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SCALING LIMIT OF THE VRJP IN DIMENSION ONE AND

BASS-BURDZY FLOW

TITUS LUPU, CHRISTOPHE SABOT, AND PIERRE TARRÈS

Abstract. We introduce a continuous space limit of the Vertex Reinforced Jump Process
(VRJP) in dimension one, which we call Linearly Reinforced Motion (LRM) on R. It is con-
structed out of a convergent Bass-Burdzy flow. The proof goes through the representation of
the VRJP as a mixture of Markov jump processes. As a by-product this gives a representation
in terms of a mixture of diffusions of the LRM and of the Bass-Burdzy flow itself. We also
show that our continuous space limit can be obtained out of the Edge Reinforced Random Walk
(ERRW), since the ERRW and the VRJP are known to be closely related.

1. Introduction and presentation of results

Let G = (V,E,∼) be an electrical network with positive conductances (Ce)e∈E , and let
(θi)i∈V be positive weights on the vertices V . The Vertex-Reinforced Jump Process (VRJP) is
a continuous-time process (ζt)t≥0 taking values in V which, conditionally on the past at time t,
jumps from a vertex i ∈ V to j ∼ i at rate

(1.1) CijLj(t),

where

(1.2) Lj(t) = θj +

∫ t

0
1{ζs=j} ds

is the local time at vertex j at time t, with the convention that the initial local time at j is θj .
The VRJP was introduced by Davis and Volkov [DV02, DV04] and is closely related to

the Edge-Reinforced Random Walk (ERRW) introduced by Coppersmith and Diaconis in 1986
[CD86], and to supersymmetric hyperbolic model in quantum field theory, see [ST15, DSZ10];
see [DD10, BS12] for more references on the VRJP.

Our aim is to introduce a scaling limit of the VRJP on the one-dimensional lattice 2−nZ
when n tends to infinity.

We start with a function L0 : R → (0,+∞), which will correspond to initial local times of
the scaling limit, such that

(1.3)

∫ +∞

0
L0(x)−2dx =

∫ 0

−∞
L0(x)−2dx = +∞.

As we will see further, (1.3) is a condition for non-explosion to infinity.

We define (X
(n)
t )t≥0 as the continuous-time VRJP started from 0 on the network 2−nZ, with

Ce = C = 22n−1 and θi2−n = 2−nL0(i2−n). We define its local time as

`
(n)
t (x) = 2n

∫ t

0
1
X

(n)
s =x

ds, x ∈ 2−nZ.

The factor 2n is the inverse of the size of a cell around a vertex. The jump rates at time t from
x to x+ σ2−n, σ ∈ {−1, 1}, are

(1.4) 22n−1L
(n)
t (x+ σ2−n),
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with
L

(n)
t = L

(n)
0 + `

(n)
t ,

where L
(n)
0 is the restriction to 2−nZ of the initial occupation profile L0. The process is defined

up to a time t
(n)
max ∈ (0,+∞], as it might reach −∞ or +∞ in finite time.

We are interested in the limit in law of ((X
(n)
t )

0≤t≤t(n)max
, (L

(n)
t (x))

x∈2−nZ,0≤t≤t(n)max
) as n→ +∞.

The order in the conductances C and initial local times θ yields, up to a linear change of
time, the only interesting limit, i.e. which is not Brownian motion or a constant process.

We will denote the limit process on R by ((Xt)t≥0, (Lt(x))x∈R,t≥0). One can construct it out
of the flow of solutions of the Bass-Burdzy equation:

(1.5)
dYu
du

=


−1 if Yu > Bu,

1 if Yu < Bu,

where (Bu)u≥0 is the standard Brownian motion on R started from 0. Bass and Burdzy showed
in [BB99] that (1.5) has a.s., for a given initial condition, a unique solution which is Lipschitz
continuous. Let us explain how this equation naturally appears in our context.

Assume first that there is no reinforcement, that is to say L
(n)
t is replaced by L0 in the jump

rates of (1.4). Then the processes would converge to a Markov diffusion with infinitesimal
generator

1

2
L0(x)

d2

dx2
+ L0(x)

( d
dx

(
log(L0(x))

)) d
dx
.

So if one does a change of scale
dy = L0(x)−2dx

(by the way, this is where the condition (1.3) comes from), and a change of time

du = L0(Xt)
−3dt,

where Xt is the position of the particle at time t, one gets a Brownian motion (see [IM74],[Bre92],
Chapter 16 or [RY99], Sections VII.2 and VII.3).

Now assume that we do have a reinforcement and that there is some limit process (Xt)t≥0,
with occupation densities Lt − L0. Then one would like to have a dynamical change of scale

dSt(x) = Lt(x)−2dx,

such that (St(Xt))t≥0 is a martingale (which corresponds to choosing S−1
t (0) in an appropriate

way), and such that after a change of time

(1.6) du = Lt(Xt)
−3dt,

this martingale becomes a Brownian motion Bu = Su(Xu). This corresponds to the idea that
after time t, Xt+∆t, behaves, for ∆t� 1, almost like a diffusion with infinitesimal generator

1

2
Lt(x)

d2

dx2
+ Lt(x)

d

dx
(log(Lt(x)))

d

dx
.

Given x1 < x2 ∈ R fixed, in the time scale (1.6), we have that

d

du
(Su(x2)− Su(x1)) =

dt

du

d

dt
(St(x2)− St(x1)) = Lt(Xt)

3 d

dt

∫ x2

x1

Lt(x)−2dx

= −2Lt(Xt)
3

∫ x2

x1

Lt(x)−3dtLt(x)dx = −2

∫ x2

x1

dtLt(x)dx

= −21x1<Xt<x2 = −21Su(x1)<Bu<Su(x2).

If we moreover take into account that after time t, Xt+dt should spend infinitesimally the same
amount of time left and right from Xt, we get the equation

d

du
(Su(x)) = −1Su(x)>Bu + 1Su(x)<Bu ,
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which is exactly that of (1.5).
We will ”reverse-engineer” the above construction. Let (ΨB

u (y))y∈R,u≥0 be the flow of solu-

tions to (1.5). u 7→ ΨB
u (y) is the Lipschitz solution to (1.5) with initial condition Y0 = y. We

call ΨB the convergent Bass-Burdzy flow. It is a flow of diffeomorphisms of R [BB99]. Let
be

ξu = (ΨB
u )−1(Bu).

The process (ξu)u≥0 has a time-space continuous family of local times (Λu(y))y∈R,u≥0 [HW00],
such that for all f : R→ R bounded, Borel measurable, and all u ≥ 0,∫ u

0
f(ξv)dv =

∫
R
f(y)Λu(y)dy.

Moreover, Λu(y) ≤ 1/2.

Definition 1.1. Let L0 : R→ (0,+∞) be a continuous function. Moreover, we assume that∫ +∞

0
L0(x)−2dx =

∫ 0

−∞
L0(x)−2dx = +∞.

Let x0 ∈ R. Denote, for x ∈ R,

(1.7) S0(x) =

∫ x

x0

L0(r)−2dr.

Perform the change of time

(1.8) dt = L0(S−1
0 (ξu))3(1− 2Λu(ξu))−

3
2du.

The process (S−1
0 (ξu(t)))t≥0, where u(t) is the inverse time change of (1.8), is called the Lin-

early Reinforced Motion starting from x0, with initial occupation profile L0. We call
(ξu)u≥0 the corresponding reduced process and (Bu)u≥0 the corresponding driving Brown-
ian motion. Set

(1.9) Lt(x) = L0(x)(1− 2Λu(t)(S0(x)))−
1
2 .

(Lt(x))x∈R is the occupation profile at time t.

Remark 1.2. The time change (1.8) is a posteriori

dt = Lt(Xt)
3du.

Theorem 1.3. The VRJP process and its occupation profiles (X
(n)
t , L

(n)
t (x))

x∈2−nZ,0≤t≤t(n)max

converge in law as n→ +∞ to a Linearly Reinforced Motion started from 0 and its occupation
profiles (Xt, Lt(x))x∈R,t≥0. The topology of the convergence is that of uniform convergence on

compact subsets. In particular t
(n)
max converges in probability to +∞.

Remark 1.4. Previously, a different Bass-Burdzy flow appeared in the study of continuous self-
interacting processes. In [War05] it was shown that the flow of solutions to

dYu
du

= 21Yu>Bu

was related to the Brownian first passage bridge conditioned by its family of local times and to
the Brownian burglar [WY98].

It was shown in [ST15] that on any electrical network, the VRJP has same law as a time-
change of a mixture of Markov (non-reinforced) jump processes. In our setting, the random
environment related to the VRJP converges. This gives us in the limit a description of the LRM
as a time-changed diffusion in random environment.

Let S0 be the change of scale defined by (1.7), with x0 = 0. Let (W (y))y≥0 and (W (−y))y≥0

be two independent standard Brownian motions, started from 0, where y is seen as a space
variable. We see (W (y))y∈R as a Brownian motion parametrized by R. Define

(1.10) U(x) =
√

2W ◦ S0(x) + |S0(x)|.
3



Consider (Zq)q≥0 the diffusion in random potential 2U − 2 log(L0). Conditional on (U(x))x∈R,
it is a Markov diffusion on R, started from Z0 = 0, with infinitesimal generator

(1.11)
1

2

d2

dx2
+
( d
dx

(
log(L0(x))− U(x)

)) d
dx
.

We will denote by (λq(x))x∈R,y≥0 the family of local times of (Zq)q≥0.
Although the function x 7→ log(L0(x)) − U(x) is in general not differentiable, the diffusion

(Zq)q≥0 is well defined. For that, consider the natural scale function

(1.12) S(x) =

∫ x

0
L0(r)−2e2U(r)dr.

The condition (1.3) and the fact that U is a.s. bounded from below imply that

a.s. S(−∞) = −∞, S(+∞) = +∞.

(S(Zq))q≥0 is a local martingale and a Markov diffusion with infinitesimal generator

1

2
(S ′ ◦ S−1(ς))2 d

2

dς2
.

It is a time-changed Brownian motion, and in particular, it is defined up to q = +∞. In the
particular case L0 ≡ 1, the generator (1.11) is equal to

1

2

d2

dy2
−
√

2
( d
dy
W (y)

) d
dy
− sgn(y)

d

dy
,(

d
dyW (y)

)
y∈R being the white noise. For some background on diffusions in random Wiener

potential, we refer to [Sch85, Bro86, Tan95] and the references therein.

Theorem 1.5. The Linearly Reinforced Motion (Xt)t≥0, started from 0, with initial occupation
profile L0, has same law as a time-change of the mixture of diffusions (Zq)q≥0, where the time-
change is given by

(1.13) dt = (L0(Zq)
2 + 2λq(Zq))

− 1
2dq.

Remark 1.6. The mixture of diffusions (Zq)q≥0 is itself a reinforced process. Informally, one can
imagine it as having a time-dependent infinitesimal generator

1

2

d2

dx2
+

1

2

d

dx
(log(L0(x)2 + 2λq(x)))

d

dx
.

We will prove Theorem 1.5 by constructing out of the VRJP a discrete analogue of the
convergent Bass-Burdzy flow.

Theorem 1.5 has an immediate implication on the reduced process (ξu)u≥0.

Corollary 1.7. Let ξu = (ΨB
u )−1(Bu) be the reduced process obtained out of the Bass-Burdzy

flow (ΨB
u )u≥0. Let (Z̄q̄)q̄≥0 be a process, that conditional on (W (y))y∈R is a Markov diffusion

with generator

1

2

d2

dy2
−
√

2
( d
dy
W (y)

) d
dy
− sgn(y)

d

dy
,

and (λ̄q̄(y))y∈R,q̄≥0 its family of local times. Let be the time change

du = (1 + 2λ̄q̄(Z̄q̄))
−2dq̄.

Then the time changed process (Z̄q̄(u))u≥0 has same law as (ξu)u≥0. Moreover, in this construc-
tion of (ξu)u≥0, we have the following relation between the local times:

Λu(y) =
λ̄q̄(y)

1 + 2λ̄q̄(y)
.
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Next table sums up the correspondences between different processes, an LRM with initial
occupation profile (i.o.p.) L0, the LRM with initial occupation profile 1 denoted (χτ )τ≥0 (which
is, as we will show, equivalent up to a change of scale and time to an LRM with different initial
occupation profile), the reduced process (ξu)u≥0, and the diffusion in random environment
(Z̄q̄)q̄≥0. On the lines marked by ”corr.” (for ”correspondence”), all the quantities are equal.

Process Xt χτ ξu Z̄q̄

Description LRM, i.o.p. L0 LRM, i.o.p. 1 red. proc. diffusion in rand. envir.

Space variable x y y y

Time variable t τ u q̄

Local time Lt(x)− L0(x) Lχτ (y)− 1 Λu(y) λ̄q̄(y)

Space corr. L0(x)−2dx dy dy dy

Time corr. Lt(Xt)
−3dt Lτ (χτ )−3dτ du (1 + 2λ̄q̄(Z̄q̄))

−2dq̄

Local time corr.
1

2

(
1− L0(x)2

Lt(x)2

)
1

2
(1− Lχτ (y)−2) Λu(y)

λ̄q̄(y)

1 + 2λ̄q̄(y)

The convergence of the VRJP to a continuous space process has a version for the Edge
Reinforced Random Walk. For references on the ERRW see [Dia88, KR00, DR06, Rol06, MR07,
ACK14]. It was shown in [ST15] that an ERRW has same distribution as the discrete-time
process of a VRJP in a network with random conductances, hence it is a mixture of Markovian
random walks.

In our context, we consider a discrete time reinforced walk (Ẑ
(n)
k )k≥0 on 2−nZ, started at 0.

The weight of an edge w
(n)
k (x, x+ 2−n) at time k will be

w
(n)
k (x− 2−n, x) = w

(n)
k (x, x− 2−n)

= w
(n)
0 (x− 2−n, x) + Card{j ∈ {1, . . . , k}|{Ẑ(n)

j−1, Ẑ
(n)
j } = {x− 2−n, x}},

where {·, ·} stands for the undirected edge and w0(x − 2−n, x) ∈ (0,+∞). The transition
probabilities are:

P(Ẑ
(n)
k+1 = x± 2−n|Ẑ(n)

k = x, (Ẑ
(n)
j )0≤j≤k) =

w
(n)
k (x, x± 2−n)

w
(n)
k (x, x− 2−n) + w

(n)
k (x, x+ 2−n)

.

For initial weights we will take

w
(n)
0 (x− 2−n, x) = 2n−1L0(x− 2−n)L0(x).

Proposition 1.8. The family of processes

(Ẑ
(n)
b4nqc, 2

−nw
(n)
b4nqc(x− 2−n, x))x∈2−nZ,q≥0

jointly convergences in law as n→ +∞ towards

(Zq, L0(x)2/2 + λq(x))x∈R,q≥0,

where (Zq)q≥0 is the mixture of diffusion of Theorem 1.5. The spatial processes are considered
to be interpolated linearly outside 2−nZ.
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Remark 1.9. The fact that the ERRW has a scaling limit which is a diffusion in random potential
is reminiscent of the Sinai’s random walk [Sin82] scaling to a Brox diffusion [Bro86, Sei00, Pac16].
In the Brox diffusion however the random potential contains only a Wiener term and no drift as
in our case. See also [Dav96] for the once-reinforced random walk scaling to Carmona-Petit-Yor
process [CPY98].

Our paper is organized as follows. In Section 2 we will recall some properties of Bass-Burdzy
flows and see what it implies for the Linearly Reinforced Motion. In Section 3 we will show
the convergence of the random environment related to the VRJP, and as a consequence the
convergence of the VRJP to a mixture of time-changed diffusions. We will also recall the
random environment associated to the ERRW and deduce the convergence of the ERRW. In
Section 4, we will show that this mixture of time-changed diffusions coincides with the Linearly
Reinforced Motion, and deduce a couple of consequences of this, such as the long-time behaviour
of the LRM. In our paper we will use different time scales, t, τ , u, q, q̄, etc., and the notations
like q(t) will denote the change of time that transform one time scale into an other.

Next are some simulations of the Linearly Reinforced Motion at different scales, obtained by
running VRJP-s on a fine lattice.

0 2 4 6 8
-4

-2

0

2

4

Figure 1. LRM with L0 ≡ 1 on time-interval [0, 8].

0 20 40 60 80 100
-20

-10

0

10

20

Figure 2. LRM with L0 ≡ 1 on time-interval [0, 100].
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2. Convergent Bass-Burdzy flow and Linearly Reinforced Motion

Let (Bu)u≥0 be a standard Brownian motion on R, starting at 0, and let (FBu )u≥0 be the
associated filtration. For u0 ≥ 0, we will denote

(B ◦ θu0)u = Bu0+u −Bu0 .
We consider the differential equation (1.5):

dYu
du

=


−1 if Yu > Bu,

1 if Yu < Bu,

with some initial condition Y0 = y ∈ R. (Bu − ΨB
u (y))y∈R,u≥0 is a stochastic flow, solution to

the SDE

(2.1) dζu = dBu − (−1ζu>0 + 1ζu<0)du.

The equation(2.1) falls in the class studied in [Att10] (bounded variation drift). Next we list
the main results on solutions to (1.5).

Proposition 2.1 (Bass-Burdzy [BB99], Hu-Warren [HW00], Attanasio [Att10]). For every ini-
tial condition Y0 = y ∈ R, there is a.s. a unique solution to (1.5) which is Lipschitz continuous.
We denote it (ΨB

u (y))u≥0. For any y1, . . . , yk ∈ R, the joint law of (Bu,Ψ
B
u (y1), . . . ,ΨB

u (yk))u≥0

is uniquely determined. One can construct (ΨB
u (y))y∈R,u≥0 simultaneously for all y ∈ R such

that (y, u) 7→ ΨB
u (y) is continuous on R× [0,+∞). Moreover, we have the following properties:

(1) The flow (ΨB
u (y))y∈R,u≥0 is adapted to the filtration (FBu )u≥0.

(2) (Strong Markov property). For any U0 stopping time for (FBu )u≥0,

ΨB
U0+u(y) = Ψ

B◦θU0
u (y −BU0) +BU0 .

(3) A.s., for any α ∈ (0, 1/2) and for all u ≥ 0, y 7→ ΨB
u (y) is a C1,α-diffeomorphism of R.

That is to say, y 7→ ΨB
u (y) is an increasing bijection,

∂

∂y
ΨB
u (y) is positive on R, and both

the functions y 7→ ∂

∂y
ΨB
u (y) and y 7→ ∂

∂y
(ΨB

u )−1(y) are locally α-Hölder continuous.

(4) The process (Bu−ΨB
u (y))u≥0 admits semi-martingale local times at level 0, (Lu(y))u≥0,

Lu(y) = lim
ε→0

1

2ε

∫ u

0
1|Bu−ΨBv (y)|<εdv,

such that the map (y, u) 7→ Lu(y) is continuous.
(5) For the space derivative of the flow, one has

(2.2)
∂

∂y
ΨB
u (y) = exp(−2Lu(y)).

(6) The process ((ΨB
u )−1(Bu))u≥0 = (ξu)u≥0 admits occupation densities (local times)

(Λu(y))y∈R,u≥0, continuous in (y, u). Moreover, the following identity holds:

(2.3) Λu(y) =
1

2
(1− exp(−2Lu(y))).

In particular, Λu(y) ≤ 1/2.
(7) The process (ξu)u≥0 is recurrent, that is to say, for all u0 ≥ 0, the process will visit a.s.

all points after u0.

Next we show some elementary properties of (ξu)u≥0 which we did not found as such in our
references [BB99, HW00, Att10].

Proposition 2.2. (ξu)u≥0 satisfies:

(1) A.s., for any α ∈ (0, 1/2), the process (ξu)u≥0 is locally α-Hölder continuous.
7



(2) Let u > 0 and consider (ui,j)0≤j≤Ni,i≥0 a deterministic family such that

0 = ui,0 < ui,1 < · · · < ui,Ni−1 < uNi = u

and
lim

i→+∞
max

1≤j≤Ni
(ui,j − ui,j−1) = 0.

Then,

(2.4) lim
i→+∞

Ni∑
j=1

(ξui,j − ξui,j−1)2 =

∫ u

0
(1− 2Λv(ξv))

−2dv

in probability.
(3) Let (ρu)u≥0 be the process

ρu = ξu −
∫ u

0
(1− 2Λv(ξv))

−1dBv.

For a family (ui,j) as above,

lim
i→+∞

Ni∑
j=1

(ρui,j − ρui,j−1)2 = 0

in probability.

Proof. First note that for any y ∈ R,

|(ΨB
u )−1(y)− y| = |ΨB

u ◦ (ΨB
u )−1(y)− (ΨB

u )−1(y)| ≤ 2u,

and

|(ΨB
u )−1(y2)− (ΨB

u )−1(y1)| ≤ exp
(
2 sup
y∈R
Lu(y)

)
|y2 − y1| =

(
1− 2 sup

y∈R
Λu(y)

)−1|y2 − y1|,

where for the second inequality we used that

∂

∂y
(ΨB

u )−1(y) = exp(2Lu((ΨB
u )−1(y))) = (1− 2Λu((ΨB

u )−1(y)))−1.

Then write
ξu2 = (ΨB

u2)−1(Bu2) = (ΨB
u1)−1((Ψ

B◦θu1
u2−u1)−1(Bu2 −Bu1) +Bu1).

It follows that

|ξu2 − ξu1 | ≤
(
1− 2 sup

y∈R
Λu1(y)

)−1|(ΨB◦θu1
u2−u1)−1(Bu2 −Bu1)|

≤
(
1− 2 sup

y∈R
Λu1(y)

)−1|Bu2 −Bu1 |

+
(
1− 2 sup

y∈R
Λu1(y)

)−1|(ΨB◦θu1
u2−u1)−1(Bu2 −Bu1)− (Bu2 −Bu1)|

≤
(
1− 2 sup

y∈R
Λu1(y)

)−1|Bu2 −Bu1 |+ 2
(
1− 2 sup

y∈R
Λu1(y)

)−1
(u2 − u1),

which implies (1).
Let us show (2). Refining the above computation, one gets that

ξui,j − ξui,j−1 =(1− 2Λui,j−1(ξui,j−1))−1(Bui,j −Bui,j−1)(2.5)

+ o(|Bui,j −Bui,j−1 |+ 2(ui,j − ui,j−1)) +O(ui,j − ui,j−1),

where

|o(|Bui,j −Bui,j−1 |+ 2(ui,j − ui,j−1))| ≤ (|Bui,j −Bui,j−1 |+ 2(ui,j − ui,j−1))

× sup
|y1−y2|≤|Bui,j−Bui,j−1 |

+2(ui,j−ui,j−1)

|(1− 2Λui,j−1(y2))−1 − (1− 2Λui,j−1(y1))−1|,
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and
|O(ui,j − ui,j−1)| ≤ 2

(
1− 2 sup

y∈R
Λu1(y)

)−1
(u2 − u1).

Thus, the sum in (2.4) behaves, as i→ +∞, like

Ni∑
j=1

(1− 2Λui,j−1(ξui,j−1))−2(Bui,j −Bui,j−1)2.

To conclude, we use that

lim
i→+∞

Ni∑
j=1

|(Bui,j −Bui,j−1)2 − (ui,j − ui,j−1)| = 0

in probability.
For (3), use (2.5) and write

ρui,j − ρui,j−1 =(1− 2Λui,j−1(ξui,j−1))−1(Bui,j −Bui,j−1)−
∫ ui,j

ui,j−1

(1− 2Λv(ξv))
−1dBv

+ o(|Bui,j −Bui,j−1 |+ 2(ui,j − ui,j−1)) +O(ui,j − ui,j−1). �

Remark 2.3. The process (ξu)u≥0 has a decomposition into a sum of a local martingale and a
process with 0 quadratic variation, both adapted to the Brownian filtration (FBu )u≥0. Following
Föllmer’s terminology [Fö81], it is a Dirichlet process. However, it is believed not to be a
semi-martingale [HW00], which would mean that (ρu)u≥0 has an infinite total variation. The
reason for that would be that the terms o(|Bui,j − Bui,j−1 | + 2(ui,j − ui,j−1)) in (2.5) are not

O((Bui,j −Bui,j−1)2), since the flow (ΨB
u )u≥2 is not C2 in space. One could push up to showing

that (ρu)u≥0 is locally 3/4− ε Hölder continuous. We believe that this 3/4− ε is optimal.

Next are some elementary properties of the LRM (Xt)t≥0 (see Definition 1.1).

Proposition 2.4. The following properties hold:

(1) Let (χτ )τ≥0 be the Linearly Reinforced Motion starting from 0, with initial occupation
profile 1. Given x0 ∈ R and another occupation profile L0, define the change of time

dt = L0(S−1
0 (χτ ))3dτ,

and consider the change of scale S0 given by (1.7). Then Xt = S−1
0 (χτ(t)) is a Linearly

Reinforced Motion starting from x0, with initial occupation profile L0.
(2) A.s., Xt is defined for all t ≥ 0.
(3) A.s., for any α ∈ (0, 1/2), the process (Xt)t≥0 is locally α-Hölder continuous.
(4) Let Lt be the occupation profile at time t, defined by (1.9). Then (Lt(x)− L0(x))x∈R is

the occupation density of X on time-interval [0, t], that is to say, for any f : R → R
bounded, ∫ t

0
f(Xs)ds =

∫
R
f(x)(Lt(x)− L0(x))dx.

(5) (Strong Markov property). Let T0 be a stopping time for the natural filtration (FXt )t≥0 of
(Xt)t≥0. Then (XT0+t)t≥0 is distributed as a Linearly Reinforced Motion starting from
XT0, with initial occupation profile LT0.

(6) The process (Xt)t≥0 is recurrent, that is to say, for all t0 ≥ 0, the process will visit a.s.
all points after t0.

(7) Let x1 < x2 ∈ R. Then

(2.6) P(After time t0, Xt hits x2 before x1|FXt0 , x1 < Xt0 < x2) ≥ 1

2
is equivalent to

(2.7)

∫ x2

Xt0

Lt0(x)−2dx ≤
∫ Xt0

x1

Lt0(x)−2dx.
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More precisely, let y1 < 0 and y2 > 0. Let U↓y1 be the first time the drifted Brownian

motion Bu − u hits y1 and U↑y2 the first time Bu + u, hits y2, with B0 = 0. Then

(2.8) P(After time t0, Xt hits x2 before x1|FXt0 , x1 < Xt0 < x2) = P(U↑y2 < U↓y1),

where

y1 =

∫ Xt0

x1

Lt0(x)−2dx, y2 =

∫ x2

Xt0

Lt0(x)−2dx.

(8) Let t > 0 and consider (ti,j)0≤j≤Ni,i≥0 a deterministic family such that

0 = ti,0 < ti,1 < · · · < ti,Ni−1 < tNi = u

and

lim
i→+∞

max
1≤j≤Ni

(ti,j − ti,j−1) = 0.

Then

lim
i→+∞

Ni∑
j=1

(Xti,j −Xti,j−1)2 =

∫ t

0
Ls(Xs)ds

in probability. Let (Rt)t≥0 be the process

Rt = Xt −
∫ t

0
Ls(Xs)

2dsBu(s),

where u(·) is the inverse time-change of (1.8). Then, for a family (ti,j) as above,

lim
i→+∞

Ni∑
j=1

(Rti,j −Rti,j−1)2 = 0

in probability.

Proof. (1): This is a straightforward consequence of Definition 1.1. One uses the same driving
Brownian motion and reduced process.

(2): This is equivalent to∫ +∞

0
L0(Xu)3(1− 2Λu(ξu))−

3
2du = +∞ a.s.

Fix y1 < y2 ∈ R. Since L0 is positive bounded away from 0 on [S−1
0 (y2), S−1

0 (y1)], it is enough
to show that ∫ +∞

0
1y1<ξu<y2(1− 2Λu(ξu))−

3
2du = +∞ a.s.

Using the elementary properties of occupation densities, one can show that the above integrals
equals on [S−1

0 (y2), S−1
0 (y1)], it is enough to show that∫

y1<y<y2

∫ +∞

0
(1− 2Λu(ξu))−

3
2duΛu(y)dy.

Applying the identity (2.3), get that it equals in turn∫
y1<y<y2

∫ +∞

0
exp(3Lu(y))duLu(y)dy =

1

3

∫
y1<y<y2

(exp(3L+∞(y))− 1)dy.

Conclude using that a.s., ∀y ∈ R, L+∞(y) = limu→+∞ Lu(y) = +∞ [BB99, HW00].
(3): This follows from the local Hölder continuity of (ξu)u≥0 and the fact that we perform C1

changes of scale and time.
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(4): Use that∫ t

0
f(Xs)ds =

∫ u(t)

0
f(S−1

0 (ξv))L0(S−1
0 (ξv))

3(1− 2Λv(ξv))
− 3

2dv

=

∫
R

∫ u(t)

0
f(S−1

0 (y))L0(S−1
0 (y))3(1− 2Λv(y))−

3
2dvΛv(y)dy

=

∫
R
f(S−1

0 (y))L0(S−1
0 (y))3((1− 2Λu(t)(y))−

1
2 − 1)dy

=

∫
R
f(x)L0(x)((1− 2Λu(t)(S0(x)))−

1
2 − 1)dx.

(5): Let U0 = u(T0). It is a stopping time for the driving Brownian motion (Bu)u≥0. Let

ξ̃u = (Ψ
B◦θU0
u )−1((B ◦ θU0)u). The process (ξ̃u)u≥0 has same law as (ξu)u≥0. Moreover,

ξU0+u = (ΨB
U0

)−1(ξ̃u +BU0).

Let

ST0(x) =

∫ x

XT0

LT0(r)−2dr.

We have that

XT0+t = S−1
0 (ξu(T0+t)) = (ΨB

U0
◦ S0)−1(ξ̃u(T0+t)−U0

+BU0).

Moreover,

(ΨB
U0
◦ S0)−1(0 +BU0) = XT0

and, following (2.2) and (2.3),

d

dx
ΨB
U0
◦ S0(x) = L0(x)−2(1− 2ΛU0(S0(x))) = LT0(x)−2.

Thus,

(ΨB
U0
◦ S0)−1(y +BU0) = S−1

T0
(y).

Finally,

u(T0 + t)− U0 =

∫ T0+t

T0

Ls(Xs)
−3ds.

So we get (5).
(6): This follows from the recurrence of (ξu)u≥0.
(7): Since we have the Markov property, it is enough to show it for t0 = 0. Then, if

X0 ∈ (x1, x2),

P(Xt hits x2 before x1) = P(ξu hits S0(x2) before S0(x1))

= P(Bu meets ΨB
u ◦ S0(x2) before ΨB

u ◦ S0(x1)),

which is exactly (2.8).
(8): The proof is similar to that of (2) and (3) in Proposition 2.2. One has to apply a time-

change to go from (ξu)u≥0 to (Xt)t≥0, and thus, considers (Bu)u≥0 at random stopping times
rather than at fixed times. Note that, in the time change (1.8),

Lt(Xt)dt =
( d
dx
S0(Xt)

)−2
(1− 2Λu(ξu))−2du. �

Remark 2.5. The equivalence between (2.6) and (2.7) emphasizes the reinforcement property.
Indeed, the motion tends to drift towards the places it has already visited a lot. Yet it is
recurrent. Property (8) gives a decomposition of (Xt)t≥0 as a local martingale plus an adapted
process with zero quadratic variation. As for (ξu)u≥0, we believe that the LRM (Xt)t≥0 is not
a semi-martingale.
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3. The VRJP-related random environment and its convergence

It was shown in [ST15], that a VRJP has same law as a time-change of a non-reinforced
Markov jump process in a network with random conductances. In dimension one, the study of
the mixing measure was already initiated in [DV02]. In our setting, one has the following:

Proposition 3.1 (Davis-Volkov [DV02], Sabot-Tarrès [ST15]). Let n ∈ N. Let (V (n)−(x))x∈2−nN∗

and (V (n)+(x))x∈2−nN∗ be two independent families of independent real random variables, where

V (n)σ(x), σ ∈ {−1,+1}, is distributed according to

2
n−1
2 π−

1
2 (L0(σx)L0(σ(x− 2−n)))

1
2 exp

(
−2nL0(σx)L0(σ(x− 2−n)) sinh(v/2)2 + v/2

)
dv.

Define (U (n)−(x))x∈2−nN and (U (n)+(x))x∈2−nN by

U (n)−(0) = U (n)+(0) = 0, U (n)σ(x) =

2nx∑
i=1

V (n)σ(2−ni), σ ∈ {−1,+1}, x ∈ N∗.

Set

(3.1) U (n)(x) =


0 if x = 0,

U (n)+(x) if x ∈ N∗,

U (n)−(|x|) if − x ∈ N∗.

Let (Z
(n)
q )

0≤q≤q(n)max
be the continuous-time process on 2−nZ, which, conditional on the random

environment (U (n)(x))x∈2−nZ, is a (non-reinforced) Markov jump process, started from 0, with
transition rate from x ∈ 2−nZ to x+ σ2−n, σ ∈ {−1,+1}, equal to

22n−1L0(x+ σ2−n)

L0(x)
e−U

(n)(x+σ2−n)+U(n)(x).

q
(n)
max ∈ (0,+∞) is the time when the process explodes to infinity, whenever this happens. Oth-

erwise q
(n)
max = +∞. Let λ

(n)
q (x) be the local times of Z

(n)
q :

λ(n)
q (x) = 2n

∫ q

0
1
Z

(n)
r =x

dr.

Define the change of time

q(n)(t) = inf
{
q ≥ 0

∣∣∣2n ∑
x∈2−nZ

(
(L0(x)2 + 2λ(n)

q (x))
1
2 − L0(x)

)
≥ t
}
.

Then the family of time changed processes(
Z

(n)

q(n)(t)∧q(n)max

, (L0(x)2 + 2λ
(n)

q(n)(t)∧q(n)max

(x))
1
2

)
x∈2−nZ,t≥0

has same distribution as the VRJP

(X
(n)

t∧t(n)max

, L
(n)

t∧t(n)max

(x))x∈2−nZ,t≥0.

We will show that the random environment (U (n)(x))x∈2−nZ converges as n → +∞ to a
process the process (U(x))x∈R introduced in (1.10). Out of this we deduce that the process

(Z
(n)
q )

0≤q≤q(n)max
has a limit in law (Zq)q≥0, which condition on the environment (U(x))x∈R, is

a Markov diffusion on R. Then, we conclude that the VRJP (X
(n)
t )

0≤t≤t(n)max
converges to a

time-change of (Zq)q≥0.
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Lemma 3.2. The family of random processes (U (n)(x))x∈2−nZ defined in (3.1) converges in law,

as n → +∞, to the process (U(x))x∈R, defined by (1.10). U (n) is considered to be interpolated
linearly outside 2−nZ. The space of continuous functions R → R is considered to be endowed
with the topology of uniform convergence on compact intervals.

Proof. Notice that for n large, the law of V (n)+(x) is almost

N (2−nL0(x)−1L0(x− 2−n)−1, 2−(n−1)L0(x)−1L0(x− 2−n)−1),

i.e. a normal with mean 2−nL0(x)−1L0(x− 2−n)−1 and variance 2−(n−1)L0(x)−1L0(x− 2−n)−1.
More precisely, the total variation distance between the two laws is

O(2−2nL0(x)−2L0(x− 2−n)−2).

In other words, the total variation distance between the law of V (n)+(x) and that of U(x) −
U(x− 2−n) is O(2−2n), where O is uniform for x in a compact subset Fix A > 0. We get that

the total variation between (U (n)(x))x∈[0,A]∩2−nZ and (U(x))x∈[0,A]∩2−nZ is O(2−n). �

Recall that (λq(x))x∈R,q≥0 denotes the family of local times of (Zq)q≥0.

Proposition 3.3. Consider the random environments (U (n)(x))x∈2−nZ and the random pro-

cesses (Z
(n)
q )

0≤q≤q(n)max
, with local times (λ

(n)
q (x))

x∈2−nZ,0≤q≤q(n)max
, introduced in Proposition 3.1.

As n→ +∞, q
(n)
max → +∞ in probability, and the process

(U (n)(x), Z
(n)

q∧q(n)max

, λ
(n)

q∧q(n)max

(x))x∈2−nZ,q≥0

converges in law to
(U(x), Zq(x), λq(x))x∈R,q≥0.

We interpolate 2−nZ-valued processes linearly, and use for λ
(n)

q∧q(n)max

(x) and λq(x) the topology of

uniform convergence on compact subsets of R× [0,+∞).

Proof. The idea is to ”embed” the processes (Z
(n)
q )

0≤q≤q(n)max
for different values of n inside a

Brownian motion, scale-changed. Let (βs)s≥0 be a standard Brownian motion started from 0,

with a family of local times denoted (`βs (x))x∈R,s≥0. Take (U (n)(x))x∈2−nZ independent from

(βs)s≥0. Define the change of scale S(n) : 2−nZ→ R by S(n)(0) = 0 and for x ∈ 2−nZ, x 6= 0,

S(n)(x) = 2−n
2n|x|∑
i=1

L0(sgn(x)2−ni)−1L0(sgn(x)2−n(i− 1))−1eU
(n)(sgn(x)2−ni)+U(n)(sgn(x)2−n(i−1)).

Consider the time change

s(n)(q) = inf
{
s ≥ 0

∣∣∣2−n ∑
x∈2−nZ

L0(x)−2e2U(n)(x)`βs (S(n)(x)) ≥ q
}
.

Then one can construct Z
(n)
q and λ

(n)
q (x) as

Z(n)
q = (S(n))−1(βs(n)(q)), λ(n)

q (x) = L0(x)−2e2U(n)(x)`β
s(n)(q)

(S(n)(x)).

Similarly, take (U(x))x∈R independent from (βs)s≥0. Consider the change of scale

S(x) =

∫ x

0
L0(r)−2e2U(r)dr,

and the change of time

s(q) = inf
{
s ≥ 0

∣∣∣ ∫
R
L0(x)−2e2U(x)`βs (S(x))dx ≥ q

}
.

One can construct Zq and λq(x) as

Zq = S−1(βs(q)), λ(n)
q (x) = L0(x)−2e2U(x)`βs(q)(S(x)).
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The convergence of U (n) to U (Lemma 3.2) implies then the other convergences. �

Let be the time change

q(t) = inf
{
q ≥ 0

∣∣∣ ∫
x∈R

(
(L0(x)2 + 2λq(x))

1
2 − L0(x)

)
dx ≥ t

}
.

This is the same time-change as in (1.13). Set

X∗t = Zq(t), L∗t (x) = (L0(x)2 + 2λq(t)(x))
1
2 .

Lemma 3.4. The function t 7→ q(t) is a.s. an increasing diffeomorphism of of [0,+∞). The
space-time process (L∗t (x)− L0(x))x∈R,t≥0 is the family of local times of (X∗t )t≥0, that is to say
for any f bounded measurable function,∫ t

0
f(X∗s )ds =

∫
R
f(x)(L∗t (x)− L0(x))dx.

Proof. For the first point, one needs to check that

lim
q→+∞

∫
x∈R

(
(L0(x)2 + 2λq(x))

1
2 − L0(x)

)
dx = +∞.

But actually, a.s. for all x ∈ R, limq→+∞ λq(x) = +∞.
If we differentiate the time change t 7→ q(t), we get

dt = (L0(Zq)
2 + 2λq(Zq))

− 1
2dq.

Thus,∫ t

0
f(X∗s )ds =

∫ q(t)

0
f(Zr)(L0(x)2 + 2λr(Zr))

− 1
2dr

=

∫
R

∫ q(t)

0
f(x)(L0(x)2 + 2λr(x))−

1
2drλr(x)dx =

∫
R
f(x)(L0(x)2 + 2λr(x))

1
2dx

=

∫
R
f(x)(L∗t (x)− L0(x))dx,

which is our second point. �

Combing Proposition 3.1 and Proposition 3.3, one immediately gets that the VRJP has a
limit in law which is a time change of (Zq)q≥0:

Proposition 3.5. As n→ +∞, t
(n)
max → +∞ in probability, and the VRJP

(X
(n)

t∧t(n)max

, L
(n)
t (x))x∈2−nZ,t≥0

converges in law to
(X∗t , L

∗
t (x))x∈R,t≥0,

where we interpolate L
(n)
t (x) linearly outside x ∈ 2−nZ.

Now let us recall how to obtain an ERRW as mixture of random walks.

Proposition 3.6 (Sabot-Tarrès [ST15]). Let (γ(n)(x − 2−n, x))x∈2−nZ be independent ran-

dom variables where γ(n)(x − 2−n, x) has the distribution Γ(2n−1L0(x − 2−n)L0(x), 1). Let

(V̂ (n)−(x))x∈2−nN∗ and (V̂ (n)+(x))x∈2−nN∗ be conditionally two independent families of indepen-

dent real random variables, where V̂ (n)σ(x), σ ∈ {−1,+1}, has conditional distribution

π−
1
2 (γ(n)(x− σ2−n, x))

1
2 exp

(
−2γ(n)(x− σ2−n, x) sinh(v/2)2 + v/2

)
dv.

Define (Û (n)−(x))x∈2−nN and (Û (n)+(x))x∈2−nN by

Û (n)−(0) = Û (n)+(0) = 0, Û (n)σ(x) =

2nx∑
i=1

V̂ (n)σ(2−ni), σ ∈ {−1,+1}, x ∈ N∗.
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Set

Û (n)(x) =


0 if x = 0,

Û (n)+(x) if x ∈ N∗,

Û (n)−(|x|) if − x ∈ N∗.

Consider the discrete time random walk on 2−nZ, started from 0, in the random environment

(γ(n)(x − 2−n, x), Û (n)(x))x∈2−nZ, with conditional transition probabilities from x to x ± 2−n

proportional to

γ(n)(x, x± 2−n)e−(Ũ(n)(x)+Ũ(n)(x±2−n)).

Then, averaged by the environment, it has same distribution as the ERRW (Ẑ
(n)
k )k≥0 of Propo-

sition 1.8.

The following elementary convergence in probability holds:

Lemma 3.7. Let A > 0. Let S0 be the change of scale (1.7), with x0 = 0. Then

sup
x∈[−A,A]∩2−nZ

∣∣∣1
2

2n|x|∑
i=1

γ(2−ni− sgn(x)2−n, 2−ni)−1 − S0(x)
∣∣∣

converges in probability to 0 as n→ +∞.

Proof. By the elementary properties of gamma distributions,

E[γ(n)(x− 2−n, x)−1] =
Γ(· − 1)

Γ(·)
(2n−1L0(x− 2−n)L0(x)) = 2−n+1L0(x− 2−n)−1L0(x)−1,

where Γ is Euler’s Gamma function, and

Var(γ(n)(x− 2−n, x)−1) =

(
Γ(· − 2)

Γ(·)
− Γ(· − 1)2

Γ(·)2

)
(2n−1L0(x− 2−n)L0(x)) = O(2−3n).

From Doob’s maximal inequality follows that

E
[

sup
x∈[0,A]∩2−nZ

∣∣∣1
2

2nx∑
i=1

γ(2−n(i− 1), 2−ni)−1 − E[γ(2−n(i− 1), 2−ni)−1]
∣∣∣2]

≤ 4

b2nAc∑
i=1

Var(γ(n)(2−n(i− 1), 2−ni)−1) = O(2−2n).

Moreover,

lim
n→+∞

sup
x∈[−A,A]∩2−nZ

∣∣∣1
2

2n|x|∑
i=1

E[γ(2−ni− sgn(x)2−n, 2−ni)−1]− S0(x)
∣∣∣ = 0. �

Proof of Proposition 1.8. Lemma 3.7 implies that (Û (n)(x))x∈2−nZ converges in law, for the
topology of uniform convergence on compacts, to U given by 1.10. This can be proved similarly

to Lemma 3.2. Define the change of scale Ŝ(n) : 2−nZ → R by Ŝ(n)(0) = 0, and for x ∈ 2−nZ,
x 6= 0,

Ŝ(n)(x) =
1

2

2n|x|∑
i=1

γ(2−ni− sgn(x)2−n, 2−ni)−1eÛ
(n)(2−ni−sgn(x)2−n)+Û(n)(2ni).

Under this change of scale, (Ŝ(n)(Ẑ
(n)
k ))k≥0 conditional on the random environment

(γ(n)(x − 2−n, x), Û (n)(x))x∈2−nZ, is a local martingale. Lemma 3.7 combined with the con-

vergence of Û (n) to U , implies in turn that Ŝ(n) converges in law to S given by (1.12). This
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implies that (Ẑ
(n)
b4nqc)q≥0 converges in law to (Zq)q≥0. Indeed, one can embed, as in the proof of

Proposition 3.3, the process (Ẑ
(n)
b4nqc)q≥0 inside a scale-changed (by (Ŝ(n))−1) Brownian motion,

and the change of scales converges. Compared to the proof of Proposition 3.3, here the jumps
at exponential times are replaced by jumps at fixed times. Moreover, in this convergence, the

edge-occupation times of (Ẑ
(n)
b4nqc)q≥0 scaled by 2−n converge to the local times of (Zq)q≥0. For

the approximation of local times by the number of interval crossings, see [MP10], Section 6.2,
and [Kni81], Section 5.1. �

4. Convergence of the VRJP to the Linearly Reinforced Motion

In this section we prove that the Vertex Reinforced Jump Processes converges in law to a
Linearly Reinforced Motion constructed using the Bass-Burdzy flow (Section 2). To this end,
we will make appear something that looks like a Bass-Burdzy flow in discrete. We also use that
we already have a limit obtained as a time-changed Markov diffusion in a random environment
(Proposition 3.5).

Define the scale functions x 7→ S
(n)
t (x) by

S
(n)
0 (x) =



0 if x = 0,

2−n
∑2nx

i=1 L0(2−ni)−1L0(2−n(i− 1))−1 if x ∈ 2−nZ ∩ (0,+∞),

2−n
∑2n|x|

i=1 L0(−2−ni)−1L0(−2−n(i− 1))−1 if x ∈ 2−nZ ∩ (−∞, 0),

(2−nd2nxe − x)S
(n)
0 (2−nb2nxc) + (x− 2−nb2nxc)S(n)

0 (2−nd2nxe) if x 6∈ 2−nZ,

and

∂

∂t
S

(n)
t (x) =



0 if x = X
(n)
t ,

−L(n)
t (X

(n)
t )−2L

(n)
t (X

(n)
t + 2−n)−1 if x ≥ X(n)

t + 2−n,

+L
(n)
t (X

(n)
t )−2L

(n)
t (X

(n)
t − 2−n)−1 if x ≤ X(n)

t − 2−n,

−(x− 2−nb2nxc)L(n)
t (X

(n)
t )−2L

(n)
t (X

(n)
t + 2−n)−1 if x ∈ (X

(n)
t , X

(n)
t + 2−n),

+(2−nd2nxe − x)L
(n)
t (X

(n)
t )−2L

(n)
t (X

(n)
t − 2−n)−1 if x ∈ (X

(n)
t − 2−n, X

(n)
t ).

Remark 4.1. x 7→ S
(n)
t (x) is a strictly increasing function. S

(n)
t has been constructed in a way

so as to always have, for x ∈ 2−nZ,

S
(n)
t (x)− S(n)

t (x− 2−n) = 2−nL
(n)
t (x)−1L

(n)
t (x− 2−n)−1.

In particular,

S
(n)
t (+∞)− S(n)

t (−∞) = 2−n
∑
i∈Z

L
(n)
t (2−ni)−1L

(n)
t (2−n(i− 1))−1

≤ 2−n
∑
i∈Z

L0(2−ni)−1L0(2−n(i− 1))−1.

Moreover,

(4.1) lim
n→+∞

S
(n)
0 (x) =

∫ x

0
L0(r)−2dr = S0(x).

Condition (1.3) ensures that S0(+∞) = +∞ and S0(−∞) = −∞. However, for finite n, we do

not necessarily have S
(n)
0 (+∞) = +∞ and S

(n)
0 (−∞) = −∞.
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Consider the change of time

du(n)(t) =
Lt(X

(n)
t − 2−n) + Lt(X

(n)
t + 2−n)

2Lt(X
(n)
t )2Lt(X

(n)
t − 2−n)Lt(X

(n)
t + 2−n)

dt,

and the inverse time change t(n)(u), for u ∈ (0, u
(n)
max) = (0, u(n)(t

(n)
max)) ⊆ (0,+∞).

Lemma 4.2. The process

(4.2) (M (n)
u )u≥0 := (S

t(n)(u)∧t(n)max
(X

(n)

t(n)(u)∧t(n)max

))u≥0

is a martingale with respect to its natural filtration (FM(n)

u )u≥0. It advances by jumps at discrete

times. A.s., u
(n)
max = +∞. Moreover, for u1 > u0 ≥ 0,

E[(M (n)
u1 −M

(n)
u0 )2|FM(n)

u0 ] = u1 − u0.

Proof. Given u ∈ [0, u
(n)
max), M (n) will make a jump on the infinitesimal time interval (u, u+ du)

with infinitesimal probability

(4.3) 22n−1(Lt(n)(u)(X
(n)

t(n)(u)
− 2−n) + Lt(n)(u)(X

(n)

t(n)(u)
+ 2−n))

dt(n)(u)

du
du

= 4nLt(n)(u)(X
(n)

t(n)(u)
)2Lt(n)(u)(X

(n)

t(n)(u)
− 2−n)Lt(n)(u)(X

(n)

t(n)(u)
+ 2−n)du.

Conditional that the jump occurs, it will be of height

+2−nLt(n)(u)(X
(n)

t(n)(u)
)−1Lt(n)(u)(X

(n)

t(n)(u)
+ 2−n)−1

with probability

Lt(n)(u)(X
(n)

t(n)(u)
+ 2−n)

Lt(n)(u)(X
(n)

t(n)(u)
− 2−n) + Lt(n)(u)(X

(n)

t(n)(u)
+ 2−n)

,

and of height

−2−nLt(n)(u)(X
(n)

t(n)(u)
)−1Lt(n)(u)(X

(n)

t(n)(u)
− 2−n)−1

with probability

Lt(n)(u)(X
(n)

t(n)(u)
− 2−n)

Lt(n)(u)(X
(n)

t(n)(u)
− 2−n) + Lt(n)(u)(X

(n)

t(n)(u)
+ 2−n)

.

So the expected height of the jump is 0, and the expected height squared is

4−nLt(n)(u)(X
(n)

t(n)(u)
)−2Lt(n)(u)(X

(n)

t(n)(u)
− 2−n)−1Lt(n)(u)(X

(n)

t(n)(u)
+ 2−n)−1,

which is exactly the inverse of the jump rate (4.3).
Let (UN )N≥0 be the family of stopping times after performing N jumps. We get that

(M
(n)
u1∧UN −M

(n)
u0∧UN )N≥0 is an L2 convergent martingale and at the limit,

E[(M (n)
u1 −M

(n)
u0 )2|FM(n)

u0 ] = lim
N→+∞

E[(M
(n)
u1∧UN −M

(n)
u0∧UN )2|FM(n)

u0 ]

= lim
N→+∞

E[u1 ∧ UN − u0 ∧ UN |FM
(n)

u0 ]

= E[u1 ∧ u(n)
max − u0 ∧ u(n)

max|FM
(n)

u0 ]

Since on the event u
(n)
max ∈ (u0, u1) we would have (M

(n)
u1 −M

(n)
u0 )2 = +∞, this in particular

means that it has probability 0, and further that u
(n)
max = +∞ a.s. �
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We consider the process ((X∗t )t≥0, (L
∗
t (x))x∈R,t≥0) obtained as a limit in law of the VRJP

((X
(n)
t )

0≤t≤t(n)max
, (L

(n)
t (x))

x∈2−nZ,0≤t≤t(n)max
) in Theorem 3.5. We define

S̃∗t (x) =

∫ x

X∗
t

L∗t (r)
−2dr.

S̃∗−1
t is the inverse diffeomorphism of S̃∗t on R. We define the time change

du∗(t) = L∗t (X
∗
t )−3dt,

and t∗(u) the inverse time change.

Lemma 4.3. A.s., u∗(+∞) = +∞.

Proof.

u∗(+∞) =

∫ +∞

0
L∗t (X

∗
t )−3dt = +∞.

But the above integral equals∫
R

∫ +∞

0
L∗t (x)−3dtL

∗
t (x)dx =

1

2

∫
R
L0(x)−2dx,

which is +∞ by (1.3).
�

In discrete, we define

S̃
(n)
t (x) = S

(n)
t (x)− S(n)

t (X
(n)
t ),

and S̃
(n)−1
t the inverse function on (S

(n)
t (−∞)− S(n)

t (X
(n)
t ), S

(n)
t (+∞)− S(n)

t (X
(n)
t )).

From Theorem 3.5 immediately follows the following convergence result:

Lemma 4.4. We have a joint convergence in law of processes

(X
(n)
t , L

(n)
t (x), u(n)(t), t(n)(u), S̃

(n)
t (x), S̃

(n)−1
t (y))

towards
(X∗t , L

∗
t (x), u∗(t), t∗(u), S̃∗t (x), S̃∗−1

t (y)).

For S̃
(n)
t (x) and S̃

(n)−1
t (y) we use the topology of uniform convergence on compact subsets of

R× [0,+∞). In particular, t
(n)
max converges in probability towards +∞, and, for any t0 ≥ 0,

( sup
0≤t≤t0

S̃
(n)
t (−∞), inf

0≤t≤t0
S̃

(n)
t (+∞))

converges in probability towards (−∞,+∞).

Proposition 4.5. The martingale (M
(n)
u )u≥0, introduced in (4.2), converges in law to a stan-

dard Brownian motion started at 0, (Bu)u≥0, in the Skorokhod topology.

Proof. For A > 0, let T
(n)
A be the first time X

(n)
t exits from the interval [−A,A]. Define

(M
(n,A)
u )u≥0 to be the process that coincides with (M

(n)
u )u≥0 on the time-interval [0, u(n)(T

(n)
A )],

and after time u(n)(T
(n)
A ) behaves like conditional independent standard Brownian motion

started from M
(n)

u(n)(T
(n)
A )

. (M
(n,A)
u )u≥0 is constructed in a way such that it is a martingale

started from 0 and moreover, ((M
(n,A)
u )2 − u)u≥0 is a martingale too. Furthermore, one has a

uniform control on the size of the jump of (M
(n,A)
u )u≥0. All of them are smaller than or equal

to

2−n
(

inf
[−A−2−n,A+2−n]

L0

)−2
,

and, in particular,

lim
n→+∞

E
[

sup
u≥0

(M (n,A)
u −M (n,A)

u− )2
]

= 0.
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According to Theorem 1.4, Section 7.1 in [EK86], (M
(n,A)
u )u≥0 converge in law as n → +∞ to

a standard Brownian motion started from 0. Now, T
(n)
A converges in law to T ∗A, the first time

X∗t exits [−A,A], and u(n)(T
(n)
A ) converges to∫ T ∗

A

0
L∗t (X

∗
t )−3dt.

In particular,

lim
u→+∞

sup
n∈N

P(u(n)(T
(n)
A ) ≤ u) = 0.

Thus, (M
(n)
u )u≥0 converges in law to a Brownian motion, too. �

Proposition 4.6. The limit process ((X∗t )t≥0, (L
∗
t (x))x∈R,t≥0) obtained in Proposition 3.5 has

same law as a Linearly Reinforced Motion ((X̂t)t≥0, (Lt(x))x∈R,t≥0) started from 0, with initial
occupation profile L0. Consequently, one gets Theorem 1.3 and 1.5.

Proof. From Lemma 4.4 and Proposition 4.5, the process

(X
(n)
t , L

(n)
t (x), u(n)(t), t(n)(u), S̃

(n)
t (x), S̃

(n)−1
t (y),M (n)

u )

is tight, and therefore has a subsequential limit in law

(4.4) (X∗t , L
∗
t (x), u∗(t), t∗(u), S̃∗t (x), S̃∗−1

t (y), Bu),

where (Bu)u≥0 is a standard Brownian motion started from 0. Define

S∗t (x) = S̃∗t (x) +Bu∗(t),

and

Ψ∗u(y) = S∗t∗(u) ◦ S
∗−1
0 (y) = S̃∗t∗(u) ◦ S

−1
0 (y) +Bu,

where S0 is given by (4.1). Ψ∗u(y) is the limit (along the subsequence we consider) of

Ψ(n)
u (y) = S

(n)

t(n)(u)
◦ S(n)−1

0 (y).

We want to show that (Ψ∗u)u≥0 is the Bass-Burdzy flow associated to (Bu)u≥0. We have, for

u < u
(n)
max and y ∈ (S

(n)
0 (−∞), S

(n)
0 (+∞)), that

∂

∂u
Ψ(n)
u (y) =

0 if y = M
(n)
u ,

−
2L

(n)

t(n)(u)
(X

(n)

t(n)(u)
− 2−n)

L
(n)

t(n)(u)
(X

(n)

t(n)(u)
− 2−n) + L

(n)

t(n)(u)
(X

(n)

t(n)(u)
+ 2−n)

if (Ψ
(n)
u )−1(y) ≥ X(n)

t(n)(u)
+ 2−n,

+
2L

(n)

t(n)(u)
(X

(n)

t(n)(u)
+ 2−n)

L
(n)

t(n)(u)
(X

(n)

t(n)(u)
− 2−n) + L

(n)

t(n)(u)
(X

(n)

t(n)(u)
+ 2−n)

if (Ψ
(n)
u )−1(y) ≤ X(n)

t(n)(u)
− 2−n,

and in all other cases,

(4.5) −
2L

(n)

t(n)(u)
(X

(n)

t(n)(u)
− 2−n)

L
(n)

t(n)(u)
(X

(n)

t(n)(u)
− 2−n) + L

(n)

t(n)(u)
(X

(n)

t(n)(u)
+ 2−n)

≤ ∂

∂u
Ψ(n)
u (y)

≤
2L

(n)

t(n)(u)
(X

(n)

t(n)(u)
+ 2−n)

L
(n)

t(n)(u)
(X

(n)

t(n)(u)
− 2−n) + L

(n)

t(n)(u)
(X

(n)

t(n)(u)
+ 2−n)

.
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Since L
(n)

t(n)(u)
converges, for y away from Bu,

∂

∂u
Ψ∗u(y) = −1y>Bu + 1y<Bu .

(4.5) and the convergence of local times implies that u 7→ Ψ∗u(y) is Lipschitz-continuous. Thus,
according to Theorem 2.3 in [BB99], (Ψ∗u)u≥0 is the Bass-Burdzy flow associated to (Bu)u≥0.

Let

ξ∗u = (Ψ∗u)−1(Bu).

We have that

X∗t = S̃∗−1
t (0) = S−1

0 (ξ∗u∗(t)).

Thus, X∗t follows the definition of a Linearly Reinforced Motion with driving Brownian motion
(Bu)u≥0 (Definition 1.1). It follows that the limit law for (4.4) is unique and we have the desired
identity in law. �

Proposition 4.7. Let be a Linearly Reinforced Motion ((Xt)t≥0, (Lt(x))x∈R,t≥0) started from
0, with initial occupation profile L0. It is coupled with the random environment (U(x))x≥0 (see
(1.10)). For any x1, x2 ∈ R,

lim
t→+∞

Lt(x2)

Lt(x1)
=
L0(x2)e−U(x2)

L0(x1)e−U(x1)
a.s.

Moreover, the convergence is a.s. uniform on compact subsets of R2. In particular, the random
environment (U(x))x≥0 is measurable with respect to (Xt)t≥0.

Proof. The measure L0(x)2e−2U(x)dx is finite and invariant for (Zq)q≥0. According the ergodic
theorem for one-dimensional diffusions (Section 6.8 in [IM74]),

lim
q→+∞

1

q
λq(x) = c1L0(x)2e−2U(x) a.s.,

where

(4.6) c−1
1 =

∫
R
L0(r)2e−2U(r)dr =

∫
R
e−2
√

2W (y)−2|y|dy.

For the uniform convergence, see [VZ03]. Then,

Lt(x) = (L0(x)2 + 2λq(t)(x))
1
2 ∼
√

2c1q(t)
1
2L0(x)e−U(x). �

Remark 4.8. The measure L0(x)e−U(x) is not necessarily finite. We have that∫
R
L0(x)e−U(x)dx =

∫
R

( d
dy
S−1

0 (y)
)− 1

2
e−
√

2W (y)−|y|dy,

where S−1
0 can be any increasing diffeomorphism from R to R. The integral above being finite

is a 0-1 property, but there are examples where it is infinite. For that it is sufficient that∫
R

( d
dy
S−1

0 (y)
)− 1

2
e−(1+ε)|y|dy = +∞.

In the case when it is finite, the normalized occupation measure 1
t (Lt(x)− L0(x))dx converges

a.s., in the weak topology of measures, to

c2L0(x)e−U(x)dx,

where c2 is a normalization factor.

Next we give the large time behaviour of (Xt)t≥0. Actually, the leading order is given by the
deterministic drift part in the random potential 2U − 2 log(L0).
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Proposition 4.9. Consider a Linearly Reinforced Motion ((Xt)t≥0, (Lt(x))x∈R,t≥0) started from
0, with the initial occupation profile L0 being equal to 1 everywhere, except possibly a compact
interval. Then,

lim sup
t→+∞

Xt

log(t)
=

1

3
a.s., lim inf

t→+∞

Xt

log(t)
= −1

3
a.s.

The mixture of diffusions (Zq)q≥0 such that Xt = Zq(t), with

dt = (L0(Zq)
2 + 2λq(Zq))

− 1
2dq,

satisfies

lim sup
q→+∞

Zq
log(q)

=
1

6
a.s., lim inf

q→+∞

Zq
log(q)

= −1

6
a.s.

Proof. The measure L0(x)2e−2U(x)dx is a finite invariant measure for (Zq)q≥0. According to
[VZ03],

lim
q→+∞

sup
x∈R
|q−1λq(x)− c1L0(x)2e−2U(x)| = 0,

where c1 is given by (4.6). Thus,

t =

∫
R

((L0(x)2 + 2λq(t)(x))
1
2 − L0(x))dx ∼

√
2c1

(∫
R
L0(x)e−U(x)dx

)
q(t)

1
2 ,

and

(4.7) log(t) ∼ 1

2
log(q(t)).

So we are left to determine

lim sup
q→+∞

Zq
log(q)

and lim inf
q→+∞

Zq
log(q)

.

Consider the natural scale function S of (Zq)q≥0, given by (1.12). We have that

(4.8) S−1(ς)
+∞∼ 1

2
log(ς), S−1(ς)

−∞∼ −1

2
log(|ς|).

(S(Zq))q≥0 is a Brownian motion (βs)s≥0 time-changed, with the time-change given by

ds = L0(Zq)
2e−2U(Zq)dq,

and the inverse time change

dq = L0(S−1(βs))
−2e2U(S−1(βs))ds.

We have that for any α > 1, a.s. there is Kα > 1, such that

∀ς ∈ R, K−1
α |ς|α

−1 ≤ L0(S−1(ς))−2e2U(S−1(ς)) ≤ Kα|ς|α.

Then, using the Brownian scaling, we get that for α > 1 and some random K̃α > 1,

(4.9) K̃−1
α s1+α−1

2 ≤ q(s) ≤ K̃αs
1+α

2 ,

According the law of iterated logarithm,

lim sup
s→+∞

S(Zq(s))

(2s log log(s))
1
2

= 1, lim inf
s→+∞

S(Zq(s))

(2s log log(s))
1
2

= 1.

Combining with(4.8) and (4.9), we get that

lim sup
q→+∞

log(Zq)

log(q)
=

1

6
, lim inf

q→+∞

log(Zq)

log(q)
= −1

6
.

Combining with (4.7), we get the result. �
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