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Anisotropic Gaussian wave models

Anne Estrade∗ and Julie Fournier†

Abstract

Let d be an integer greater or equal to 2 and let k be a d-dimensional
random vector. We call Gaussian wave model with random wavevector
k any stationary Gaussian random field defined on Rd with covariance
function t 7→ E[cos(k.t)]. Any stationary Gaussian random field on Rd

can be studied as a random wave. The purpose of the present paper is to
link properties of the random wave with the distribution of the random
wavevector, with a focus on geometric properties. We mainly concentrate
on random waves such that the distribution of the norm of the wavevector
and the one of its direction are independent. In the planar case, we
prove that the expected length of the nodal lines is decreasing as the
anisotropy of the wavevector is increasing, and we study the direction that
maximizes the expected length of the crest lines. We illustrate our results
on two specific models: a generalization of Berry’s monochromatic planar
waves and a spatiotemporal sea wave model whose random wavevector is
supported by the Airy surface in R3. According to a general theorem,
these two Gaussian fields are anisotropic almost sure solutions of partial
differential equations that involve the Laplacian operator: ∆f + κ2f = 0
(where κ = ‖k‖) for the former, ∆f + ∂4

t f = 0 for the latter.
Keywords: Gaussian field; random wave; nodal statistics; level set;

crossing theory; anisotropy
2010 Mathematics Subject Classification: primary 60G60; secondary

60G15, 60K40, 62H11, 86A05

1 Introduction

For many centuries, physicists have been using wave models defined on a multi-
dimensional space in various domains as different as acoustics, electronics, geo-
physics, oceanography or seismology. In order to take into account variability or
uncertainty, it is useful to consider random wave models. It is the exact purpose
of a pioneer exhaustive study by Longuet and Higgins [19] that was concerned
by sea waves modelized as a random moving surface. Another mathematical
pioneer study was raised by Berry in several papers, [9] or [10] for instance.
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Descartes, France, email: julie.fournier@upmc.fr

1



These seminal works opened a wide area of research in the last decades, either
for statistical purposes ([5], [18], [1], [6], [8], [22]), or more recently for topolog-
ical purposes in link with number theory ([27], [15], [21]). Ten years ago, the
interest for nodal sets or level sets also met the theory of crossings developed
by Rice for one-dimensional stochastic processes fifty years before, yielding two
inspiring books by Adler and Taylor [2] and by Azäıs and Wschebor [7]. The
present paper is clearly inspired by all the above references but to the best of
our knowledge it is the first time that the different models are gathered in the
same work and are studied under the same focus: anisotropy.

A big demand for anisotropic models is nowadays observed, in particular
by practitioners in geostatistics, offshore engineering, heterogeneous material or
medical imaging (see for instance [26], [14], [3]), but also for more theoretical
studies dedicated to image synthesis and analysis, optics, cosmology or arith-
metic ([11], [23], [4], [24], [16]).

In the present paper, we aim at exploring the anisotropy of stationary ran-
dom fields that are defined on a d-dimensional space with d ≥ 2. The random
fields that we consider are stationary centred Gaussian fields whose covariance
function is given by t ∈ Rd 7→ E[cos(k · t)] for any d-dimensional random vector
k. We call them random waves since each of them has the same covariance func-
tion as any single random wave prescribed by t ∈ Rd 7→

√
2 cos(k · t+ η), where

η is uniformely distributed on [0, 2π] and independent from k. Let us stress that
the class of Gaussian random waves actually coincides with the one of stationary
Gaussian fields that are centred and have unit variance. Indeed, for any such a
field, it is sufficient to consider any random vector k, called random wavevector,
whose distribution is equal to its spectral measure. Our purpose is to link the
geometric and anisotropic behaviour properties of any Gaussian random wave
with the distribution of its random wavevector.

We like to mention that when the random wavevector k is equal to Au with
A a deterministic matrix and u a random vector in Rd whose distribution is
invariant under rotations, the associated Gaussian random wave has the same
distribution as an isotropic random wave deformed by the linear transformation
AT . In that case, the study of anisotropy, either in the spectral domain, or
in the parameter domain, is equivalent. In the general case where no linear
deformation is involved, studing anisotropy in those two domains falls under
two different approaches. The latter point of view is adopted in [3] or in [13] for
instance, whereas our paper definitively belongs to the former type as did [12]
or [26].

A part of our study focuses on Gaussian random waves associated with
wavevectors whose norm and direction are independent random variables. In
order to illustrate our results, some models are specified. Precisely, we exhibit
anisotropic versions of famous Berry’s monochromatic random waves (see [9]),
which are solutions of Helmholtz equation and are prescribed by a random
wavevector belonging to a sphere. Another famous model is studied in the
present paper: a space-time model adjusted for sea waves (see [19]). It is a
Gaussian random wave indexed by R2 × R that indicates the sea height at
each point and each time instant. Its three-dimensional random wavevector
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is forced to live in a two-dimensional surface known as Airy surface. All over
the paper, two specific distributions for the random wavevector in dimension
two are examined. One is called “elementary model”. It is described by a
main direction and a bandwidth that quantifies the anisotropy. We call the
other one “toy model”. It is given by a positive probability density function
only depending on a single parameter that carries out the whole quantified
information on anisotropy.

Our major contribution to the study of anisotropic Gaussian random fields is
twofold: qualitative with a new point of view based on the associated wavevec-
tor, and quantitative with closed formulas linking the features of a random wave
with the features of its wavevector. Concerning the former, we give a necessar
and sufficient condition on the wavevector for the random wave to solve a partial
differential equation almost surely (see Theorem 2.6). Concerning the latter, we
prove that the expected length of the nodal lines of planar random waves is a
decreasing function of the anisotropy of its random wavevector (see Proposition
3.4). We extend our study by presenting a formula for the expected length of
a crest, which is the locus of points whose gradient has a prescribed direction
(see Proposition 4.3). It allows us to prove that the direction that maximises
the expected length of the crest lines is not necessarily orthogonal to the mode
of the random wavevector’s direction. For this purpose, we properly quantify
anisotropy through various concepts, such as coherency index or favorite direc-
tion which are borrowed from spatial directional statistics.

The paper is organised as follows. General facts are presented in Section 2, in
particular the key point of spectral representation, the link with partial differen-
tial equations that are solved by the random waves and at last the presentation
of various models of Gaussian random waves characterized by the distribution
of their random wavevector. In Section 3, we focus on the nodal sets, their
Hausdorff measure (with an expectation formula and an upper-bound on the
variance) and their directional statistics. Section 4 is devoted to the study of
crest lines and their expected length, in the planar case. The technical compu-
tations are detailed in the Appendix section.

Notations and definitions.

We write N0 for the set {0, 1, 2, · · · } of the non-negative integers and N the
set of positive integers.

Let an integer d ≥ 2. We fix an orthonormal basis of Rd and we use the
same notation for a vector z in Rd and the vector of its coordinates in this basis.
For any z and z′ in Rd, we write z · z′ the canonical Euclidian scalar product
of z and z′, ‖ · ‖ the associated norm and Id the identity matrix of size d. For
ϕ ∈ [0, 2π], uϕ denotes the vector (cosϕ, sinϕ) in R2.

For j = (j1, · · · , jd) ∈ N0
d, we write |j| =

∑d
l=1 jl. Moreover, if λ ∈ Rd and

if F is a smooth map from Rd to R, we write

λj =

d∏
l=1

λjll and ∂jF =
∂|j|F

∂j1λ1 · · · ∂jdλd
.
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We also denote by F ′(t) and by F ′′(t) the gradient vector and the Hessian matrix
of F at point t, respectively.

For any positive integer s, Hs denotes the Hausdorff measure of dimension s.
Let Z = (zi)1≤i≤d be a random vector in Rd. We write E[Z] its d-dimensional

expectation vector, Z ZT the d×d matrix (zizj)1≤i,j≤d and E[Z ZT ] the matrix
of the second moments of Z. The standard Gaussian probability density function
on Rd is denoted by Φd.

Let X be a real Gaussian random field defined on Rd. It is said to be
stationary if for any translation τ of Rd, X ◦ τ and X have the same law. Then
we can define its covariance function r on Rd such that

∀t ∈ Rd, r(t) = Cov(X(t), X(0)).

Furthermore, X is said to be isotropic if for any rotation ρ in Rd (element of
the special orthogonal group S0(d)), X ◦ ρ and X have the same law, which is
equivalent (if X is also stationary) to r being radial, that is to r(t) depending
on t only through ‖t‖.

2 Anisotropic Gaussian wave model

2.1 Definition

If X : Rd → R is a centred and stationary Gaussian random field with unit
variance, according to Bochner’s theorem, there exists a symmetric probability
measure F on Rd and a symmetric random variable k in Rd (with probability
measure F ), such that the covariance function r of X is given by

∀t ∈ Rd, r(t) = E[X(0)X(t)] =

∫
Rd

exp(iu · t) dF (u) (1)

= E[cos(k · t)]. (2)

Note that the distribution of k satisfying (2) for a given Gaussian field X is
no more unique if one drops the symmetry assumption. In the following, we
will call random wavevector associated with X any random vector k in Rd that
satisfies (2).
Besides, let us quote that for any random vector k, the map t 7→ E[cos(k ·
t)] actually defines a covariance function. Indeed, the single random wave
(
√

2 cos(k · t+ η))t∈Rd , where η is uniformely distributed in [0, 2π], defines a sta-
tionary centred random field with the prescribed covariance function. Therefore,
we introduce the next definition.

Definition 2.1 Let k be a d-dimensional random vector. We define Gk, the
Gaussian random wave associated with k, as the real, centred, stationary and
Gaussian random field on Rd with covariance function given by (2).

Due to Kolmogorov extension theorem (see [7] Sections 1.1 and 1.2 for in-
stance), such a field exists and its distribution is unique. A first consequence of
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the definition is that Gk has unit variance. As it is stated in the next propo-
sition, deduced from general properties of stationary covariance functions, the
random field Gk is, generally speaking, anisotropic and its anisotropy depends
on the law of k.

Proposition 2.2 Let k be a d-dimensional random vector and let Gk be the
Gaussian random wave associated with k.

1. The spectral measure F of Gk is equal to the probability measure of ks,
the symmetrized random variable associated to k 1.
Moreover, Gk is isotropic if and only if the law of ks is invariant under
rotations.

2. The covariance function r of Gk admits derivatives up to order m (m ∈ N0)
if and only if k admits moments of order m. In this case, for any j ∈ N0

d

such that |j| ≤ m, we have

∂jr(0) = 0 if |j| is odd ; ∂jr(0) = (−1)|j|/2 E[kj] if |j| is even.

In particular, r′′(0) = −E[kkT ].

If the random wavevector k admits moments of any order, then according
to the previous proposition, the covariance function r of Gk is of class C∞ and
consequently there exists a version of Gk with almost every realization of class
C∞.

In order to build a Gaussian field with the same distribution as Gk, one
way is to deduce a spectral representation from the integral expression (1) of its
covariance function. To do so, let WF be a complex Gaussian F -noise on Rd,
i.e. a C-valued process defined on the set B(Rd) of Borelians such that

• a.s. WF is a complex-valued measure on B(Rd),

• ∀A ∈ B(Rd), WF (A) is a complex-valued Gaussian variable with E[WF (A)] =
0 and E[WF (A)WF (A)] = F (A), where · denotes the complex conjuga-
tion,

• for any sequence (An)n∈N of pairwise disjoint Borel sets, (WF (An))n∈N
are independent random variables.

Moreover, we add the property that for any A ∈ B(Rd), WF (A) = WF (−A).
Then, it is easy to check that the Gaussian stationary random field prescribed
by (∫

Rd
eit·u dWF (u)

)
t∈Rd

(3)

is real-valued, centred and that its covariance function is given by (1).

1If Fk and F−k are respectively the probability measures of k and −k, then the sym-
metrized random variable associated with k is defined as the random variable with probability
measure F = 1

2
(Fk + F−k).
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Starting from the random wavevector k, we can also obtain an asymptotic
representation for Gk as a limit of a sum of single random waves with the same
covariance function. For this let us introduce identically distributed versions
(kj)j∈N of k and uniformly distributed random variables (ηj)j∈N on [0, 2π] and
assume that all these random variables are independent. According to the cen-
tral limit theorem applied to finite-dimensional distributions, the distribution
of the random field √ 2

N

N∑
j=1

cos(kj · t+ ηj)


t∈Rd

converges as N tends to ∞ towards a Gaussian random field with covariance
function r given by (2).

2.2 Random wavevector

In this paper, we focus on two families of distributions for k. First, we are
interested in cases where the random wavevector k is supported by the zero set
of a multivariate polynomial P , {λ ∈ Rd : P (λ) = 0}. In particular, Section
2.3 deals with this assumption. Besides, we will also concentrate on the case
where k is separable, in the sense of the following definition.

Definition 2.3 Let k be a random vector in Rd. We say that k is separable if
a.s. ‖k‖ 6= 0 and if ‖k‖ and 1

‖k‖ k are independent.

If k is separable, we write k = ‖k‖ k̃, where k̃ is a random variable in
Sd−1. For instance, if ||k|| is almost surely constant equal to κ > 0, then k is

separable and it is as well supported by the zero set of P (x) =
∑d
i=1 x

2
i −κ2. In

this case, we call κ = ‖k‖ the wavenumber of Gk. In Section 2.4.1, we introduce
properly this particular model corresponding to what we call anisotropic Berry’s
monochromatic random waves. We refer to Section 2.4 for specific examples of
distributions of the random wavevectors.

If k is centred, which is for instance the case if k has a symmetric law, the
coefficients of matrix E[kkT ] are the covariances between the coordinates of k
in our basis. In the planar case, this matrix is involved in the definition of the
coherency index of k.

Definition 2.4 (Coherency index) Let k be a random vector in R2. We
assume that the symmetric non-negative matrix E[kkT ] is non zero. We write
λ− and λ+ its eigenvalues, such that 0 ≤ λ− ≤ λ+ and λ+ > 0. The coherency
index of k is a real number in [0, 1] defined as

c(k) =
λ+ − λ−
λ+ + λ−

.
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Despite the fact that matrix E[kkT ] depends on the choice of the basis, note that
the coherency index does not depend on it. The coherency index is a common
tool in spatial statistics and physics to characterize the anisotropy of a model,
see [20] and [14] for instance. In [25], it is also computed for the so-named
structure tensor in order to quantify the anisotropy of an anisotropic Gaussian
self-similar planar field with stationary increments.
Let us consider two extreme cases. In the isotropic case, λ− = λ+ and c(k) = 0.
On the contrary, if k is totally anisotropic in the sense that k is a.s. directed
along a single deterministic direction, then λ− = 0 and c(k) = 1. Note also that

if we write E[kkT ] =

(
m2,0 m1,1

m1,1 m0,2

)
, then

λ± =
1

2
(T ±

√
∆) and c(k) =

√
∆

T
, (4)

where T = m2,0 +m0,2 and ∆ = (m2,0 −m0,2)2 + 4m2
1,1.

Remark 2.5 If k is separable then its coherency index only depends on the
directional distribution of k. Indeed, writing k = ‖k‖k̃, we obtain E[kkT ] =

E[‖k‖2]E[k̃k̃T ], so c(k) = c(k̃) and the coherency index of k̃ is simply the
difference between the eigenvalues of E[k̃k̃T ] because the trace of this matrix is
equal to one.

2.3 Link with partial differential equation

We are going to prove that Gk satisfies a specific partial differential equation if
and only if the random wavevector k is supported by a specific hypersurface of
Rd. Let P be an even d-multivariate polynomial. Then there exists a sequence
of real numbers (αj)j∈N0

d with only finitely many non-zero terms, such that

∀λ ∈ Rd, P (λ) =
∑

j∈N0
d; |j| even

αj λ
j. (5)

We associate with P the following differential operator:

LP (X) =
∑

j∈N0
d; |j| even

(−1)|j|/2αj ∂
jX.

Theorem 2.6 Let P be an even multivariate polynomial defined by (5) and let
X be a Gaussian random field defined on Rd that is centred, stationary, with unit
variance and almost surely of class C∞. The following properties are equivalent.

1. The Gaussian random field X almost surely solves the partial differential
equation LP (X) = 0.
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2. Any random wavevector k associated with X almost surely satisfies P (k) =
0.

3. The covariance function r of X solves the partial differential equation
LP (r) = 0.

4. The spectral measure F of X is supported by {λ ∈ Rd : P (λ) = 0}.

The above theorem allows us to exhibit random anisotropic solutions of
some famous partial differential equations. Let us give an example, using the

Laplacian operator ∆ on Rd, defined by ∆ =
∑

1≤j≤d
∂2

∂t2j
. If for some posi-

tive κ, k ∈ κSd−1, then Gk is an almost sure solution of Helmholtz equation
∆X + κ2X = 0. In the same vein, the Gaussian random wave defined on
R3, associated with a random wavevector with support in the Airy surface
{(x, y, z) ∈ R3; x2 + y2 − z4 = 0} is an almost sure solution of the partial

differential equation ∂2

∂x2X + ∂2

∂y2X + ∂4

∂z4X = 0. It is used as a spatiotemporal
random sea wave model, which is thoroughly presented in Section 2.4.3.

Proof of Theorem 2.6. Items 1. and 4. are equivalent as

Var(LP (X)(t)) = Var(LP (X)(0))

=
∑

j,k∈N0
d; |j|,|k| even

(−1)(|j|+|k|)/2 αj αk ∂
(j+k)r(0)

=

∫
Rd
P (λ)2 dF (λ).

Items 2. and 4. are equivalent as for any random wavevector k associated with
X, and for ks the symmetrized random variable associated to k,

E[P (k)] = E[P (ks)] =

∫
Rd
P (λ)2 dF (λ).

At last, items 3. and 4. are equivalent as

LP (r)(t) =

∫
Rd
P (λ) eiλ·t dF (λ) = P̂ dF (t),

where we have denoted by ·̂ the Fourier transform of any finite measure.
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2.4 Presentation of the models

2.4.1 Anisotropic Berry’s monochromatic waves

In this section, we focus on the case where the random wavevector k is such
that, for some deterministic wavenumber κ > 0, ‖k‖ = κ a.s., that is

κ−1k ∈ Sd−1 a.s..

Since k is not necessarily isotropically distributed, the (unique in distribution)
associated stationary centred Gaussian random field Gk on Rd is anisotropic.
Since ‖k‖ is a.s. bounded, it is clear that Gk is a.s. of class C∞. Hence, rephras-
ing Theorem 2.6, we get that Gk is the generic Gaussian solution of Helmholtz
equation

∆X + κ2X = 0.

Equivalently, Gk is an eigenfunction of the operator −∆, for the eigenvalue κ2.
Therefore, extending the definition introduced by Berry in [9] and intensively
studied in the last years, we refer to Gk as an anisotropic Berry’s monochromatic
wave with random wavenumber κ.

Applying the change of variables t 7→ κt yields the scaling property that
(Gk(t))t∈Rd and (Gκ−1k(κt))t∈Rd have the same distribution, where we recall

that the random vector κ−1k takes its values in Sd−1.
Besides, we remark that ks is such that κ−1ks is supported by Sd−1. Hence,

we can deduce from Proposition 2.2 that the covariance function of Gk is given
by

r(t) =

∫
Sd−1

eiκu·t dµ(u), t ∈ Rd,

where µ denotes the probability measure of κ−1ks.

2.4.2 Planar and separable random waves

In this section, we set d = 2 and we assume that the wavevector k is separable,
in the sense of Definition 2.3. The two following examples of parametric distri-
bution for the unitary wavevector k̃ = 1

‖k‖k will allow us to make computations

to illustrate and comment the results of Sections 3 and 4 (see also Appendix
Section A.1 for moments formulas). We write k̃ = (cos Θ, sin Θ), where Θ is a
random variable in [0, 2π] and we fix θ0 in [0, 2π].

Example 1 (Toy model) Let α ≥ 0. The density of Θ with respect to
Lebesgue measure on [0, 2π] is given by

θ 7→ Cα | cos(θ − θ0)|α, with Cα =
Γ(1 + α/2)

2
√
πΓ(1/2 + α/2)

, (6)

where Γ is the usual Gamma function. Parameter α is considered as an anisotropy
parameter: α = 0 brings an isotropic model, whereas, at the opposite, α→ +∞
corresponds with a totally anisotropic random field since k is a.s. oriented along
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the x-axis. Our toy model is inspired by [14] Section 2.1.2, where it is intro-
duced to represent anisotropic spatial structures in physics. It is also used in
[4] with α = 2 and θ0 = 0 or θ0 = π/2 to modelize the two coordinates of a
two-dimensional electromagnetic wave.

Example 2 (Elementary model) The random variable Θ is uniformly dis-
tributed on [θ0 − h, θ0 + h] with 0 ≤ h ≤ π. Parameter θ0 indicates the main
direction whereas parameter h negatively quantifies anisotropy, in the sense that
the more anisotropic the model is, the smaller parameter h is. Actually, h = 0
corresponds with a totally anisotropic model, h ≈ 0 corresponds with what is
named narrow spectrum model in [19] Section I.6, and h = π corresponds with
the isotropic model. If one wishes a symmetric model, one can also consider Θ
uniformly distributed on [θ0−h, θ0+h]∪[θ0+π−h, θ0+π+h] with 0 ≤ h ≤ π/2.
The elementary model is studied in [11] and [25].

Up to a rotation of the basis, we can assume that in both examples θ0 = 0.
Thus we set θ0 = 0 in the following.

2.4.3 Gaussian sea waves

In this section, we now concentrate on the case where the random wavevector
k is 3-dimensional and a.s. belongs to Airy surface, i.e.

k ∈ A = {(λ1, λ2, λ3) ∈ R3 ; (λ1)2 + (λ2)2 = (λ3)4} a.s..

The covariance function of the Gaussian random wave Gk associated with k is

r(t) = E[cos(k · t)] =

∫
A

cos(λ · t) dF (λ), t ∈ R3,

where F is the probability distribution of k supported by A.
The random field Gk coincides with the one used for the spatiotemporal random
modelization of sea waves, assuming that the depth of the sea is infinite (see [19]
for the original idea, [5] or [7] for more recent developments). More precisely,
for (x, y, s) ∈ R2 × R, Gk(x, y, s) can be seen as the algebraic height of a wave
at point (x, y) and time s. If the moments of k are finite up to order four, we
recall that according to Theorem 2.6, Gk solves the partial differential equation

∆Gk + ∂4
tGk = 0,

with ∆ the two-dimensional spatial Laplacian operator and ∂4
t the fourth tem-

poral derivative.

We use the following parametrization of A,

(z, θ) ∈ R× [0, 2π) 7→ (z2 cos θ, z2 sin θ, z),
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which provides a bijection φ from R\{0}×[0, 2π) onto A\{(0, 0, 0)}. Performing
the appropriate change of variables yields

r(x, y, s) =

∫
R×(0,2π)

cos(xz2 cos θ + yz2 sin θ + sz) dFφ(z, θ),

where Fφ is the image of measure F by the map φ−1. When k admits f as prob-
ability density function with respect to the surface measure on A, consequently
to the coarea formula, we get

r(x, y, s) =

∫
R×(0,2π)

cos(xz2 cos θ + yz2 sin θ + sz)g(z, θ) dzdθ,

where the map g is given by

g(z, θ) = f(z2 cos θ, z2 sin θ, z) z2(1 + 4z2)1/2.

Following the literature, g is called directional power spectrum of Gk (see [5]
and [7] Chapter 11). Experimental directional power spectra are exhibited in
[5], derived from sea data provided by Ifremer.

Let us fix time s = s0 and look at the random field defined on R2,

Zk(x, y) = Gk(x, y, s0) (x, y) ∈ R2,

as a picture of the sea height at time s0. It is a two-dimensional stationary
centred Gaussian random field, whose covariance function is given by

r0(x, y) = r(x, y, 0)

=

∫
R×(0,2π)

cos(xz2 cos θ + yz2 sin θ) dFφ(z, θ)

= E[cos((x, y) · π(k))],

where the random vector π(k) is described in polar coordinates by (R2,Θ) with
(R,Θ) distributed according to measure Fφ. Thus π(k) is the random wavevec-
tor associated with Zk and it is nothing but the projection of the A-valued
random wavevector k onto the plane of the first two coordinates. Consequently,
the moments of π(k) are given, for any integers j and k in N0, by

mj,k =

∫
(0,2π)×R

(z2 cos θ)j(z2 sin θ)k dFφ(z, θ),

assuming that the above integral is finite.
Note that if Fφ can be written as a tensorial product measure: dFφ(z, θ) =
dΞ(z)⊗ dΛ(θ) then, according to Definition 2.3, π(k) is separable.
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3 Level sets of Gaussian random waves

Let k be a random wavevector in Rd admitting moments up to order four and
let Gk be the associated Gaussian random field defined on Rd. From now on in
this section, we assume that Gk is almost surely of class C2.

Let a ∈ R. We are interested in the level set

G−1
k (a) = {t ∈ Rd : Gk(t) = a},

which is a.s. a C2-submanifold of Rd with dimension d− 1, called nodal set in
the case a = 0.

3.1 Expected measure

We are now interested in the expected measure of the level sets of Gk. Let Q be a
compact set in Rd with non empty interior. We focus on the (d−1)-dimensional
Hausdorff measure of the a-level set restricted to Q, namely

`(a,k, Q) := Hd−1

(
G−1

k (a) ∩Q
)

= Hd−1 ({t ∈ Q/Gk(t) = a}) .

For now on in Section 3, we assume that G′k(0) is a non-degenerate Gaussian
vector or, equivalently, that E[kkT ] is invertible. This allows us to apply Kac-
Rice formula (see [7] Theorem 6.8 for instance). It yields

E[`(a,k, Q)] =

∫
Q

E[‖G′k(t)‖ |Gk(t) = a] pGk(t)(a) dt,

where pGk(t), the probability density function of Gk(t), is actually given by the
standard Gaussian distribution. Using the stationarity of Gk and the fact that
for a fixed point t, Gk(t) and G′k(t) are independent random variables, we have

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
2π

E[‖G′k(0)‖].

Consequently, recalling that ‖G′k(0)‖ is the Euclidean norm of a d-dimensional
centred Gaussian vector with variance matrix −r′′(0) = E[kkT ] and that Φd
stands for the standard Gaussian probability density function on Rd, we obtain

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
2π

∫
Rd

(E[kkT ]x · x)1/2Φd(x) dx.

In the separable case, we deduce from the above formula the following straight-
forward lemma.

Lemma 3.1 We assume that k is separable with k = ‖k‖k̃ and that E[kkT ] is
invertible. Then

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
2π

E[‖k‖2]1/2
∫
Rd

(E[k̃k̃T ]x · x)1/2Φd(x) dx. (7)
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The above formula applies to Berry’s monochromatic isotropic random wave,
i.e. to the case where ‖k‖ is a.s. constant equal to some positive constant κ and

k̃ is uniformly distributed in Sd−1. In this case, E[‖k‖2] = κ2 and E[k̃k̃T ] =
(1/d) Id. Hence, the involved integral becomes

∫
Rd ‖x‖Φd(x) dx, which is the

mean of a χ-distributed random variable with d degrees of freedom and is known

to be equal to
√

2 Γ((d+1)/2)
Γ(d/2) , with Γ the usual Gamma function. Finally, we

recover the well known formula expressing the expected measure of the a-level
set of a Berry isotropic random wave (see [9] in the planar case):

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
dπ

κ
Γ((d+ 1)/2)

Γ(d/2)
.

We complete the computation of the expected measure of nodal sets by
giving an estimate on the variance. Next proposition provides an upper bound
when the compact domain Q shrinks to a small ball B(0, R).

Proposition 3.2 For R > 0 small enough,

Var[`(a,k, B(0, R))] ≤ C e−a
2/2R2d−1 E[‖k‖2]− λmin

λ
1/2
min

,

where λmin is the smallest eigenvalue of E[kkT ] and C is some universal positive
constant.

Remark 3.3 In the above upper bound, let us comment the factor E[‖k‖2]−λmin
λ
1/2
min

,

depending on the covariance function of the random wave. For a fixed value
of E[‖k‖2, this factor is minimized in the isotropic case, where we can write
E[kkT ] = λId and it is equal to (d − 1)λ1/2. In the separable case, writ-
ing λ̃min the smallest eigenvalue of E[k̃k̃T ], this factor can been expressed as

E[‖k‖2] 1−λ̃min
λ̃
1/2
min

.

Proof. Let us start with Kac-Rice formula (see [7] Theorem 6.9) to compute
the second moment of `(a,k, Q):

E[`(a,k, Q)2] =

∫
Q

∫
Q

E[‖G′k(s)‖ ‖G′k(t)‖ |Gk(s) = Gk(t) = a] ps,t(a, a) ds dt,

where ps,t denotes the probability density function of (Gk(s), Gk(t)). Using
firstly the stationarity of Gk and secondly Cauchy-Schwarz inequality, we get

E[`(a,k, Q)2]

=

∫
Rd
Hd(Q ∩Q− t)E[‖G′k(0)‖ ‖G′k(t)‖ |Gk(0) = Gk(t) = a] p0,t(a, a) dt

≤
∫
Rd
Hd(Q ∩Q− t) (Fa,k(t)Fa,k(−t))1/2 dt,

13



where
Fa,k(t) = E[‖G′k(0)‖2 |Gk(0) = Gk(t) = a] p0,t(a, a).

Let us now evaluate Fa,k(t). On the one hand, a straightfor-
ward regression shows that the conditional distribution of G′(0) given
{G(0) = G(t) = a} is Gaussian with mean a

1+r(t)r
′(t) and covariance matrix

−r′′(0)− 1
1−r(t)2 r

′(t)r′(t)T . On the other hand, if Z is a Gaussian vector

N (b,Σ), then E[‖Z‖2] = ‖b‖2 + Tr(Σ) with Tr(·) denoting the trace. Hence,
since Tr(r′(t)r′(t)T ) = ‖r′(t)‖2, we get

Fa,k(t) =

((
a

1 + r(t)

)2

‖r′(t)‖2 − Tr(r′′(0))− 1

1− r(t)2
‖r′(t)‖2

)
e−a

2/(1+r(t))

2π(1− r(t)2)1/2
.

This formula shows that Fa,k(t) = Fa,k(−t) and it puts us in position to write a
Taylor expansion of Fa,k(t) as ‖t‖ goes to 0. In order to simplify computations,
and without loss of generality, one can assume that an orthonormal basis of
Rd is given such that the Hessian matrix −r′′(0) is diagonal, with eigenvalues
λ1 ≥ · · · ≥ λd > 0. Then, as ‖t‖ goes to 0,

r(t) = 1− 1

2

∑
1≤i≤d

λit
2
i + o(‖t‖3) and ‖r′(t)‖2 =

∑
1≤i≤d

λ2
i t

2
i + o(‖t‖2).

Hence,

Fa,k(t) =

 ∑
1≤i≤d

λi −
∑

1≤i≤d λ
2
i t

2
i∑

1≤i≤d λit
2
i

 e−a
2/2

2π(
∑

1≤i≤d λit
2
i )

1/2
+ o(‖t‖)

= e−a
2/2

∑
1≤i≤d λi(

∑
j 6=i λj)t

2
i

2π(
∑

1≤i≤d λit
2
i )

3/2
+ o(‖t‖) (8)

≤ e−a
2/2

∑
j 6=d λj

2πλ
1/2
d

‖t‖−1 + o(‖t‖).

Now we integrate the latter upper bound of Fa,k(t) on the set of points t such
that B(0, R) ∩B(0, R)− t 6= ∅, which is equal to B(0, 2R). It yields

E[`(a,k, B(0, R))2] ≤ C e−a
2/2

∑
j 6=d λj

λ
1/2
d

Rd+d−1 = C e−a
2/2 E[‖k‖2]− λd

λ
1/2
d

R2d−1,

since E[‖k‖2] = −Tr(r′′(0)) =
∑

1≤i≤d λi. As E[`(a,k, B(0, R))]2 has order of

magnitude R2d, it is negligible with respect to the second moment, and we get
the announced upper bound for the variance of `(a,k, B(0, R)).

3.2 Planar case

In the planar case, i.e. d = 2, the level sets G−1
k (a) are one-dimensional. Fur-

thermore assuming that k is separable, we will establish that the level curves
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mean length decreases with anisotropy. Our formula involves the coherency
index, introduced in Definition 2.4.

To compute the integral in the right-hand side of (7), we use the following
well known fact, that can be proved with simple algebra.
If M is a symmetric positive definite matrix with eigenvalues γ− and γ+ such
that 0 < γ− ≤ γ+, then∫

R2

(Mx · x)1/2Φ2(x) dx =

(
2γ+

π

)1/2

E
(

(1− γ−/γ+)1/2
)
, (9)

where E stands for the elliptic integral given by E(x) =
∫ π/2

0
(1−x2 sin2 θ)1/2dθ,

for x ∈ [0, 1].

In our case, we set M = E[k̃k̃T ] and γ− + γ+ = 1 since k̃ belongs to S1, a.s..

Hence, writing c = c(k̃), we have 2γ+ = 1 + c and 1 − γ−/γ+ = 2c
1+c . Conse-

quently, the following proposition holds.

Proposition 3.4 Let k be a separable random wavevector in R2 such that k =
‖k‖k̃ and E[kkT ] is invertible. Let us denote by c(k̃) = c(k) the coherency index
of k. Then,

E[`(a,k, Q)] = H2(Q)
e−a

2/2

π
√

2
E[‖k‖2]1/2 F

(
c(k̃)

)
,

where the map F : c ∈ [0, 1] 7→ (1 + c)1/2 E
((

2c
1+c

)1/2)
is strictly decreasing.

The proof of the decrease of mapping F is postponed to the Appendix sec-
tion, see Lemma A.3. Another expression for the same expectation can be
found in [19] Formula (2.3.13), however our formulation highlights the effect of
the wavevector’s distribution on the mean length of level sets.

Remark 3.5 Regarding the coherency index c(k̃) as a parameter that positively
quantifies anisotropy, the above formula clearly indicates that the mean length
of level curves is decreasing as the anisotropy of k increases.

Remark 3.6 In the planar case, the proof of Proposition 3.2 allows us to obtain
a better upper bound for the variance of `(a,k, B(0, R)), if R is small enough,
than the one stated in the proposition itself. To begin with, when d = 2, Equality
(8) can be written

Fa,k(t) =
λ−

λ
1/2
+

‖t‖2(
t21 +

λ−
λ+

t22

)3/2
+ o(‖t‖). (10)

We introduce another elliptic integral Ẽ(x) =
∫ π/2

0
(1 − x2 sin2 θ)−3/2dθ, for

x ∈ [0, 1] and

G : c ∈ [0, 1] 7→ 1− c
(1 + c)1/2

Ẽ
(( 2c

1 + c

)1/2)
.
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Then, after integrating (10) in polar coordinates, we obtain

Var[`(a,k, B(0, R))] ≤ C ′ e−a
2/2R3 E[‖k‖2]1/2 G

(
c(k̃)

)
,

where C ′ is a universal constant.

We now apply Proposition 3.4 to our separable examples, prescribing the
directional distribution of the wavevector k. We refer to the Appendix Section
A.1 for the detailed computation of their moments.

Example 1 (Toy model) Take k̃ distributed on S1 with probability density

function given by (6) for some positive α. Then, E[k̃k̃T ] = 1
α+2

(
α+ 1 0

0 1

)
and consequently, c(k̃) = α

α+2 , which is an increasing function of parameter α.
As observed in Remark 3.5, the more anisotropic the model is, the smaller the
expected length of level sets is.

Example 2 (Elementary model) We choose k̃ to be uniformly distributed

on [−h, h] ∪ [π − h, π + h] for some 0 < h ≤ π/2. In that case, E[k̃k̃T ] =

1
2

(
1 + sin(2h)

2h 0

0 1− sin(2h)
2h

)
. Hence, c(k̃) = sin(2h)

2h , which is decreasing on

(0, π/2]. Again, the mean length of level sets is decreasing with anisotropy,
i.e. as h is decreasing.

3.3 Favorite orientation

In this section, we introduce the directional statistics features of the random
waves.

Definition 3.7 We call favorite direction of a random vector V in Rd any
u ∈ Sd−1 that maximizes E[(V.u)2].

Since E[(V.u)2] = u.E[V V T ]u, the favorite directions of V are the eigen-
vectors with norm one associated with the largest eigenvalue of the symmetric
positive matrix E[V V T ]. If the largest eigenvalue is simple, i.e. if the dimension
of the associated eigenspace is one, then there are exactly two favorite direc-
tions, which are opposite one another. Note that if a random wavevector k is
separable then its favorite directions are exactly the ones of k̃.

We turn to the directional study of the level set G−1
k (a). For any t ∈ G−1

k (a),
the tangent space at point t, TtG

−1
k (a), is a (d− 1)-dimensional linear subspace

that is orthogonal to the vector G′k(t). Using the previous definition, the fa-
vorite directions of G′k(t) are given by the unitary eigenvectors associated with
the largest eigenvalue of E[G′k(t)G′k(t)T ]. As the latter matrix is equal to E[kkT ]
according to Proposition 2.2, the favorite directions of G′k(t) coincide with those
of k. Hence, we get the next statement that sounds physically intuitive: the
favorite orientations of the level sets G−1

k (a) are orthogonal to the favorite di-
rections of k. Actually, it can be written out as a precise proposition.
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Proposition 3.8 Let τ be a d-dimensional vector field defined on the level set
G−1

k (a) such that, at any point t ∈ G−1
k (a), τ(t) is orthogonal to TtG

−1
k (a).

Then, at any point t, the favorite directions of τ(t) are given by the favorite
directions of k.

This formalizes an assertion in [19] Section 2.3, according to which the di-
rection of the contour is near the principal direction. In this statement, the
principal direction corresponds to our favorite direction.

Let us illustrate the notion of favorite direction on two-dimensional separa-
ble random wavevectors. We write k = ‖k‖uΘ, ‖k‖ and Θ being independent
random variables. Note that for any ϕ ∈ [0, 2π], k · uϕ = ‖k‖ cos(θ − ϕ).
On the one hand, if Θ is uniformly distributed on [0, 2π], then E[kkT ] =
1
2E[‖k‖2]I2, thus the set of favorite directions of k is S1. On the other hand, if
Θ almost surely takes a fixed value θ0 ∈ [0, 2π] then the favorite directions of k
are ±uθ0 . Let us now focus on our favorite examples.

Example 1 (Toy model) If Θ admits a probability density function given

by (6), for a given α > 0, then E[kkT ] = E[‖k‖2] 1
α+2

(
α+ 1 0

0 1

)
. Hence, the

favorite directions of k are ±u0.

Example 2 (Elementary model) If Θ is uniformly distributed on [−h, h]∪[π−

h, π+h] for some 0 < h ≤ π/2, then E[kkT ] = E[‖k‖2] 1
2

(
1 + sin(2h)

2h 0

0 1− sin(2h)
2h

)
and the favorite directions of k are again ±u0.

4 Crest lines of planar Gaussian waves

Let k be a two-dimensional random wavevector. We write F its probability law
andGk its associated planar Gaussian random wave that we assume to be almost
surely of class C3. We assume that E[kkT ] is invertible, which equivalently
excludes the case of k almost surely oriented along a fixed direction.

We fix a direction ϕ ∈ [0, π) and we consider the crest line in direction ϕ.
More precisely, we introduce the random set

{t ∈ R2 ; G′k(t) · uϕ = 0},

which contains all the points t in R2 such that the gradient of Gk at point t is
orthogonal to direction ϕ. This set can be compared with the one of specular
points in a fixed direction, as defined in [19]. Crest lines intersected with nodal
lines are also studied in [28], in the case of arithmetic random waves, which are
random eigenfunctions of the Laplacian on the two-dimensional torus.
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4.1 Directional derivative as a random wave

The crest line can be considered as the nodal line of the random field (G′k ·uϕ),
which is the partial derivative of Gk along vector uϕ. This random field is
Gaussian, stationary, centred and we denote by v0,0(ϕ) its variance:

v0,0(ϕ) = E[(G′k(0) · uϕ)2] = uϕ · E[kkT ]uϕ = E[(k · uϕ)2].

Note that v0,0(ϕ) does not vanish since E[kkT ] is invertible.
By deriving the integral representation (1) of r, we obtain that the covariance

function of (G′k · uϕ) is

∀t ∈ R2, E[(G′k(t) · uϕ)(G′k(0) · uϕ)] =

∫
R2

cos(t · λ)(λ · uϕ)2 dF (λ). (11)

Therefore, the following lemma holds

Lemma 4.1 The covariance function of
G′k · uϕ
v0,0(ϕ)1/2

is given by

t ∈ R2 7→ E[cos(Kϕ · t)],

where Kϕ is a two-dimensional random vector whose probability distribution is

equal to
(λ·uϕ)2

v0,0(ϕ) dF (λ), with F the probability measure of k. In other words, Kϕ

is a random wavevector associated to
G′k · uϕ
v0,0(ϕ)1/2

.

We introduce the moments of measure F and the ones of measure
(λ · uϕ)2 dF (λ): for any (i, j) ∈ N2

0,

mi,j :=

∫
R2

(λ1)i(λ2)j dF (λ) = E[(k · u0)i(k · uπ/2)j ],

vi,j(ϕ) :=

∫
R2

(λ1)i(λ2)j (λ · uϕ)2 dF (λ).

(12)

By a mere development, the moments (vi,j(ϕ)) can be expressed as polynomial
functions of (cosϕ, sinϕ), the coefficients depending linearly on the moments
(mi,j) (see (17) in the Appendix section).

Until the end of this section and in the following one, we focus on the case
of a separable random wavevector k, that we write k = ‖k‖uΘ. We denote by
Ξ the probability distribution of ‖k‖ on (0,+∞) and Λ the one of Θ on [0, 2π],
assuming that ‖k‖ and Θ are independent. We introduce

∀j ∈ N0, Mj = E[‖k‖j ] =

∫
R+

ρjdΞ(ρ)

the moments of the random variable ‖k‖ and µj,k the ones of Θ, that is for any
(j, k) ∈ N2

0,

µi,j =

∫
[0,2π]

cosi θ sinj θ dΛ(θ).
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For any integrable function h,

E[h(k)] =

∫
[0,+∞)×[0,2π]

h(ρ cos θ, ρ sin θ) dΞ⊗ dΛ(ρ, θ).

Therefore,

E[h(Kϕ)] =
1

v0,0(ϕ)

∫
(0,+∞)×[0,2π]

h(ρ cos θ, ρ sin θ)ρ2 cos2(θ − ϕ) dΞ⊗ dΛ(ρ, θ).

To end with, we write

νi,j(ϕ) =

∫ 2π

0

cosi(θ) sinj(θ) cos2(θ − ϕ) dΛ(θ). (13)

We can directly state the following lemma.

Lemma 4.2 If k is separable, then Kϕ is also separable and

∀(i, j) ∈ N0
2, mi,j = Mi+j µi,j and vi,j(ϕ) = M2+i+jνi,j(ϕ),

assuming that the above moments exist.

4.2 Mean length of a crest line in a fixed direction

The Hausdorff dimension of a crest line is clearly equal to one. We consider its
length within a compact domain Q ⊂ R2 such that H2(Q) > 0,

l(k, Q, ϕ) := H1 ({t ∈ Q ; G′k(t) · uϕ = 0}) .

Since the crest line of Gk in direction ϕ is nothing but the nodal line of
G′k·uϕ

v0,0(ϕ)1/2
,

Lemma 4.1 allows us to apply Proposition 3.4 with the random wavevector Kϕ.
It yields the following proposition.

Proposition 4.3 We assume that k is separable and that E[kkT ] is invertible.
Then for any ϕ ∈ [0, π) such that E[KϕKT

ϕ ] is invertible,

E[l(k, Q, ϕ)] = H2(Q)
1

π
√

2
E[‖Kϕ‖2]1/2 F(c(K̃ϕ)),

where function F has been introduced in Proposition 3.4,

E(‖Kϕ‖2) =
M4

M2
, (14)

c(K̃ϕ) =

(
(ν2,0(ϕ)− ν0,2(ϕ))2 + 4ν1,1(ϕ)2

)1/2
ν0,0(ϕ)

. (15)
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We refer to the Appendix Section A.3 for the proof of (14) and (15). See

also Formula (17) in that section to get an expression of c(K̃ϕ) in terms of the
fourth-order moments (mi,j)(i,j)∈N2

0, i+j=4.

According to Proposition 4.3, E[l(k, Q, ϕ)] depends on the directional distri-

bution of k through the factor F(c(K̃ϕ)) (involving the fourth-order moments
of k), and on its radial distribution through the factor E[‖Kϕ‖2] (involving the
second-order and the fourth-order moment of Ξ). Consequently, the mean length
of crest lines is a decreasing function of the anisotropy of Kϕ. The variations
of the expected length of the crests with respect to the direction can be studied
through the variations of the map ϕ 7→ c(K̃ϕ). For more detailed results, see
the Appendix Section A.4.

Let us remark that a similar formula is also derived in [7] (Proposition 11.4)
and in [5] (Assertion 3). It is apparently different from ours, since the gradient
of the random field G′k · uϕ is not computed according to the directions of the
canonical basis but according to the ones of (uϕ, uϕ+π/2). Nevertheless they
actually coincide.

Now we apply Proposition 4.3 to our separable examples. All is about
computing the coherency index of K̃ϕ. For each case, we examine the crest
direction(s) that maximize(s) the expectation of the crest length. In [19] or in
[5], a rule of thumb is suggested claiming that the direction [that maximises
the expected length of crests] is orthogonal to the direction for the maximum
integral of the spectrum, i.e. is the most probable direction for the waves. In
this statement, the “most probable direction for the waves” refers to the mode
of the random wavevector k̃. However, according to our examples, such a rule
is not necessarily satisfied. This can be explained by the expectation formula
of Proposition 4.3 itself, which shows a dependency on both the second-order
and the fourth-order moments of k, and not on the mode of k̃.

Examples We consider a random wavevector k that we write k = ‖k‖uΘ as
before and we use the formulas of Appendix Sections A.3 and A.4.

• Toy Model. The probability density function of Θ is given by (6), for

some fixed α > 0 and θ0 equal to zero. The mode of k̃ is 0 in that case.
An asymptotic expansion of ϕ 7→ c(K̃ϕ)2 near ϕ = π/2 is performed in
Lemma A.5 in the Appendix section. It shows that the expected length of
crests admits a local maximum at ϕ = π/2, which is precisely orthogonal
to the most probable direction of k and to its favorite direction as well.

• Elementary wave. We assume that Θ is uniformely distributed on
[−h, h] ∪ [π − h, π + h]. The moments coherency index of K̃ϕ can be
computed thanks to Formula (18) and Lemma A.2. Figure 2 shows the

graph of ϕ 7→ c(K̃ϕ)2. The expected length of crests appears to admit a
maximum at ϕ = π/2, thus it is orthogonal to the favorite direction of k.

• A very special example. Let 1
4

∑3
j=0 δjπ/2 be the distribution of Θ

on [0, 2π], δa being the Dirac measure at point a. It is called Cilleruelo
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measure in [28]. The modes of k̃ are {ujπ/2 : j = 0, 1, 2, 3}. We can
mention that it does not admit any favorite direction. Computing the
moments of F , we get m1,1 = m2,2 = m3,1 = m3,1 = 0 whereas m2,0 =
m0,2 = M2

2 and m4,0 = m0,4 = M4

2 . Since

E[K̃ϕK̃T
ϕ ] =

(
cos2 ϕ 0

0 sin2 ϕ

)
,

c(K̃ϕ) = | cos(2ϕ)|. Since F is strictly decreasing on [0, 1], the mean length
of crests is maximal when cos(2ϕ) = 0 , i.e. for ϕ = π/4 or 3π/4 modulo

π. These directions are not orthogonal to the modes of k̃.

A Appendix

A.1 Moments of two specific planar random wavevectors

Let k be a planar separable wavevector that we write k = ‖k‖ k̃ with ‖k‖ and k̃

independent and k̃ = (cos Θ, sin Θ). In the two following lemmas, we compute

the moments of k̃, i.e.

µj,k = E[(cos Θ)j (sin Θ)k],

for any non negative integers j and k, in two specific cases, namely the toy
model and the elementary model as introduced in Section 2.4.2.

Lemma A.1 If Θ has a probability density function given by

θ 7→ Cα| cos θ|α with Cα =
Γ(1 + α/2)

2
√
πΓ(1/2 + α/2)

.

for some nonnegative constant α, then the following formulas hold:

• µ0,0 = 1

• µj,k = 0 whenever j or k is odd

• µj,0 = Cα
Cα+j

= (α+1)(α+3)···(α+j−1)
(α+2)(α+4)···(α+j) for j even ≥ 2

• for any even integers j and k, µj,k =
∑k/2
i=0(−1)i

(
k/2
i

)
µj+2i,0.

In particular, it yields the non-zero second and fourth-order moments of k̃:

µ2,0 =
α+ 1

α+ 2
; µ0,2 =

1

α+ 2
and hence E[k̃k̃T ] =

1

α+ 2

(
α+ 1 0

0 1

)
;

µ4,0 =
(α+ 1)(α+ 3)

(α+ 2)(α+ 4)
; µ0,4 =

3

(α+ 2)(α+ 4)
; µ2,2 =

α+ 1

(α+ 2)(α+ 4)
.

21



Proof. It is clear that µ0,0 = 1, µj,k = 0 whenever j or k is odd and that
µj,0 = Cα/Cα+j for any even integer j. Using the explicit value of Cα yields the
value of µj,0. Finally, for any even integers j and k, writing sin2 θ = 1− cos2 θ
yields the formula for µj,k.

Lemma A.2 If Θ is uniformly distributed on [−h, h] ∪ [π − h, π + h] for some
constant h ∈ (0, π/2), then the following formulas hold:

• µ0,0 = 1,

• µj,k = 0 whenever j or k is odd,

• µ2,0 = 1
2 (1 + sinc(2h)); µ0,2 = 1

2 (1− sinc(2h)); µ2,2 = 1
8 (1− sinc(4h)),

• µ4,0 = 1
8 (3 + 4sinc(2h) + sinc(4h)); µ0,4 = 1

8 (3− 4sinc(2h) + sinc(4h)),

where sinc(θ) = sin(θ)
θ for any θ 6= 0 . In particular, this implies

E[k̃k̃T ] =
1

2

(
1 + sinc(2h) 0

0 1− sinc(2h)

)
.

Proof. Symmetry arguments explain the vanishing moments, while the
non-zero ones can be evaluated by linearizing trigonometric functions.

A.2 Variations of map F

Lemma A.3 Let E be the elliptic integral given by E(x) =
∫ π/2

0
(1 −

x2 sin2 θ)1/2dθ, for x ∈ [0, 1]. Then, the map F : c 7→ (1 + c)1/2 E
((

2c
1+c

)1/2)
is strictly decreasing on [0, 1].

Proof. For any k ∈ [0, 1), E ′(k) = −k
∫ π/2

0
sin2 θ

(1−k2 sin2 θ)1/2
dθ. Therefore, for any

c ∈ [0, 1),

F ′(c) =
1

2
(1 + c)−1/2E

(( 2c

1 + c

)1/2)
+ (1 + c)1/2 (2c)−1/2

(1 + c)3/2
E ′
(( 2c

1 + c

)1/2)
=

1

2
(1 + c)−1/2

∫ π/2

0

[
(1− 2c

1 + c
sin2 θ)1/2 −

2
1+c sin2 θ

(1− 2c
1+c sin2 θ)1/2

]
dθ

=
1

2
(1 + c)−1/2

∫ π/2

0

cos(2θ)

(1− 2c
1+c sin2 θ)1/2

dθ.

It remains to show that the above integral, which we call J(k) with k = ( 2c
1+c )

1/2,

is negative. Splitting the integral J(k) :=
∫ π/2

0
cos(2θ)

(1−k2 sin2 θ)1/2
dθ into two parts,
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on [0, π/4] and on [π/4, π/2], and performing the change of variables θ′ = π/2−θ
within the second part, we get

J(k) =

∫ π/4

0

cos(2θ)

[
1

(1− k2 sin2 θ)1/2
− 1

(1− k2 cos2 θ)1/2

]
dθ, (16)

which is negative since cos θ > sin θ for θ ∈ (0, π/4).

A.3 Coherency index of Kϕ

In this section, we prove Formulas (14) and (15) that are stated in Proposition
4.3. We start with a general result that allows us to compute the coherency
index of Kϕ.

Lemma A.4 1. E[KϕKT
ϕ ] = 1

v0,0(ϕ)V[G′′k(0)uϕ], where

v0,0(ϕ) = m2,0 cos2 ϕ+ 2m1,1 cosϕ sinϕ+m0,2 sin2 ϕ

and V[G′′k(0)uϕ] =

(
v2,0(ϕ) v1,1(ϕ)
v1,1(ϕ) v0,2(ϕ)

)

with


v2,0(ϕ) = cos2 ϕm4,0 + 2 cosϕ sinϕm3,1 + sin2 ϕm2,2,

v0,2(ϕ) = cos2 ϕm2,2 + 2 cosϕ sinϕm1,3 + sin2 ϕm0,4,

v1,1(ϕ) = cos2 ϕm3,1 + 2 cosϕ sinϕm2,2 + sin2 ϕm1,3.

(17)

2. E[‖Kϕ‖2] =
v2,0(ϕ)+v0,2(ϕ)

v0,0(ϕ) .

3. c(Kϕ) =
((v2,0(ϕ)−v0,2(ϕ))2+4v1,1(ϕ)2)

1/2

v2,0(ϕ)+v0,2(ϕ) .

Proof. As a consequence of Lemma 4.1 , E[KϕKT
ϕ ] is the covariance matrix of

the gradient vector of
G′k·uϕ

v0,0(ϕ)1/2
. But the gradient vector of G′k · uϕ is actually

the vectorial random field (G′′k(t)uϕ)t∈R2 , with covariance matrix V[G′′k(0)uϕ].
It proves Point 1.
Point 2 stems from the equality E[‖Kϕ‖2] = Trace

(
E[KϕKT

ϕ ]
)

and Point 3
derives from Formula (4).
Now, let us assume that k is separable. Lemma 4.1 ensures that Kϕ is also
separable. Then

E[K̃ϕK̃T
ϕ ] =

1

ν0,0(ϕ)

(
ν2,0(ϕ) ν1,1(ϕ)
ν1,1(ϕ) ν0,2(ϕ)

)
,

where the moments (νi,j(ϕ)) have been defined by (13). It results from Lemma

4.2 and from ν2,0(ϕ) + ν0,2(ϕ) = ν0,0(ϕ) that E[‖Kϕ‖2] = M4

M2
(which is actually

equation (14)) and that the trace of E[K̃ϕK̃T
ϕ ] equals E[‖K̃ϕ‖2] = 1 (this can
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also be seen as a consequence of K̃ϕ ∈ S1). Consequently, its coherency index
is

c(K̃ϕ) =

(
(ν2,0(ϕ)− ν0,2(ϕ))2 + 4ν1,1(ϕ)2

)1/2
ν0,0(ϕ)

,

which is actually equation (15).

A.4 Variations of the mean length of crests

Thanks to Proposition 4.3, we know that the mean length of a crest of direction
ϕ is given as a decreasing function of c(K̃ϕ). Recall that Formula (15) allows

us to write out c(K̃ϕ)2 as

c(K̃ϕ)2 =
1

ν0,0(ϕ)2

(
(ν2,0(ϕ)− ν0,2(ϕ))2 + 4ν1,1(ϕ)2

)
,

where the νi,j(ϕ)’s are defined by (13). By Lemma 4.2, the moments νi,j(ϕ)
are such that νi,j(ϕ) = 1

M2+i+j
vi,j(ϕ). We use (17) to express vi,j(ϕ) in terms

of the moments of k denoted by mi,j . Since mi,j = Mi+j µi,j , Lemma 4.2 also
yields 

ν0,0(ϕ) = µ2,0 cos2 ϕ+ 2µ1,1 cosϕ sinϕ+ µ0,2 sin2 ϕ,

ν2,0(ϕ) = µ4,0 cos2 ϕ+ 2µ3,1 cosϕ sinϕ+ µ2,2 sin2 ϕ,

ν0,2(ϕ) = µ2,2 cos2 ϕ+ 2µ1,3 cosϕ sinϕ+ µ0,4 sin2 ϕ,

ν1,1(ϕ) = µ3,1 cos2 ϕ+ 2µ2,2 cosϕ sinϕ+ µ1,3 sin2 ϕ.

(18)

In the case where the moments µ1,1, µ1,3 and µ3,1 simultaneously vanish, which
is the case in our two favorite examples (see Lemmas A.1 and A.2), we like to
remark that there exist two polynomials of degree two, say P and Q, such that

∀ϕ ∈ [0, 2π], c(K̃ϕ)2 =
P (cos(2ϕ))

Q(cos(2ϕ))
.

Consequently, ϕ = 0 and ϕ = π/2 appear as stationary points of the π-periodic

map ϕ 7→ c(K̃ϕ)2, whose graph is symmetric with respect to π/2.

A.4.1 The toy model case

We assume that the direction of k is given by the toy model (see Example 1
in Section 2.4.2). Using (18) and the expression for the µi,j ’s given by Lemma

A.1, we can compute c(K̃ϕ)2. Figure 1 shows the graph of ϕ 7→ c(K̃ϕ)2 for

various values of α. We observe that ϕ 7→ c(K̃ϕ)2 is minimal at ϕ = π/2, which
is substantiated by the next lemma.

Lemma A.5 The map ϕ 7→ c(K̃ϕ) admits a local minimum at ϕ = π/2.
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Figure 1: Graph of ϕ 7→ c(K̃ϕ)2 for α = 1 (black), α = 2 (blue) and α = 3 (green).

Proof. We will perform an asymptotic expansion of c(K̃π/2+ϕ)2 near ϕ = 0 in

order to show that ϕ 7→ c(K̃ϕ) admits a local minimum at π/2.
In the following lines, we write g(ϕ) = O(h(ϕ)) as ϕ tends to 0, if there

exists ϕ0 ∈ (0, 2π) and M > 0 such that

∀ϕ ∈ [0, 2π], |ϕ| < |ϕ0| ⇒ |g(ϕ)| ≤M |h(ϕ)|.

In particular, we write


cos(π/2 + ϕ) = −ϕ+

ϕ3

6
+O(ϕ4),

sin(π/2 + ϕ) = 1− ϕ2

2
+O(ϕ4).

From (18) and Lemma A.1, we get

ν0,0(π/2 + ϕ) = µ0,2 + (µ2,0 − µ0,2)ϕ2 +O(ϕ4)

=
1

α+ 2
(1 + αϕ2) +O(ϕ4)

ν2,0(π/2 + ϕ) = µ2,2 + (µ4,0 − µ2,2)ϕ2 +O(ϕ4)

=
α+ 1

(α+ 2)(α+ 4)
(1 + (α+ 2)ϕ2 +O(ϕ4)

ν0,2(π/2 + ϕ) = µ0,4 + (µ2,2 − µ0,4)ϕ2 +O(ϕ4)

=
1

(α+ 2)(α+ 4)
(3 + (α− 2)ϕ2) +O(ϕ4)

ν1,1(π/2 + ϕ) = 2µ2,2ϕ(1− 1

2
ϕ2) +O(ϕ4)

=
α+ 1

(α+ 2)(α+ 4)
ϕ(2− ϕ2) +O(ϕ4).

After some algebra, it gives

c(K̃π/2+ϕ)2 = (α− 2)2 + 24α(α+ 1)ϕ2 +O(ϕ4),
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which clearly admits a minimum at ϕ = 0.

A.4.2 The elementary model case

We assume that the direction of k is given by the elementary model (see Example
2 in Section 2.4.2). Using (18) and the expression for the µi,j ’s given by Lemma

A.2, one can compute c(K̃ϕ)2. Figure 2 shows the graph of ϕ 7→ c(K̃ϕ)2 for
various values of h. We again observe that it is minimal at ϕ = π/2.

Figure 2: Graph of ϕ 7→ c(K̃ϕ)2 for h = π/3 (black), h = π/5 (blue) and h = π/7 (green).
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[6] Azäıs J-M., León J.R., Wschebor M. (2011). Rice formula and Gaussian
waves. Bernoulli, 17, 170–193.
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