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Anisotropic random wave models

Anne Estrade∗ and Julie Fournier†

July 25, 2018

Abstract

Let d be an integer greater or equal to 2 and let k be a d-dimensional
random vector. We call random wave model with random wavevector
k any stationary random field defined on Rd with covariance function
t ∈ Rd 7→ E[cos(k.t)]. The purpose of the present paper is to link proper-
ties that concern the geometry of the random wave with the distribution
of the random wavevector. We focus on Gaussian random waves such that
the distribution of the norm of the wavevector and the one of its direc-
tion are independent. We illustrate our results on two specific models:
a generalization of Berry’s planar waves and a spatiotemporal sea wave
model whose random wavevector is supported by the Airy surface in R3.
These two Gaussian fields are anisotropic almost sure solutions of partial
differential equations that involve the Laplacian operator: ∆f + κ2f = 0
(where κ = ‖k‖) for the former, ∆f+∂4

t f = 0 for the latter. In the planar
case, we prove that the expected length of the nodal lines is decreasing as
the anisotropy of the wavevector is increasing, and we study the direction
that maximizes the expected length of the crest lines.

Keywords: Gaussian field; random wave; nodal statistics; level set;
crossing theory; anisotropy
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1 Introduction

For many centuries, physicists have been using wave models defined on a multi-
dimensional space in various domains as different as acoustics, electronics, geo-
physics, oceanography or seismology. In order to take into account variability or
uncertainty, it is useful to consider random wave models. It is the exact purpose
of a pioneer exhaustive study by Longuet and Higgins [19] that was concerned
by sea waves modelized as a random moving surface. Another mathematical
pioneer study was raised by Berry in several papers, [9] or [10] for instance.
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These seminal works opened a wide area of research in the last decades, either
for statistical purposes ([5], [18], [1], [6], [8], [22]), or more recently for topolog-
ical purposes in link with number theory ([27], [15], [21]). Ten years ago, the
interest for nodal sets or level sets also met the theory of crossings developed
by Rice for one-dimensional stochastic processes fifty years before, yielding two
inspiring books by Adler and Taylor [2] and by Azäıs and Wschebor [7]. The
present paper is clearly inspired by all the above references but to the best of
our knowledge it is the first time that the different models are gathered in the
same work and are studied under the same focus, the influence of anisotropy.

A big demand for anisotropic models is nowadays observed, in particular
by practitioners in geostatistics, offshore engineering, heterogeneous material or
medical imaging (see for instance [26], [14], [3]), but also for more theoretical
studies dedicated to image synthesis and analysis, optics, cosmology or arith-
metic ([11], [23], [4], [24], [16]).

In the present paper, we aim at exploring the anisotropy of anisotropic ran-
dom waves that are defined on a d-dimensional space with d ≥ 1. Our first model
is a single random wave given by t 7→ a cos(k ·t+η), where the directional struc-
ture is given by a d-dimensional random wavevector k, the random phase η is
uniformly distributed on [0, 2π] and independent of k, and amplitude a is kept
constant. Since we focus on anisotropy, the latter assumption will remain un-
changed all along the paper. We also study its stationary Gaussian counterpart,
i.e. a stationary Gaussian random field on Rd with the same covariance function
t ∈ Rd 7→ aE[cos(k · t)] that we call Gaussian random wave associated with k.
Our purpose is to link the geometric and anisotropic behaviour properties of
the random wave with the distribution of its random wavevector.

We focus on Gaussian random waves associated with wavevectors whose
norm and direction are independent random variables; we call them separa-
ble wavevectors. In order to illustrate our results, some models are specified.
Precisely, we exhibit anisotropic versions of famous Berry’s random waves (see
[9]), which are solutions of Helmholtz equation and are prescribed by a ran-
dom wavevector belonging to a sphere. Another famous model is studied in
the present paper: a space-time model adjusted for sea waves (see [19]). It is a
Gaussian random wave indexed by R2×R that indicates the sea height at each
point and each time instant. Its three-dimensional random wavevector is forced
to live in a two-dimensional surface known as Airy surface.

Our major contribution lies in proving that the expected length of the nodal
lines of planar random waves is a decreasing function of the anisotropy of its
random wavevector. For this purpose, we properly quantify the anisotropy and
give a closed formula for the nodal lines mean length. We extend our study by
presenting a formula for the expected length of crests in a fixed direction. It
allows us to prove that the direction that maximises the expected length of the
crest lines is not necessarily orthogonal to the mode of the random wavevector’s
direction.

We like to mention that when the random wavevector k is equal to Au with
A a deterministic matrix and u a random vector in Rd whose distribution is
invariant under rotations, the associated Gaussian random wave has the same
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distribution as an isotropic random wave deformed by the linear transformation
AT . In that case, the study of anisotropy, either in the spectral domain, or
in the parameter domain, is equivalent. In the general case where no linear
deformation is involved, studing anisotropy in those two domains falls under
two different approaches. The latter point of view is adopted in [3] or in [13] for
instance, whereas our paper definitively belongs to the former type as did [12]
or [26].

The paper is organised as follows. General facts are presented in Section 2,
in particular the key point of spectral representation. Another important point
is the link with partial differential equations that are solved by the random
waves. Section 3 deals with the presentation of various models of Gaussian
random waves characterized by the distribution of their random wavevector.
In Section 4, we focus on the nodal sets, their directional statistics and their
Hausdorff measure. Section 5 is devoted to the study of the crest lines from a
directional point of view. All over the paper, two specific distributions for the
random wavevector in dimension two are examined. One is called “elementary
model”. It is described by a main direction and a bandwidth that quantifies
the anisotropy. We call the other one “toy model”. It is given by a positive
probability density function only depending on a single parameter that carries
out the whole quantified information on anisotropy. The technical computations
are detailed in the Appendix section.

Notations.

We write N0 for the set {0, 1, 2, · · · } of the non-negative integers and N the
set of positive integers.

Let d ∈ N. We fix an orthonormal basis of R2 and we use the same notation
for a vector z in Rd and the vector of its coordinates in this basis. For any z
and z′ in Rd, we write z · z′ the canonical Euclidian scalar product of z and z′,
‖ · ‖ the associated norm and Id the identity matrix of size d. For ϕ ∈ [0, 2π],
uϕ denotes the vector (cosϕ, sinϕ) in R2.

For j = (j1, · · · , jd) ∈ N0
d, we write |j| =

∑d
l=1 jl. Moreover, if λ ∈ Rd and

if F is a smooth map from Rd to R, we write

λj =

d∏
l=1

λjll and ∂jF =
∂|j|F

∂j1λ1 · · · ∂jdλd
.

We also denote by F ′(t) and by F ′′(t) the gradient vector and the Hessian matrix
of F at point t, respectively.

For any positive integer s, Hs denotes the Hausdorff measure of dimension
s.

Let Z = (zi)1≤i≤d be a random vector in Rd. We write E[Z] its d-dimensional
expectation vector, Z ZT the d×d matrix (zizj)1≤i,j≤d and E[Z ZT ] the matrix
of the second moments of Z. The standard Gaussian probability density function
on Rd is denoted by Φd.
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2 General setting

2.1 Anisotropic single random wave

Let d be a positive integer. We consider a random multi-dimensional model of
single wave defined by

∀t ∈ Rd, Xk(t) =
√

2 cos(k · t+ η), (1)

where k is a d-dimensional random vector called the random wavevector and
where the random phase η is uniformly distributed on [0, 2π] and independent
of k.

The random field Xk is clearly not isotropic. As it will be stated in Propo-
sition 2.2, the kind of anisotropy of Xk depends on the law of k through its
covariance function.

In this paper, we will focus on two families of law for k. First, we are
interested in cases where the random wavevector k is supported by the zero
set of a multivariate polynomial P , {λ ∈ Rd : P (λ) = 0}. In particular,
the results of Section 2.3 are derived under this assumption. Besides, we will
also concentrate on the case where k is separable, in the sense of the following
definition.

Definition 2.1 Let k be a random vector in Rd. We say that k is separable if
a.s. ‖k‖ 6= 0 and if ‖k‖ and 1

‖k‖ k are independent.

If k is separable, we write k = ‖k‖ k̃, where k̃ is a random variable in Sd−1.
For instance, if ||k|| is almost surely constant equal to κ > 0, then k is separable

and it is as well supported by the zero set of P (x) =
∑d
i=1 x

2
i −κ2. In this case,

we call κ = ‖k‖ the wavenumber of Xk. In Section 3.1, we introduce properly
this particular model corresponding to what we call Berry’s anisotropic random
waves.

We refer to Section 3 for specific examples of distributions of the random
wavevectors. The following proposition gathers some basic properties of the
covariance function of Xk.

Proposition 2.2 1. The random field Xk is centred and second-order sta-
tionary with covariance function

r(t) := Cov[Xk(0), Xk(t)] = E[cos(k · t)], t ∈ Rd. (2)

In particular, Var(Xk(0)) = 1.

2. Let ks be the symmetrized random variable associated to k and let F be
its probability measure1. Then

r(t) = E[exp(iks · t)] =

∫
Rd

exp(iu · t) dF (u), (3)

1If Fk and F−k are respectively the probability measures of k and −k, then the sym-
metrized random variable associated with k is defined as the random variable with probability
measure F = 1

2
(Fk + F−k).

4



which means that r is the characteristic function of the random variable
ks and that F is the spectral measure of Xk.
Moreover, Xk is second-order isotropic if and only if the law of ks is
invariant under rotations.

3. The covariance function r admits derivatives up to order m (m ∈ N0) if
and only if k admits moments of order m. In this case, for any j ∈ N0

d

such that |j| ≤ m, we have

∂jr(0) = 0 if |j| is odd ; ∂jr(0) = (−1)|j|/2 E[kj] if |j| is even.

In particular, r′′(0) = −E[kkT ].

If k is centred, which is for instance the case if k has a symmetric law, the
coefficients of matrix E[kkT ] are the covariances between the coordinates of k
in our basis. In the planar case, this matrix is involved in the definition of the
coherency index of k.

Definition 2.3 (Coherency index) Let k be a random vector in R2. We
assume that the symmetric non-negative matrix E[kkT ] is non zero. We write
λ− and λ+ its eigenvalues, such that 0 ≤ λ− ≤ λ+ and λ+ > 0. The coherency
index of k is a real number in [0, 1] defined as

c(k) =
λ+ − λ−
λ+ + λ−

.

Despite the fact that matrix E[kkT ] depends on the choice of the basis, note that
the coherency index does not depend on it. The coherency index is a common
tool in spatial statistics and physics to characterize the anisotropy of a model,
see [20] and [14] for instance. In [25], it is also computed for the so-named
structure tensor in order to quantify the anisotropy of an anisotropic Gaussian
self-similar planar field with stationary increments.

Note also that writing E[kkT ] =

(
m2,0 m1,1

m1,1 m0,2

)
and denoting by λ± the eigen-

values of E[kkT ], we have

λ± =
1

2
(T ±

√
∆) and c(k) =

√
∆

T
, (4)

where T = m2,0 +m0,2 and ∆ = (m2,0 −m0,2)2 + 4m2
1,1.

Let us consider two extreme cases. In the isotropic case, λ− = λ+ and c(k) = 0.
On the contrary, if k is totally anisotropic in the sense that k is a.s. directed
along a single deterministic direction, then λ− = 0 and c(k) = 1.

Remark 2.4 If k is separable then its coherency index only depends on the
directional distribution of k. Indeed, writing k = ‖k‖k̃, we obtain E[kkT ] =

(E‖k‖2)E[k̃k̃T ], so c(k) = c(k̃) and the coherency index of k̃ is simply the
difference between the eigenvalues of E[k̃k̃T ] because the trace of this matrix is
equal to one.
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2.2 Anisotropic Gaussian wave model

We are still given a random vector k in Rd and we now consider a Gaussian,
stationary and centred random field with the same covariance function as the
single random wave Xk defined by (1). Due to Kolmogorov extension theorem
(see [7] Sections 1.1 and 1.2 for instance), such a field exists and its distribution
is unique. Consequently, we call it the Gaussian random wave associated with
the wavevector k, and we name it Gk.

Note that such a Gaussian field can be obtained as a limit by considering
independent and identically distributed versions of η and of k, denoted respec-
tively by (ηj)j∈N and by (kj)j∈N. According to the central limit theorem applied
to finite-dimensional distributions, the distribution of the random field√ 2

N

N∑
j=1

cos(kj · t+ ηj)


t∈Rd

converges asN tends to∞ towards a Gaussian random field with the appropriate
covariance function.

The covariance function of Gk is given by (3) in Proposition 2.2: r(t) =∫
Rd exp(iu · t) dF (u), t ∈ Rd, where F is the distribution of ks. From this, we

deduce a spectral representation of the field Gk.
Let WF be a complex Gaussian F -noise on Rd, i.e. a C-valued process defined
on the set B(Rd) of Borelians such that

• a.s. WF is a complex-valued measure on B(Rd),

• ∀A ∈ B(Rd), WF (A) is a complex-valued Gaussian variable with E[WF (A)] =
0 and E[WF (A)WF (A)] = F (A), where · denotes the complex conjuga-
tion,

• for any sequence (An)n∈N of pairwise disjoint Borel sets, (WF (An))n∈N
are independent random variables.

Moreover, we add the property that for any A ∈ B(Rd),

WF (A) = WF (−A).

Then, it is easy to check that the Gaussian stationary random field prescribed
by (∫

Rd
eit·u dWF (u)

)
t∈Rd

(5)

is real-valued, centred and that its covariance function is given by (3).

Reciprocally, if Y : Rd → R is a centred and stationary Gaussian random
field with unit variance, according to Bochner’s theorem, there exists a symmet-
ric probability measure on Rd, denoted by F , such that the covariance function
r of Y is given by (3). It follows that we can associate with Y a symmetric
random variable in Rd of probability measure F , denoted by kY and referred to
in the following as the random wavevector of Y .
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2.3 Link with partial differential equation

We are going to prove that both Xk and Gk satisfy a specific partial differential
equation if and only if the random wavevector k is supported by a specific
hypersurface of Rd.

Let P be an even d-multivariate polynomial. Then there exists a sequence
of real numbers (αj)j∈N0

d with only finitely many non-zero terms, such that

∀λ ∈ Rd, P (λ) =
∑

j∈N0
d; |j| even

αj λ
j. (6)

We associate with P the following differential operator:

LP (X) =
∑

j∈N0
d; |j| even

(−1)|j|/2αj ∂
jX.

Let us remark that the random field Xk defined by (1) is obviously almost surely
of class C∞.

Proposition 2.5 Let P be an even multivariate polynomial given by (6). Then
Xk almost surely satisfies the partial differential equation

∀t ∈ Rd, LP (X)(t) = 0 (7)

if and only if P (k) = 0 a.s.

Proof. For any j ∈ N0
d such that |j| is even, we have ∂jXk(t) = (−1)|j|/2kj

cos(k · t + η). Hence, we get LP (Xk)(t) = P (k)Xk(t) and the proof follows
immediately.

Proposition 2.5 allows us to exhibit random anisotropic solutions of some fa-
mous partial differential equations. Let us give an example, using the Laplacian

operator ∆ on Rd that is defined by ∆ =
∑

1≤j≤d
∂2

∂t2j
. If for some positive

κ, k ∈ κSd−1, then the single random wave Xk is an almost sure solution of
Helmholtz equation ∆X + κ2X = 0. In the same vein, the single random wave
defined on R3, associated with a random wavevector with support in the Airy
surface {(x, y, z) ∈ R3; x2 +y2−z4 = 0} is an almost sure solution of the partial

differential equation ∂2

∂x2X + ∂2

∂y2X + ∂4

∂z4X = 0. The Gaussian counterpart of
this single random wave is used as spatiotemporal random sea wave model and
it is thoroughly presented in Section 3.3.

Let us now be concerned with Gk. We assume that the random wavevector k
admits moments of any order. Hence, the covariance function r of Gk is of class
C∞ and consequently there exists a version of Gk with almost every realization
of class C∞; it is given by representation (5) for instance. First, let us point out
that Gk satisfies Proposition 2.5 as well as Xk. Indeed, Gk is centred and admits
the same covariance function as Xk; therefore for any multivariate polynomial P
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given by (6), for any t ∈ Rd, Var (LP (Gk)(t)) = Var (LP (Xk)(t)). However, the
following theorem is a more general result: it provides a sufficient and necessary
condition for any stationary Gaussian random field to satisfy Equation (7).

Theorem 2.6 Let P be an even multivariate polynomial defined by (6) and let
Y be a Gaussian random field defined on Rd that is centred, stationary, with unit
variance and almost surely of class C∞. The following properties are equivalent.

1. The Gaussian random field Y almost surely satisfies the partial differential
equation

∀t ∈ Rd, LP (Y )(t) = 0.

2. The Gaussian random field Y admits a spectral representation given by
(5), where F is a probability measure supported by {λ ∈ Rd : P (λ) = 0}
and WF is a complex Gaussian F -noise on Rd.

3. The random wavevector kY associated with Y almost surely satisfies P (kY ) =
0.

We insist on the fact that the above theorem provides all the Gaussian a.s. so-
lutions, isotropic or not, of the partial differential equation LP (Y ) = 0. More-
over, the equation gives information on the localization of the associated random
wavevector.

Proof. Items 2 and 3 in Theorem 2.6 are clearly equivalent as F is the distri-
bution of kY . Since Y is centred, so are all its derivatives and the stationary
random field LP (Y ). Therefore, LP (Y ) is almost surely identically zero if and
only if its variance at each point is zero. But Var(LP (Y )(t)) can be expressed
as a linear combination of derivatives of the covariance function rY of Y . Hence
Y is an a.s. solution of the partial differential equation LP (Y ) = 0 if and only
if its covariance function rY satisfies∑

j,k∈N0
d; |j|,|k| even

(−1)(|j|+|k|)/2 αj αk ∂
(j+k)rY (0) = 0. (8)

On the other hand, as it is the covariance function of a stationary centred
field, rY satisfies Bochner’s Theorem: there exists a Radon finite measure F
on Rd such that rY (t) = F̂ (t), where F̂ denotes the Fourier transform, i.e.
F̂ (t) =

∫
Rd e

it·λ dF (λ). Then rY satisfies (8) if and only if

0 =

∫
Rd

( ∑
j,k∈N0

d; |j|,|k| even

(−1)|j|+|k| αj αk λ
j λk

)
dF (λ) =

∫
Rd
P (λ)2 dF (λ).

The above integral vanishes if and only if the measure F is supported by {λ ∈
Rd : P (λ) = 0}.
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3 Presentation of the models

3.1 Berry’s anisotropic random waves

In this section, we focus on the case where the random wavevector k is such
that, for some deterministic wavenumber κ > 0,

κ−1k ∈ Sd−1 a.s..

Since k is not necessarily isotropically distributed, the associated single wave
is anisotropic. We consider the (unique in distribution) associated stationary
centred Gaussian random field Gk on Rd introduced in Section 2.2. Since ‖k‖
is a.s. bounded, it is clear that Gk is a.s. smooth. Hence, rephrasing Theorem
2.6, we get that Gk is the generic Gaussian solution of Helmholtz equation

∆Y + κ2Y = 0.

Equivalently, Gk is an eigenfunction of the operator −∆, for the eigenvalue κ2.
Therefore, extending the definition introduced by Berry in [9] and intensively
studied in the last years, we refer to Gk as a Berry’s anisotropic wave with
random wavenumber κ.

Applying the appropriate change of variables t 7→ κt yields the scaling prop-
erty that (Gk(t))t∈Rd and (Gκ−1k(κt))t∈Rd have the same distribution, where

we recall that the random vector κ−1k takes its values in Sd−1.
Besides, we remark that ks, the symmetrised random variable associated

with k, is such that κ−1ks is supported by Sd−1. Hence, we can deduce from
the second point of Proposition 2.2 that the covariance function of Gk is given
by

r(t) =

∫
Sd−1

eiκu·t dµ(u), t ∈ Rd,

where µ denotes the probability measure of κ−1ks.

3.2 Planar and separable random waves

In this section, we set d = 2 and we assume that the wavevector k is separa-
ble, in the sense of Definition 2.1. The two following examples of parametric
distribution for the unitary wavevector k̃ = 1

‖k‖k will allow us to make com-

putations to illustrate and comment the results of Sections 4 and 5. We write
k̃ = (cos Θ, sin Θ), where Θ is a random variable in [0, 2π] and we fix θ0 in [0, 2π].

Example 1 (Toy model) Let α ≥ 0. The density of Θ with respect to
Lebesgue measure on [0, 2π] is given by

θ 7→ Cα | cos(θ − θ0)|α, with Cα =
Γ(1 + α/2)

2
√
πΓ(1/2 + α/2)

, (9)

where Γ is the usual Gamma function. Parameter α is considered as an anisotropy
parameter: α = 0 brings an isotropic model, whereas, at the opposite, α→ +∞
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corresponds with a totally anisotropic random field since k is a.s. oriented along
the x-axis. Our toy model is inspired by [14] Section 2.1.2, where it is intro-
duced to represent anisotropic spatial structures in physics. It is also used in
[4] with α = 2 and θ0 = 0 or θ0 = π/2 to modelize the two coordinates of a
two-dimensional electromagnetic wave.

Example 2 (Elementary model) The random variable Θ is uniformly dis-
tributed on [θ0 − δ, θ0 + δ] with 0 ≤ δ ≤ π. Parameter θ0 indicates the main
direction whereas parameter δ negatively quantifies anisotropy, in the sense that
the more anisotropic the model is, the smaller parameter δ is. Actually, δ = 0
corresponds with a totally anisotropic model, δ ≈ 0 corresponds with what is
named narrow spectrum model in [19] Section I.6, and δ = π corresponds with
the isotropic model. If one wishes a symmetric model, one can also consider Θ
uniformly distributed on [θ0−δ, θ0 +δ]∪ [θ0 +π−δ, θ0 +π+δ] with 0 ≤ δ ≤ π/2.
The elementary model is studied in [11] and [25].

Up to a rotation of the basis, we can assume that in both examples θ0 = 0.
Thus we set θ0 = 0 in the following.

3.3 Gaussian sea waves

In this section, we now concentrate on the case where the random wavevector
k is 3-dimensional and a.s. belongs to Airy surface, i.e.

k ∈ A = {(λ1, λ2, λ3) ∈ R3 ; (λ1)2 + (λ2)2 = (λ3)4} a.s..

We study the Gaussian random wave Gk associated with k, as defined in Section
2.2. Its covariance function is

r(t) = E[cos(k · t)] =

∫
A

cos(λ · t) dF (λ), t ∈ R3,

where F is the probability distribution of k supported by A.
The random field Gk coincides with the one used for the spatiotemporal random
modelization of sea waves, assuming that the depth of the sea is infinite (see [19]
for the original idea, [5] or [7] for more recent developments). More precisely,
for (x, y, s) ∈ R2 × R, Gk(x, y, s) can be seen as the algebraic height of a wave
at point (x, y) and time s. If the moments of k are finite up to order four, we
recall that according to Theorem 2.6, Gk solves the partial differential equation

∆Gk + ∂4
tGk = 0,

with ∆ the two-dimensional spatial Laplacian operator and ∂4
t the fourth tem-

poral derivative.

We use the following parametrization of A,

(z, θ) ∈ R× [0, 2π) 7→ (z2 cos θ, z2 sin θ, z),
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which provides a bijection φ from R\{0}×[0, 2π) onto A\{(0, 0, 0)}. Performing
the appropriate change of variables yields

r(x, y, s) =

∫
R×(0,2π)

cos(xz2 cos θ + yz2 sin θ + sz) dFφ(z, θ),

where Fφ is the image of measure F by the map φ−1. When k admits f as prob-
ability density function with respect to the surface measure on A, consequently
to the coarea formula, we get

r(x, y, s) =

∫
R×(0,2π)

cos(xz2 cos θ + yz2 sin θ + sz)g(z, θ) dzdθ,

where the map g is given by

g(z, θ) = f(z2 cos θ, z2 sin θ, z) z2(1 + 4z2)1/2.

Following the literature, g is called directional power spectrum of Gk (see [5]
and [7] Chapter 11). Experimental directional power spectra are exhibited in
[5], derived from sea data provided by Ifremer.

Let us fix time s = s0 and look at the random field defined on R2,

Zk(x, y) = Gk(x, y, s0) (x, y) ∈ R2,

as a picture of the sea height at time s0. It is a two-dimensional stationary
centred Gaussian random field, whose covariance function is given by

r0(x, y) = r(x, y, 0)

=

∫
R×(0,2π)

cos(xz2 cos θ + yz2 sin θ) dFφ(z, θ)

= E[cos((x, y) · π(k))],

where the random vector π(k) is described in polar coordinates by (R2,Θ) with
(R,Θ) distributed according to measure Fφ. Thus π(k) is the random wavevec-
tor associated with Zk and it is nothing but the projection of the A-valued
random wavevector k onto the plane of the first two coordinates. Consequently,
the moments of π(k) are given, for any integers j and k in N0, by

mj,k =

∫
(0,2π)×R

(z2 cos θ)j(z2 sin θ)k dFφ(z, θ),

assuming that they are finite.
Note that if Fφ can be written as a tensorial product measure: dFφ(z, θ) =
dΞ(z)⊗ dΛ(θ) then, according to Definition 2.1, π(k) is separable.
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4 Level sets of Gaussian random waves

Let k be a random wavevector in Rd admitting moments up to order four and
let Gk be the associated Gaussian random field defined on Rd. From now on in
this section, we assume that Gk is almost surely of class C2.

Let a ∈ R. We are interested in the level set

G−1
k (a) = {t ∈ Rd : Gk(t) = a},

which is a.s. a C2-submanifold of Rd with dimension d− 1, called nodal set in
the case a = 0.

4.1 Favorite orientation

Definition 4.1 We call favorite direction of a random vector V in Rd any
u ∈ Sd−1 that maximizes E[(V.u)2].

Since E[(V.u)2] = u.E[V V T ]u, the favorite directions of V are the eigen-
vectors with norm one associated with the largest eigenvalue of the symmetric
positive matrix E[V V T ]. If the largest eigenvalue is simple, i.e. if the dimension
of the associated eigenspace is one, then there are exactly two favorite direc-
tions which are opposite one another. Note that if a random wavevector k is
separable then its favorite directions are exactly the ones of k̃.

We turn to the directional study of the level set G−1
k (a). For any t ∈ G−1

k (a),
the tangent space at point t, TtG

−1
k (a), is a (d− 1)-dimensional linear subspace

that is orthogonal to the vector G′k(t). Using the previous definition, the fa-
vorite directions of G′k(t) are given by the unitary eigenvectors associated with
the largest eigenvalue of E[G′k(t)G′k(t)T ]. As the latter matrix is equal to E[kkT ]
according to the third point of Proposition 2.2, the favorite directions of G′k(t)
coincide with those of k. Hence, we get the next statement that sounds physi-
cally intuitive: the favorite orientations of the level sets G−1

k (a) are orthogonal
to the favorite directions of k. Actually, it can be written out as a precise
proposition.

Proposition 4.2 Let τ be a d-dimensional vector field defined on the level set
G−1

k (a) such that, at any point t ∈ G−1
k (a), τ(t) is orthogonal to TtG

−1
k (a).

Then, at any point t, the favorite directions of τ(t) are given by the favorite
directions of k.

This formalizes an assertion in [19] Section 2.3, according to which the di-
rection of the contour is near the principal direction. In this statement, the
principal direction corresponds to our favorite direction.

Let us illustrate the notion of favorite direction on two-dimensional separa-
ble random wavevectors. We write k = ‖k‖uΘ, ‖k‖ and Θ being independent
random variables. Note that for any ϕ ∈ [0, 2π], k · uϕ = ‖k‖ cos(θ − ϕ).
On the one hand, if Θ is uniformly distributed on [0, 2π], then E[kkT ] =

12



1
2E[‖k‖2]I2, thus the set of favorite directions of k is S1. On the other hand, if
Θ almost surely takes a fixed value θ0 ∈ [0, 2π] then the favorite directions of k
are ±uθ0 . Let us now focus on our favorite examples. We refer to the appendix
Section A.4 for the detailed computation of their moments.

Example 1 (Toy model) If Θ admits a probability density function given

by (9), for a given α > 0, then E[kkT ] = E[‖k‖2] 1
α+2

(
α+ 1 0

0 1

)
. Hence, the

favorite directions of k are ±u0.

Example 2 (Elementary model) If Θ is uniformly distributed on [−δ, δ]∪[π−

δ, π+δ] for some 0 < δ ≤ π/2, then E[kkT ] = E[‖k‖2] 1
2

(
1 + sin(2δ)

2δ 0

0 1− sin(2δ)
2δ

)
and the favorite directions of k are again ±u0.

4.2 Expected measure

We are now interested in the expected measure of the level sets of Gk. Let Q be a
compact set in Rd with non empty interior. We focus on the (d−1)-dimensional
Hausdorff measure of the a-level set restricted to Q, namely

`(a,k, Q) := Hd−1

(
G−1

k (a) ∩Q
)

= Hd−1 ({t ∈ Q/Gk(t) = a}) .

For now on in Section 4, we assume that G′k(0) is a non-degenerate Gaussian
vector or, equivalently, that E[kkT ] is invertible. This allows us to apply Kac-
Rice formula (see [7] Theorem 6.8 for instance). It yields

E[`(a,k, Q)] =

∫
Q

E[‖G′k(t)‖ |Gk(t) = a] pGk(t)(a) dt,

where pGk(t), the probability density function of Gk(t), is actually given by the
standard Gaussian distribution. Using the stationarity of Gk and the fact that
for a fixed point t, Gk(t) and G′k(t) are independent random variables, we have

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
2π

E[‖G′k(0)‖].

Consequently, recalling that ‖G′k(0)‖ is the Euclidean norm of a d-dimensional
centred Gaussian vector with variance matrix −r′′(0) = E[kkT ] and that Φd
stands for the standard Gaussian probability density function on Rd, we obtain

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
2π

∫
Rd

(E[kkT ]x · x)1/2Φd(x) dx.

In the separable case, we deduce from the above formula the following straight-
forward lemma.

13



Lemma 4.3 We assume that k is separable with k = ‖k‖k̃ and that E[kkT ] is
invertible. Then

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
2π

E[‖k‖2]1/2
∫
Rd

(E[k̃k̃T ]x · x)1/2Φd(x) dx. (10)

The above formula applies to Berry’s isotropic random wave, i.e. to the
case where ‖k‖ is a.s. constant equal to some positive constant κ and k̃ is

uniformly distributed in Sd−1. In this case, E[‖k‖2] = κ2 and E[k̃k̃T ] = (1/d) Id.
Hence, the involved integral becomes

∫
Rd ‖x‖Φd(x) dx, which is the mean of a

χ-distributed random variable with d degrees of freedom and is known to be

equal to
√

2 Γ((d+1)/2)
Γ(d/2) , with Γ the usual Gamma function. Finally, we recover

the well known formula expressing the expected measure of the a-level set of a
Berry isotropic random wave (see [9] in the planar case):

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
dπ

κ
Γ((d+ 1)/2)

Γ(d/2)
.

4.3 Planar case

In the planar case, i.e. d = 2, the level sets G−1
k (a) are one-dimensional. Assum-

ing moreover that k is separable, we will establish that the level curves mean
length decreases with anisotropy. Our formula involves the coherency index,
introduced in Definition 2.3.

To compute the integral in the right-hand side of (10), we use the following
well known fact, that can be proved with simple algebra.
If M is a symmetric positive definite matrix with eigenvalues γ− and γ+ such
that 0 < γ− ≤ γ+, then∫

R2

(Mx · x)1/2Φ2(x) dx =

(
2γ+

π

)1/2

E
(

(1− γ−/γ+)1/2
)
, (11)

where E stands for the elliptic integral given by E(x) =
∫ π/2

0
(1−x2 sin2 θ)1/2dθ,

for x ∈ [0, 1].

In our case, we set M = E[k̃k̃T ] and γ− + γ+ = 1 since k̃ belongs to S1, a.s..

Hence, writing c = c(k̃), we have 2γ+ = 1 + c and 1 − γ−/γ+ = 2c
1+c . Conse-

quently, the following proposition holds.

Proposition 4.4 Let k be a separable random wavevector in R2 such that k =
‖k‖k̃ and E[kkT ] is invertible. Let us denote by c(k̃) = c(k) the coherency index
of k. Then,

E[`(a,k, Q)] = H2(Q)
e−a

2/2

π
√

2
E[‖k‖2]1/2 F

(
c(k̃)

)
,

where the map F : c ∈ [0, 1] 7→ (1 + c)1/2 E
((

2c
1+c

)1/2)
is strictly decreasing.
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The proof of the decrease of mapping F is postponed to the Appendix sec-
tion, see Lemma A.1. Another expression for the same expectation can be
found in [19] Formula (2.3.13), however our formulation highlights the effect of
the wavevector’s distribution on the mean length of level sets.

Remark 4.5 Regarding the coherency index c(k̃) as a parameter that positively
quantifies anisotropy, the above formula clearly indicates that the mean length
of level curves is decreasing as the anisotropy of k increases.

We now apply Proposition 4.4 to our separable examples, prescribing the
directional distribution of the wavevector k.

Example 1 (Toy model) Take k̃ distributed on S1 with probability den-
sity function given by (9) for some positive α. We already mentioned that

E[k̃k̃T ] = 1
α+2

(
α+ 1 0

0 1

)
. Consequently, c(k̃) = α

α+2 , which is an increasing

function of parameter α. As observed in Remark 4.5, the more anisotropic the
model is, the smaller the expected length of level sets is.

Example 2 (Elementary model) We choose k̃ to be uniformly distributed

on [−δ, δ] ∪ [π − δ, π + δ] for some 0 < δ ≤ π/2. In that case, E[k̃k̃T ] =

1
2

(
1 + sin(2δ)

2δ 0

0 1− sin(2δ)
2δ

)
. Hence, c(k̃) = sin(2δ)

2δ , which is decreasing on

(0, π/2]. Again, the mean length of level sets is decreasing with anisotropy,
i.e. as δ is decreasing.

5 Crest lines of planar Gaussian waves

Let k be a two-dimensional random wavevector. We write F its probability law
andGk its associated planar Gaussian random wave that we assume to be almost
surely of class C3. We assume that E[kkT ] is invertible, which equivalently
excludes the case of k oriented almost surely along a fixed direction.

We fix a direction ϕ ∈ [0, π) and we consider the crest line in direction ϕ.
More precisely, we introduce the random set

{t ∈ R2 ; G′k(t) · uϕ = 0},

which contains all the points x in R2 such that the gradient of Gk at point t is
orthogonal to direction ϕ. Hence, the crest in direction ϕ is a special case of a
specular points set as defined in [19].

5.1 Directional derivative as a random wave

The crest line can be considered as the nodal line of the random field (G′k ·uϕ),
which is the partial derivative of Gk along vector uϕ. This random field is
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Gaussian, stationary, centred and we denote by v0,0(ϕ) its variance:

v0,0(ϕ) = E[(G′k(0) · uϕ)2] = uϕ · E[kkT ]uϕ = E[(k · uϕ)2].

Note that v0,0(ϕ) does not vanish since E[kkT ] is invertible.
By deriving the integral representation of r resulting from (2), we obtain

that the covariance function of (G′k · uϕ) is

∀t ∈ R2, E[(G′k(t) · uϕ)(G′k(0) · uϕ)] =

∫
R2

cos(t · λ)(λ · uϕ)2 dF (λ). (12)

Therefore, the following lemma follows. It allows to associate a random wavevec-

tor with the unit variance Gaussian random wave
G′k · uϕ
v0,0(ϕ)1/2

.

Lemma 5.1 The covariance function of
G′k · uϕ
v0,0(ϕ)1/2

is given by

t ∈ R2 7→ E[cos(Kϕ · t)],

where Kϕ is a two-dimensional random vector whose probability distribution is

equal to
(λ·uϕ)2

v0,0(ϕ) dF (λ), with F the probability measure of k. In other words, Kϕ

is the random wavevector associated to
G′k · uϕ
v0,0(ϕ)1/2

.

We introduce the moments of measure F and the ones of measure
(λ · uϕ)2 dF (λ): for any (i, j) ∈ N2

0,

mi,j :=

∫
R2

(λ1)i(λ2)j dF (λ) = E[(k · u0)i(k · uπ/2)j ],

vi,j(ϕ) :=

∫
R2

(λ1)i(λ2)j (λ · uϕ)2 dF (λ).

(13)

By a mere development, the moments (vi,j(ϕ)) can be expressed as polynomial
functions of (cosϕ, sinϕ), the coefficients depending linearly on the moments
(mi,j) (see (19) in the Appendix section).

Until the end of this section and in the following one, we focus on the case
of a separable random wavevector k, that we write k = ‖k‖uΘ. We denote by
Ξ the probability distribution of ‖k‖ on (0,+∞) and Λ the one of Θ on [0, 2π],
assuming that ‖k‖ and Θ are independent. We introduce

∀j ∈ N0, Mj = E[‖k‖j ] =

∫
R+

ρjdΞ(ρ)

the moments of the random variable ‖k‖ and µj,k the ones of Θ, that is for any
(j, k) ∈ N2

0,

µi,j =

∫
[0,2π]

cosi θ sinj θ dΛ(θ).
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For any integrable function h,

E[h(k)] =

∫
[0,+∞)×[0,2π]

h(ρ cos θ, ρ sin θ)dΞ⊗ dΛ(ρ, θ).

Therefore,

E[h(Kϕ)] =
1

v0,0(ϕ)

∫
(0,+∞)×[0,2π]

h(ρ cos θ, ρ sin θ)ρ2 cos2(θ − ϕ)dΞ⊗ dΛ(ρ, θ).

To end with, we write

νi,j(ϕ) =

∫ 2π

0

cosi(θ) sinj(θ) cos2(θ − ϕ) dΛ(θ). (14)

We can directly state the following lemma.

Lemma 5.2 If k is separable, then Kϕ is also separable and

∀(i, j) ∈ N0
2, mi,j = Mi+j µi,j and vi,j(ϕ) = M2+i+jνi,j(ϕ),

assuming that the above moments exist.

5.2 Mean length of a crest line in a fixed direction

The Hausdorff dimension of a crest line is clearly equal to one. We consider its
length within a compact domain Q ⊂ R2 such that H2(Q) > 0,

l(k, Q, ϕ) := H1 ({t ∈ Q ; G′k(t) · uϕ = 0}) .

Since the crest line of Gk in direction ϕ is nothing but the nodal line of
G′k·uϕ

v0,0(ϕ)1/2
,

Lemma 5.1 allows us to apply Proposition 4.4 with the random wavevector Kϕ.
It yields the following proposition.

Proposition 5.3 We assume that k is separable and that E[kkT ] is invertible.
Then for any ϕ ∈ [0, π) such that E[KϕKT

ϕ ] is invertible,

E[l(k, Q, ϕ)] = H2(Q)
1

π
√

2
E[‖Kϕ‖2]1/2 F(c(K̃ϕ)),

where function F has been introduced in Proposition 4.4,

E(‖Kϕ‖2) =
M4

M2
, (15)

c(K̃ϕ) =

(
(ν2,0(ϕ)− ν0,2(ϕ))2 + 4ν1,1(ϕ)2

)1/2
ν0,0(ϕ)

, (16)

=

(
(v2,0(ϕ)− v0,2(ϕ))2 + 4v1,1(ϕ)2

)1/2
v2,0(ϕ) + v0,2(ϕ)

(17)

and according to Formula (19), c(K̃ϕ) can be expressed in terms of the fourth-
order moments (mi,j)(i,j)∈N2

0, i+j=4.
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We refer to the appendix Section A.2 for the proof of (15), (16) and (17). Ac-
cording to theses Formulas, E[l(k, Q, ϕ)] depends on the directional distribution

of k through the factor F(c(K̃ϕ)) (involving the fourth-order moments of k),
and on its radial distribution through the factor E[‖Kϕ‖2] (involving the second-
order and the fourth-order moment of Ξ). Consequently to Proposition 5.3, the
mean length of crest lines is a decreasing function of the anisotropy of Kϕ. The
variations of the expected length of the crests with respect to the direction can
be studied through the variations of the map ϕ 7→ c(K̃ϕ). For more detailed
formulas, see the beginning of the appendix Section A.5.

A similar formula is also derived in [7] (Proposition 11.4) and in [5] (Assertion
3). However, it is apparently different from ours, since the gradient of the
random field G′k ·uϕ is not computed according to the directions of the canonical
basis but according to the ones of (uϕ, uϕ+π/2). The link between both formulas
is detailed in the appendix Section A.3.

Now we apply Proposition 5.3 to our separable examples. All is about
computing the coherency index of K̃ϕ. For each case, we examine the crest
direction(s) that maximize(s) the expectation of the crest length. In [19] or in
[5], a rule of thumb is suggested claiming that the direction [that maximises
the expected length of crests] is orthogonal to the direction for the maximum
integral of the spectrum, i.e. is the most probable direction for the waves. In
this statement, the “most probable direction for the waves” refers to the mode
of the random wavevector k̃. However, according to our examples, such a rule
is not necessarily satisfied. This can be explained by the expectation formula
of Proposition 5.3 itself, which shows a dependency on both the second-order
and the fourth-order moments of k, and not on the mode of k̃.

Examples We consider a random wavevector k that we write k = ‖k‖uΘ as
before and we use the formulas of the appendix Section A.2 and A.5.

• Toy Model. The probability density function of Θ is given by (9), for

some fixed α > 0 and θ0 equal to zero. The mode of k̃ is 0 in that case.
An asymptotic expansion of ϕ 7→ c(K̃ϕ)2 near ϕ = π/2 is performed in
Lemma A.6 in the Appendix section. It shows that the expected length of
crests admits a local maximum at ϕ = π/2, which is precisely orthogonal
to the most probable direction of k and to its favorite direction as well.

• Elementary wave. We assume that Θ is uniformely distributed on
[−δ, δ] ∪ [π − δ, π + δ]. The moments coherency index of K̃ϕ can be com-
puted thanks to Formula (21) and Lemma A.5. Figure 2 shows the graph

of ϕ 7→ c(K̃ϕ)2. The expected length of crests appears to admit a maxi-
mum at ϕ = π/2, thus it is orthogonal to the favorite direction of k.

• A very special example. Let 1
4

∑3
j=0 dδjπ/2 be the distribution of Θ

on [0, 2π]. The modes of k̃ are {ujπ/2 : j = 0, 1, 2, 3}. (Also note that
it does not admit any favorite direction.) Computing the moments of F ,
we get m1,1 = m2,2 = m3,1 = m3,1 = 0 whereas m2,0 = m0,2 = M2

2 and
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m4,0 = m0,4 = M4

2 . Since

E[K̃ϕK̃T
ϕ ] =

(
cos2 ϕ 0

0 sin2 ϕ

)
,

c(K̃ϕ) = | cos(2ϕ)|. Since F is strictly decreasing on [0, 1], the mean length
of crests is maximal when cos(2ϕ) = 0 , i.e. for ϕ = π/4 or 3π/4 modulo

π. These directions are not orthogonal to the modes of k̃.

A Appendix

A.1 Variations of map F

Lemma A.1 Let E be the elliptic integral given by E(x) =
∫ π/2

0
(1 −

x2 sin2 θ)1/2dθ, for x ∈ [0, 1]. Then, the map F : c 7→ (1 + c)1/2 E
((

2c
1+c

)1/2)
is strictly decreasing on [0, 1].

Proof. For any k ∈ [0, 1), E ′(k) = −k
∫ π/2

0
sin2 θ

(1−k2 sin2 θ)1/2
dθ. Therefore, for any

c ∈ [0, 1),

F ′(c) =
1

2
(1 + c)−1/2E

(( 2c

1 + c

)1/2)
+ (1 + c)1/2 (2c)−1/2

(1 + c)3/2
E ′
(( 2c

1 + c

)1/2)
=

1

2
(1 + c)−1/2

∫ π/2

0

[
(1− 2c

1 + c
sin2 θ)1/2 −

2
1+c sin2 θ

(1− 2c
1+c sin2 θ)1/2

]
dθ

=
1

2
(1 + c)−1/2

∫ π/2

0

cos(2θ)

(1− 2c
1+c sin2 θ)1/2

dθ.

It remains to show that the above integral, which we call J(k) with k = ( 2c
1+c )

1/2,

is negative. Splitting the integral J(k) :=
∫ π/2

0
cos(2θ)

(1−k2 sin2 θ)1/2
dθ into two parts,

on [0, π/4] and on [π/4, π/2], and performing the change of variables θ′ = π/2−θ
within the second part, we get

J(k) =

∫ π/4

0

cos(2θ)

[
1

(1− k2 sin2 θ)1/2
− 1

(1− k2 cos2 θ)1/2

]
dθ, (18)

which is negative since cos θ > sin θ for θ ∈ (0, π/4).

A.2 Coherency index of Kϕ

The results in this section allow us to compute the coherency index of Kϕ in
the separable case. More precisely, it contains the proofs of Formulas (15), (16)
and (17). As a consequence of Lemma 5.1 and the last point of Proposition
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2.2, E[KϕKT
ϕ ] can be seen as the covariance matrix of the gradient vector of

G′k·uϕ
v0,0(ϕ)1/2

. The gradient vector of G′k · uϕ is actually the vectorial random field

(G′′k(t)uϕ)t∈R2 , with covariance matrix V[G′′k(0)uϕ].

Lemma A.2 1. E[KϕKT
ϕ ] = 1

v0,0(ϕ)V[G′′k(0)uϕ], where

v0,0(ϕ) = m2,0 cos2 ϕ+ 2m1,1 cosϕ sinϕ+m0,2 sin2 ϕ

and V[G′′k(0)uϕ] =

(
v2,0(ϕ) v1,1(ϕ)
v1,1(ϕ) v0,2(ϕ)

)

with


v2,0(ϕ) = cos2 ϕm4,0 + 2 cosϕ sinϕm3,1 + sin2 ϕm2,2,

v0,2(ϕ) = cos2 ϕm2,2 + 2 cosϕ sinϕm1,3 + sin2 ϕm0,4,

v1,1(ϕ) = cos2 ϕm3,1 + 2 cosϕ sinϕm2,2 + sin2 ϕm1,3.

(19)

2. E[‖Kϕ‖2] =
v2,0(ϕ)+v0,2(ϕ)

v0,0(ϕ) .

3. c(Kϕ) =
((v2,0(ϕ)−v0,2(ϕ))2+4v1,1(ϕ)2)

1/2

v2,0(ϕ)+v0,2(ϕ) .

Proof. Point 1 results from Lemma 5.1. Point 2 stems from the equality

E[‖Kϕ‖2] = Trace
(
E[KϕKT

ϕ ]
)

and Point 3 derives from Formula (4).
Now let us assume that k is separable. Lemma 5.1 ensures that Kϕ is also

separable. Then

E[K̃ϕK̃T
ϕ ] =

1

ν0,0(ϕ)

(
ν2,0(ϕ) ν1,1(ϕ)
ν1,1(ϕ) ν0,2(ϕ)

)
,

where the moments (νi,j(ϕ)) have been defined by (14). It results from Lemma

5.2 and from ν2,0(ϕ)+ν0,2(ϕ) = ν0,0(ϕ) that E[‖Kϕ‖2] = M4

M2
and that the trace

of E[K̃ϕK̃T
ϕ ] equals E[‖K̃ϕ‖2] = 1 (this can also be seen as a consequence of

K̃ϕ ∈ S1). Consequently, its coherency index is

c(K̃ϕ) =

(
(ν2,0(ϕ)− ν0,2(ϕ))2 + 4ν1,1(ϕ)2

)1/2
ν0,0(ϕ)

.

According to Remark 2.4, it coincides with the one of Kϕ.

A.3 Link with a preexisting result

In this section, we refer to a formula for the expected length of crests given
in [7] (Proposition 11.4) and in [5] (Assertion 3), which is different from the
one of Propostion 5.3, although also based on an application of Rice formula.
We explain the reason of the difference between both formulas and why they
actually coincide in the separable case.
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The key point is that the authors of [7] and [5] compute the gradient vector
of Gk · uϕ by derivating it in the directions of the vector of the orthonormal
basis (uϕ, uϕ+π/2) instead of the ones of the canonical basis of R2.

Let us denote by R−ϕ the matrix of the rotation with angle −ϕ in R2. We
introduce the moments of the image of mesure F through R−ϕ, which we write
Fϕ.

∀(i, j) ∈ N2
0, mi,j(ϕ) =

∫
R2

cosi(θ) sinj(θ) dFϕ(θ)

=

∫
R2

cosi(θ − ϕ) cosj(θ − ϕ) dF (θ)

= E[(k · uθ)i(k · uθ+π/2)j ].

Note thatm2,0(ϕ) = v0,0(ϕ) and that the moments (mi,j(ϕ)) can be expressed as
polynomial functions in (cosϕ, sinϕ), with the coefficients depending linearly on
the moments (mi,j). For any t ∈ R2, we also write, for any t ∈ R2, ∇ϕ(G′k(t)·uϕ)
the gradient vector of the random field G′k ·uϕ at point t, computed by derivating
it in the directions of the basis (uϕ, uϕ+π/2). The following lemma expresses
the covariance matrix of this vector.

Lemma A.3

V[∇ϕ(G′k(0) · uϕ)] =

(
m4,0(ϕ) m3,1(ϕ)
m3,1(ϕ) m2,2(ϕ)

)
,

where m4,0(ϕ) = m4,0 cos4 ϕ+m0,4 sin4 ϕ+ 6m2,2 cos2 ϕ sin2 ϕ

+4m3,1 cos3 ϕ sinϕ+ 4m1,3 cosϕ sin3 ϕ,

m2,2(ϕ) = (m4,0 +m0,4) cos2 ϕ sin2 ϕ

+m2,2

(
(cos2 ϕ− sin2 ϕ)2 − 2 cos2 ϕ sin2 ϕ

)
+2(m1,3 +m3,1) cosϕ sinϕ(cos2 ϕ− sin2 ϕ),

m3,1(ϕ) = −m4,0 cos3 ϕ sinϕ+m3,1 cos2 ϕ(cos2 ϕ− 3 sin2 ϕ)

+3m2,2 cosϕ sinϕ(cos2 ϕ− sin2 ϕ)

+m1,3 sin2 ϕ(3 cos2 ϕ− sin2 ϕ) +m0,4 cosϕ sin3 ϕ.

Proof. We write C the covariance function of G′k · uϕ given by (12). The
covariance matrix of ∇ϕ(G′k(0) ·uϕ) is minus the Hessian matrix of C computed
by derivating twice C in the directions uϕ and uϕ+π/2.

The formula stated in [7] (Proposition 11.4) or in [5] (Assertion 3) is the
following.
For any ϕ ∈ [0, 2π],

E[l(k, Q, ϕ)] = H2(Q)
1

2π

(
γ2

m2,0(ϕ)

)1/2

E((1− γ1/γ2)1/2), (20)

with
m2,0(ϕ) = m20 cos2 ϕ+ 2m11 cosϕ sinϕ+m02 sin2 ϕ
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and γ1 and γ2 (γ1 ≤ γ2) are the eigenvalues of the matrix(
m4,0(ϕ) m3,1(ϕ)
m3,1(ϕ) m2,2(ϕ)

)
.

The equality V[∇ϕ(G′k(0) · uϕ)] = R−ϕV[G′′k(0)uϕ)]Rϕ holds since
∇ϕ(G′k(0) · uϕ) = R−ϕG

′′
k(0)uϕ. Therefore both covariance matrices have the

same eigenvalues and coherency index. Moreover, if k is separable, using a
trigonometric identity, we can express the trace of the above matrix as

M4

M2
m2,0(ϕ).

This allows to deduce Proposition 5.3 from Formula (20).

According to Point 1 in Lemma A.2, note that we can also write

E[R−ϕKϕ(R−ϕKϕ)T ] =
1

m2,0(ϕ)
V[∇ϕ(G′k(0) · uϕ)].

The vector R−ϕKϕ is simply vector Kϕ expressed in the basis (uϕ, uϕ + π/2).

A.4 Moments of two specific planar random wavevectors

Let k be a planar separable wavevector that we write k = ‖k‖ k̃ with ‖k‖ and k̃

independent and k̃ = (cos Θ, sin Θ). In the two following lemmas, we compute

the moments of k̃, i.e.

µj,k = E[(cos Θ)j (sin Θ)k],

for any non negative integers j and k, in two specific cases, namely the toy
model and the elementary model as introduced in Section 3.2.

Lemma A.4 If Θ has a probability density function given by

θ 7→ Cα| cos θ|α with Cα =
Γ(1 + α/2)

2
√
πΓ(1/2 + α/2)

.

for some nonnegative constant α, then the following formulas hold:

• µ0,0 = 1

• µj,k = 0 whenever j or k is odd

• µj,0 = Cα
Cα+j

= (α+1)(α+3)···(α+j−1)
(α+2)(α+4)···(α+j) for j even ≥ 2

• for any even integers j and k, µj,k =
∑k/2
i=0(−1)i

(
k/2
i

)
µj+2i,0.
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In particular, it yields the non-zero second and fourth-order moments of k̃:

µ2,0 =
α+ 1

α+ 2
; µ0,2 =

1

α+ 2
and hence E[k̃k̃T ] =

1

α+ 2

(
α+ 1 0

0 1

)
;

µ4,0 =
(α+ 1)(α+ 3)

(α+ 2)(α+ 4)
; µ0,4 =

3

(α+ 2)(α+ 4)
; µ2,2 =

α+ 1

(α+ 2)(α+ 4)
.

Proof. It is clear that µ0,0 = 1, µj,k = 0 whenever j or k is odd and that
µj,0 = Cα/Cα+j for any even integer j. Using the explicit value of Cα yields the
value of µj,0. Finally, for any even integers j and k, writing sin2 θ = 1− cos2 θ
yields the formula for µj,k.

Lemma A.5 If Θ is uniformly distributed on [−δ, δ] ∪ [π − δ, π + δ] for some
constant δ ∈ (0, π/2), then the following formulas hold:

• µ0,0 = 1,

• µj,k = 0 whenever j or k is odd,

• µ2,0 = 1
2 (1 + sinc(2δ)); µ0,2 = 1

2 (1− sinc(2δ)); µ2,2 = 1
8 (1− sinc(4δ)),

• µ4,0 = 1
8 (3 + 4sinc(2δ) + sinc(4δ)); µ0,4 = 1

8 (3− 4sinc(2δ) + sinc(4δ)),

where sinc(θ) = sin(θ)
θ for any θ 6= 0 . In particular, this implies

E[k̃k̃T ] =
1

2

(
1 + sinc(2δ) 0

0 1− sinc(2δ)

)
.

Proof. Symmetry arguments explain the vanishing moments, while the
non-zero ones can be evaluated by linearizing trigonometric functions.

A.5 Variations of the mean length of crests

Thanks to Proposition 5.3, we know that the mean length of a crest of direction
ϕ is given as a decreasing function of c(K̃ϕ). Recall that Formula (16) allows

us to write out c(K̃ϕ)2 as

c(K̃ϕ)2 =
1

ν0,0(ϕ)2

(
(ν2,0(ϕ)− ν0,2(ϕ))2 + 4ν1,1(ϕ)2

)
,

where the νi,j(ϕ)’s are defined by (14). By Lemma 5.2, the moments νi,j(ϕ)
are such that νi,j(ϕ) = 1

M2+i+j
vi,j(ϕ). We use (19) to express vi,j(ϕ) in terms
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of the moments of k denoted by mi,j . Since mi,j = Mi+j µi,j , Lemma 5.2 also
yields 

ν0,0(ϕ) = µ2,0 cos2 ϕ+ 2µ1,1 cosϕ sinϕ+ µ0,2 sin2 ϕ,

ν2,0(ϕ) = µ4,0 cos2 ϕ+ 2µ3,1 cosϕ sinϕ+ µ2,2 sin2 ϕ,

ν0,2(ϕ) = µ2,2 cos2 ϕ+ 2µ1,3 cosϕ sinϕ+ µ0,4 sin2 ϕ,

ν1,1(ϕ) = µ3,1 cos2 ϕ+ 2µ2,2 cosϕ sinϕ+ µ1,3 sin2 ϕ.

(21)

In the case where the moments µ1,1, µ1,3 and µ3,1 simultaneously vanish, which
is the case in our two favorite examples (see Lemmas A.4 and A.5), we like to
remark that there exist two polynomials of degree two, say P and Q, such that

∀ϕ ∈ [0, 2π], c(K̃ϕ)2 =
P (cos(2ϕ))

Q(cos(2ϕ))
.

Consequently, ϕ = 0 and ϕ = π/2 appear as stationary points of the π-periodic

map ϕ 7→ c(K̃ϕ)2, whose graph is symmetric with respect to π/2.

A.5.1 The toy model case

We assume that the direction of k is given by the toy model (see Example 1 in
Section 3.2). Using (21) and the expression for the µi,j ’s given by Lemma A.4,

we can compute c(K̃ϕ)2. Figure 1 shows the graph of ϕ 7→ c(K̃ϕ)2 for various

values of α. We observe that ϕ 7→ c(K̃ϕ)2 is minimal at ϕ = π/2, which is
substantiated by the next lemma.

Figure 1: Graph of ϕ 7→ c(K̃ϕ)2 for α = 1 (black), α = 2 (blue) and α = 3 (green).

Lemma A.6 The map ϕ 7→ c(K̃ϕ) admits a local minimum at ϕ = π/2.
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Proof. We will perform an asymptotic expansion of c(K̃π/2+ϕ)2 near ϕ = 0 in

order to show that ϕ 7→ c(K̃ϕ) admits a local minimum at π/2.
In the following lines, we write g(ϕ) = O(h(ϕ)) as ϕ tends to 0, if there

exists ϕ0 ∈ (0, 2π) and M > 0 such that

∀ϕ ∈ [0, 2π], |ϕ| < |ϕ0| ⇒ |g(ϕ)| ≤M |h(ϕ)|.

In particular, we write


cos(π/2 + ϕ) = −ϕ+

ϕ3

6
+O(ϕ4),

sin(π/2 + ϕ) = 1− ϕ2

2
+O(ϕ4).

From (21) and Lemma A.4, we get

ν0,0(π/2 + ϕ) = µ0,2 + (µ2,0 − µ0,2)ϕ2 +O(ϕ4)

=
1

α+ 2
(1 + αϕ2) +O(ϕ4)

ν2,0(π/2 + ϕ) = µ2,2 + (µ4,0 − µ2,2)ϕ2 +O(ϕ4)

=
α+ 1

(α+ 2)(α+ 4)
(1 + (α+ 2)ϕ2 +O(ϕ4)

ν0,2(π/2 + ϕ) = µ0,4 + (µ2,2 − µ0,4)ϕ2 +O(ϕ4)

=
1

(α+ 2)(α+ 4)
(3 + (α− 2)ϕ2) +O(ϕ4)

ν1,1(π/2 + ϕ) = 2µ2,2ϕ(1− 1

2
ϕ2) +O(ϕ4)

=
α+ 1

(α+ 2)(α+ 4)
ϕ(2− ϕ2) +O(ϕ4).

After some algebra, it gives

c(K̃π/2+ϕ)2 = (α− 2)2 + 24α(α+ 1)ϕ2 +O(ϕ4),

which clearly admits a minimum at ϕ = 0.

A.5.2 The elementary model case

We assume that the direction of k is given by the elementary model (see Example
2 in Section 3.2). Using (21) and the expression for the µi,j ’s given by Lemma

A.5, one can compute c(K̃ϕ)2. Figure 2 shows the graph of ϕ 7→ c(K̃ϕ)2 for
various values of δ. We again observe that it is minimal at ϕ = π/2.
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Figure 2: Graph of ϕ 7→ c(K̃ϕ)2 for δ = π/3 (black), δ = π/5 (blue) and δ = π/7 (green).
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