)f(xe, ye, ze) (1)

where Ft(ue, φ;xe, ye) is the transaxial footprint and
Fa(ve, φ;xe, ye, ze) the axial footprint of voxel (xe, ye, ze) on
cell (ue, ve) with projection angle φ [1]. Amplitude functions
lθc(ue, ve) and lψv (φ;xe, ye) are given by the A2 method in
[1].

In order to avoid writing conflicts between threads, our GPU
implementation of SF projector is ray-driven, i.e. one thread
computes the SF projection of one ray defined by (ue, ve, φ).
We follow each ray according to its primary direction, which
is x-axis if the source is closer to x-axis, and y-axis otherwise
[6]. Next, along this primary direction, we compute the voxels
for which transaxial footprint and axial footprint are both non-
zero. To ensure local memory accesses, the volume to project
is copied on texture memory. Furthermore, variables related to
the geometry of the acquisition are copied in constant memory.

Considering a ray with primary direction x or y leads to
different calculations we need to do separately. That is why
our SF projector runs two kernels. First kernel proj x ker
projects rays with primary direction x, while second kernel
proj y ker handles rays with primary direction y. These two
kernels are independent since they compute disjoint sets of
projections. In this paper, they are executed successively on
one GPU but their parallel applications on two different GPUs
can be considered.

For a ray with primary direction x, the corresponding thread
performs a loop on xe, 1 ≤ xe ≤ Nx. For each xe, it computes
the intersecting location (xe, ye(xe)) with the ray, similarly to
Joseph’s method [8] :

ye(xe) =
1

δ

(
ys(φ) +

y(ue, φ)− ys(φ)
x(ue, φ)− xs(φ)

(xeδ − xs(φ))
)

(2)

where (xs(φ), ys(φ)) is the (x, y)-location of the source and
(x(ue, φ), y(ue, φ)) is the (x, y)-location of the center of cell
(ue, ve) at projection angle φ. Then, for current xe, the thread
looks the voxels of which projections onto the median plane
are between (xe, ye(xe)− 1) and (xe, ye(xe) + 1), i.e. pixels
(xe, ye) of which left side is before (ye(xe) + 1) and right
side after (ye(xe)− 1). Hence, the thread looks each ye, such
that

yemin ≤ ye ≤ yemax ,
{
yemin = bye(xe)− 1.5c
yemax = dye(xe) + 1.5e . (3)

This makes a loop on ye for each thread of kernel proj x ker
which is very small (typically size 4 or 5). For rays with
primary direction y, the calculations are the same by reverting
roles of x and y : the main loop is on ye and we have a second
loop on xe, xemin ≤ xe ≤ xemax . Here, we see the interest of
dealing with rays with different primary directions in different
kernels, in order to avoid divergence between threads.

In the double loop over (xe, ye) (with ye or xe varying in
a very little set depending on the executed kernel), for each
considered (xe, ye), we calculate the scaled transaxial footprint

F ′t (ue, φ;xe, ye) = lψv (φ;xe, ye)Ft(ue, φ;xe, ye) (4)

as described in [1]. Next, we find indices ze for which
Fa(ve, φ;xe, ye, ze) 6= 0. Thanks to the chosen rectangular
shape of the axial footprint, these indices are very simple to
compute :

zemin ≤ ze ≤ zemax (5)

where{
zemin = bz0e − 0.5 +

xφeδv
D (ve − vce − 0.5)c

zemax = dz0e + 0.5 +
xφeδv
D (ve − vce + 0.5)e

, (6)

where D is the source-to-detector distance, and

xφe =
R

δ
+ (xe − x0e) cosφ+ (ye − y0e) sinφ (7)

where R is the source-to-rotation center distance. Knowing
the bounds for ze, threads run a loop on ze to compute

F ′a(ve, φ;xe, ye) =

zemax∑
ze=zemin

Fa(ve, φ;xe, ye, ze)f(xe, ye, ze).

(8)
This loop is very small and is typically size 3. Iteratively,
through the double loop over xe and ye, threads calculate the
sum

g′(ue, ve, φ) =
∑
xe

yemax∑
ye=yemin

F ′t (ue, φ;xe, ye)F
′
a(ve, φ;xe, ye)

(9)
in kernel proj x ker, and

g′(ue, ve, φ) =
∑
ye

xemax∑
xe=xemin

F ′t (ue, φ;xe, ye)F
′
a(ve, φ;xe, ye)

(10)
in kernel proj y ker. Finally, the thread handling ray
(ue, ve, φ) computes the final value for the projection

g(ue, ve, φ) = lθc(ue, ve)g
′(ue, ve, φ), (11)

which is stored from GPU to CPU.

B. SF backprojection

Because SF projector and backprojector are matched, for a
voxel (xe, ye, ze), the SF backprojection is

b(xe, ye, ze) =
∑
φ

∑
ue

Ft(ue, φ;xe, ye)lψv (φ;xe, ye)

×
∑
ve

Fa(ve, φ;xe, ye, ze)lθc(ue, ve)g(ue, ve, φ). (12)

To prevent from writing conflicts between threads, we compute
volume b by running a kernel back ker which is voxel-
driven : one thread calculates the backprojection of one voxel
(xe, ye, ze). Kernel back ker has a main loop on projection
angles φ. For each projection angle, a thread finds cells
(ue, ve) overlapped by transaxial and axial footprints of voxel
(xe, ye, ze). ue-coordinates of these cells are given by ordering



the projections of the four corners of pixel (xe, ye) in the
middle plane, τ0 ≤ τ1 ≤ τ2 ≤ τ3 [1] :

uemin ≤ ue ≤ uemax ,
{
uemin = buce − 0.5 + τ0

δuc
uemax = duce + 0.5 + τ3

δue
. (13)

The set of ve for which axial footprint Fa(ve, φ;xe, ye, ze) 6= 0
is

vemin ≤ ve ≤ vemax ,
{
vemin = bvce − 0.5 + χ0

δv c
vemax = dvce + 0.5 + χ1

δv e
(14)

where χ0 ≤ χ1 are the projections of voxels (xe, ye, ze−0.5)
and (xe, ye, ze + 0.5) respectively [1].

Next, double-loop on ue and ve is performed to compute the
backprojection of voxel (xe, ye, ze). The size of this double-
loop is approximately the same for each voxel [5]. Projections
g are copied on texture memory, so local memory accesses
are ensured. Because of the separation of the voxel’s footprint
between transaxial and axial directions, the double-loop can
be done on ue then ve or on ve then ue indifferently. Here,
we chose the loop on ue as main loop. For each ue between
uemin and uemax , we run a loop on ve, vemin ≤ ve ≤ vemax .
Like for ze-loop in SF projector, this loop is typically size 3
and calculates each axial footprint to return

ba(ue, φ;xe, ye, ze) =
vemax∑

ve=vemin

Fa(ve, φ;xe, ye, ze)lθc(ue, ve)g(ue, ve, φ). (15)

Hence, the double-loop performs the summation

bφ(φ;xe, ye, ze) =

uemax∑
ue=uemin

Ft(ue, φ;xe, ye)

× lψv (φ;xe, ye)ba(ue, φ;xe, ye, ze) (16)

Then, the backprojection can be updated

b(xe, ye, ze)+ = bφ(φ;xe, ye, ze) (17)

until all the projection angles have been considered.

III. FIRST RESULTS ON SIMULATED DATA

In this section, we present first results of our GPU imple-
mentation of SF pair on a volume with 2563 voxels. We use 64
projections of this volume uniformly distributed over [0, 2π].
Each projection has 2562 pixels. For our tests, we use only
one GPU, which is a NVIDIA’s GeForce GTX TITAN X. We
analyze our GPU SF P/BP as single modules and in a full
MBIR method.

A. GPU SF projector and backprojector as single modules

Like [6], we show in table I the normalized root mean square
error (NRMSE) with respect to our CPU version, which has
been implemented following [1]. The NRMSE is

NRMSE =

√√√√ 1

N

N∑
i=1

(
y
(GPU)
i − y(CPU)

i

y
(CPU)
i

)2

, (18)

where yi denotes projection or backprojection for ray or voxel
i respectively. We see NRMSE is very low for both projector

and backprojector, so our GPU implementation implies no
deviation with respect to our CPU version. Furthermore, the
coupling degree, introduced in [3], of our GPU SF pair is
1.0005, i.e. very close to 1, which means that our GPU SF
P/BP pair is very well matched [3].

In table I, we also measure the number of used registers
per thread. Because each of our kernels do many calculations,
this number is quite high. Because the number of registers per
block is limited, dimensioning thread blocks of the GPU must
be done very carefully. The size of each block is 16× 16× 1
for our SF projector, as for the backprojector. The size of the
grid is 16× 16× 64 for the projector and 16× 16× 256 for
the backprojector.

Lastly, we give in table I the computation times for our
GPU SF projector and backprojector. We may underline that
the presented version is the first one. Further optimizations,
such as using multiple GPUs or finding a way to merge
kernels proj x ker and proj y ker for the projection, are
still needed and are undergoing works.

Operator Computation time NRMSE (%) Registers/threadCPU GPU
Projector 143.9 s 8.3 s 1.2× 10−4 84

Backprojector 98.7 s 4.4 s 3.2× 10−5 63

TABLE I: Proposed GPU SF projector and backprojector as single modules

B. GPU SF pair in full MBIR algorithm

In order to fully validate our GPU implementation, we now
test our GPU SF projector and backprojector in a full MBIR
algorithm we presented in [7] with an unmatched pair. This
algorithm performs alternate reconstruction and segmentation
until convergence, and maximizes the joint posterior distribu-
tion of volume f and hyperparameters θ of the prior models
defined for the volume and the uncertainties on the projections.
These prior models are detailed in [7]. Hyperparameters θ are
estimated jointly with the volume. According to Bayes’s rule
and by removing constant terms from the log-joint posterior
distribution of f and θ, the stop criterion to maximize is

L(f ,θ) = ln(p(g|f ,θ)) + ln(p(f |θ)) + ln(p(θ)). (19)

We run the algorithm with our matched SF pair on GPU
and compare the obtained results with the unmatched pair
we used in [7]. This unmatched pair is described in [7],
[9]. In order to compare the two considered P/BP pairs, for
both experiments with matched and unmatched pair, we use
same dataset, initialization and parameters, given in [7]. The
algorithm has a maximum number of global iterations fixed
to 20 and can be stopped before if the criterion (19) does not
change by more than 10−6 % between two global iterations.

The results are shown in figure 1. We see the quality of
reconstruction is good for both P/BP pairs : this validates
our GPU implementation of SF P/BP pair. The obtained
reconstructions with matched and unmatched pairs look vi-
sually the same : the SSIM [10] computed by MATLAB
is approximately 1. Furthermore, the L2-relative error with
respect to the original phantom, in table II, is approximately
the same for both pairs. Nevertheless, as shown in table II,
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Fig. 1: Reconstruction of Shepp-Logan phantom (a) by the same MBIR
method [7], with unmatched P/BP pair (c) and proposed matched GPU SF
pair (d). Convergences are shown in (b).

the computation time is much longer when using matched SF
pair, since it requires more calculations.

To deepen the comparison, we also analyze the convergence
of the MBIR method. In table II and figure 1, we see the algo-
rithm with matched SF pair converges in 16 global iterations,
while with unmatched P/BP pair, it reaches the maximum
number of 20. Moreover, in figure 1, the convergence of the
algorithm is shown to be much smoother when using matched
SF pair. In table II, the comparison of the final value of
the stop criterion (19) shows that it is greater when using
matched SF pair : that means the reconstruction obtained with
an unmatched pair is suboptimal, as it has been already noticed
in [3].

To conclude this section, we may emphasize that our GPU
implementation of SF pair has been fully validated by its use
in a MBIR method we developed with another P/BP pair [7].
The comparison between these two pairs has shown that using
matched SF pair is more computationally intensive than using
an unmatched pair, but ensures better convergence properties.

Used P/BP
pair

Computation
Time

L2-relative
error

Number of
global iter-
ations

Final value
of the
criterion
(×108)

Unmatched 629.3 s 18.5 % 20 5.1136
GPU SF 6517.0 s 18.7 % 16 5.1183

TABLE II: Comparison of the results for a MBIR method [7] with unmatched
P/BP pair and proposed GPU SF pair

IV. CONCLUSION AND PERSPECTIVES

In this work, we have investigated a new GPU implemen-
tation of Separable Footprint (SF) projector and backprojector
(P/BP) which minimizes memory transfers between CPU and
GPU. We have presented a ray-driven GPU SF projector with

two independent kernels which handle rays depending on their
primary direction. Concerning SF backprojector, our GPU
implementation is voxel-driven and uses only one kernel which
takes advantage of the separability of the footprint in SF pair.
Both our GPU SF projector and backprojector have no CPU-
loop, so memory transfers are minimized.

As first results, we have fully validated the proposed GPU
implementation. By computing the coupling degree [3], we
have shown that our GPU SF implementation is well-matched.
Our proposed implementation of SF pair has been shown to
obtain very good results in a Model-Based Iterative Recon-
struction (MBIR) algorithm. Compared with an unmatched
P/BP pair, we have emphasized that the use of matched SF
pair provides better convergence properties and accelerates the
convergence in terms of global iterations.

Nevertheless, we have also seen the computational cost
when using a matched pair is much higher, and results in a
much longer computation time, as highlighted in table II. To
reduce this computation time, further GPU optimizations are
still necessary, such as, for instance, executing the two kernels
of our GPU SF projector on two different GPUs, which is
possible since these two kernels are independent. Moreover,
our experiments have been done on relatively small volumes.
Consequently, scaling our implementation for much larger
volumes, as the aforementioned optimizations, is a perspective
for this work. After having proceeded with these optimizations,
comparisons with previous GPU implementations of SF P/BP
pair [5], [6] will remain to be done.
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