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Anisotropic random wave models

Anne Estrade∗ and Julie Fournier†

March 28, 2018

Abstract

Let d be an integer greater or equal to 2 and let k be a d-dimensional
random vector. We call random wave model with random wavevector k
any stationary random field defined on Rd with covariance function t ∈
Rd 7→ E[cos(k.t)]. The purpose of the present paper is to link properties
that concern the geometry and the anisotropy of the random wave with
the distribution of the random wavevector. For instance, when k almost
surely belongs to the unit sphere in R2 and the random wave model is
nothing but the anisotropic version of Berry’s planar waves, we prove that
the expected length of the nodal lines is decreasing as the anisotropy of
the random wavevector is increasing. Also, when k almost surely belongs
to the Airy surface in R3 and the associated random wave serves as a
model for the sea waves, we prove that the direction that maximises the
expected length of the static crests is not always orthogonal to what we
call favorite direction of the random wavevector.

Keywords: Gaussian field; random wave; nodal statistics; level set;
crossing theory; anisotropy

2010 Mathematics Subject Classification: primary 60G60; secondary
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1 Introduction

For many centuries, physicists have been using wave models defined on a multi-
dimensional space in various domains as different as acoustics, electronics, geo-
physics, oceanography or seismology. In order to take into account variability or
uncertainty, it is useful to consider random wave models. It is the exact purpose
of a pioneer exhaustive study by Longuet and Higgins [17] that was concerned
by sea waves modelized as a random moving surface. Another mathematical pi-
oneer study was raised by Berry in several papers, [8] or [9] for instance. These
seminal works opened a wide area of research in the last decades, either for
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statistical purposes ([4], [16], [1], [5], [7], [20]), or more recently for topologi-
cal purposes in link with number theory ([25], [13], [19]). Ten years ago, the
interest for nodal sets or level sets also met the theory of crossings developed
by Rice for one-dimensional stochastic processes fifty years before, yielding two
inspiring books by Adler and Taylor [2] and by Azäıs and Wschebor [6]. The
present paper is clearly inspired by all the above references but to the best of
our knowledge it is the first time that the different models are gathered in the
same work and are studied under the same focus, the influence of anisotropy.

A big demand for anisotropic models is nowadays observed, in particular
by practitioners in geostatistics, offshore engineering, heterogeneous material or
medical imaging (see for instance [24], [12], [3]), but also for more theoretical
studies dedicated to image synthesis and analysis, cosmology or arithmetic ([21],
[10], [22], [14]).

In the present paper, we aim at exploring the anisotropy of anisotropic ran-
dom waves that are defined on a d-dimensional space with d ≥ 1. We start
with a single random wave given by t ∈ Rd 7→ a cos(k · t+ η), whose directional
structure is given by a d-dimensional random wavevector k, random phase η is
uniformly distributed on [0, 2π] and independent of k, and amplitude a is kept
constant. Since our focus is only dedicated to anisotropy, the latter assump-
tion will remain all along the paper. We also study the stationary Gaussian
counterpart, i.e. a stationary Gaussian random field on Rd with the same co-
variance function t ∈ Rd 7→ aE[cos(k · t)]. Our purpose is to link the geometric
and anisotropic behaviour properties of the random wave with the distribution
of its random wavevector, in particular its moments of finite order and its di-
rectional statistics. In particular, considering Berry’s anisotropic planar waves,
we prove that the expected length of the nodal lines is a decreasing function
of the (properly quantified) anisotropy of the random wavevector. At the op-
posite, considering random sea waves, we prove that no general statement can
be established: the direction that maximises the expected length of the static
crests may be orthogonal to the favorite direction (properly defined) of the ran-
dom wavevector as it may not. We like to mention that when k is equal to Au
with A a matrix and u a random vector in Rd whose distribution is invariant
under rotations, the associated random wave has the same distribution as an
isotropic random wave deformed by the linear transformation AT . In that case,
the study of anisotropy, either in the spectral domain, or in the parameter do-
main, is equivalent. In the general case where no linear deformation is involved,
studing anisotropy in those two domains are two different approaches. The lat-
ter point of view is adopted in [3] for instance, whereas our paper definitively
belongs to the former type as did [11] or [24].

The paper is organised as follows. General facts are presented in Section 2, in
particular the key point of spectral representation. Another important point is
the link with partial differential equations that are solved by the random waves.
Section 3 deals with the study of planar waves through specific tools that are
used in directional statistical studies in dimension two, such as most probable
direction, favorite or principal directions. In the fourth section, we introduce
anisotropic versions of Berry’s random waves, which are anisotropic solutions of
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Helmholtz equation. We focus on the nodal ets, their Hausdorff measure and
their directional statistics. Section 5 is devoted to a model for sea waves, that
is to say a space-time model indexed by R2 × R. We study the mean length of
static crests from a directional point of view. All over the paper, two specific
distributions for the random wavevector in dimension two are examined. One is
called “elementary model”. It is described by a main direction and a bandwidth
that quantifies the anisotropy. We call the other one “toy model”. It is given
by a positive probability density function only depending on a single parameter
that carries out the whole quantified information on anisotropy. The technical
computations are detailed in the Appendix Section.

Notations.
Let d be a positive integer. For z ∈ Rd, zzT stands for the d × d matrix
(zizj)1≤i,j≤d, ||z|| for the Euclidean norm of z and z · z′ for the usual scalar
product of z with z′ ∈ Rd.
For k being a random vector in Rd, we respectively denote by E[k] and V[k] the
expectation (d-dimensional vector) of k and the variance (d× d matrix) of k.
For ϕ ∈ [0, 2π], uϕ denotes the vector (cosϕ, sinϕ) in R2.
We use N0 for the set {0, 1, 2, · · · } of all non-negative integers and for j =

(j1, · · · , jd) ∈ N0
d, we write |j| =

∑d
l=1 jl. Moreover, if λ ∈ Rd and if F is a

smooth map from Rd to R, we write

λj =

d∏
l=1

λjll and ∂jF =
∂|j|F

∂j1λ1 · · · ∂jdλd
.

For s any positive integer, Hs denotes the Hausdorff measure of dimension s.

2 General setting

2.1 Anisotropic elementary random wave

Let d be a positive integer. We consider a random multi-dimensional model of
elementary wave defined by,

∀t ∈ Rd, Xk(t) =
√

2 cos(k · t+ η), (1)

where k is a d-dimensional random vector called the random wavevector and
where the random phase η is uniformly distributed on [0, 2π].

The random field Xk is clearly not isotropic and the kind of anisotropy
depends on the law of k. As it will be stated in Proposition 2.1, isotropy occurs
if and only if k is isotropically distributed. If ||k|| is almost surely constant, we
write κ = ||k|| the wavenumber of Xk.

We will be particularly interested in examples where the random wavevector
k is supported by {λ ∈ Rd : P (λ) = 0}, the zero set of a multivariate polyno-
mial P .
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Example 1 (Toy model) A particular case with d = 2 is studied in [12].
The random wavevector is prescribed by k = (cos Θ, sin Θ) with Θ a random
variable with support in R/2πZ such that, for a fixed α ≥ 0, the density of Θ
with respect to Lebesgue measure on [0, 2π] is given by

θ 7→ Cα | cos θ|α, with Cα =
Γ(1 + α/2)

2
√
πΓ(1/2 + α/2)

, (2)

where Γ is the usual Gamma function. Parameter α is considered as an anisotropy
parameter. Indeed, taking α = 0, one gets the isotropic version of model
(1), whereas, at the opposite, the case α → +∞ corresponds with a totally
anisotropic version of model (1) where k is a.s. along the x-axis.

Example 2 (Elementary model) Another particular case with d = 2 is stud-
ied in [10] and [23]. The random wavevector is prescribed by k = (cos Θ, sin Θ)
with Θ a random variable uniformly distributed on [α0− δ, α0 + δ] with 0 ≤ δ ≤
π. Parameter α0 indicates the main direction whereas parameter δ quantifies
anisotropy. Actually, δ = 0 corresponds with a totally anisotropic model, δ ≈ 0
corresponds with a model that could be named narrow spectrum, and δ = π
corresponds with the isotropic model. If one wishes a symmetric model, one can
also consider Θ uniformly distributed on [α0− δ, α0 + δ]∪ [α0 +π− δ, α0 +π+ δ]
with 0 ≤ δ ≤ π/2.

Example 3 (Berry random wave) We assume that the wavevector k satisfies
||k|| = κ, a.s. for some constant κ > 0 and that it is not necessarily isotropically
distributed. The associated elementary wave is an anisotropic generalization of
Berry’s random wave model, an isotropic model that has originally been pre-
sented in [8] and intensively studied in the last years. Parameter κ is called the
wavenumber. This model is the purpose of Section 4.

Example 4 (Sea waves) We will also examine the case where the random
wavevector k is supported by the Airy surface in R3 (d = 3), namely {(x, y, z) ∈
R3 ; x2 + y2 − z4 = 0}. The associated elementary wave is related to the space-
time model used for the modelization of sea waves, assuming that the depth
of the sea is infinite (see [17] for the original idea, [4] or [6] for more recent
developments). Section 5 is devoted to the study of this model.

In the following proposition, we give some basic properties of the covariance
function of Xk.

Proposition 2.1 1. The random field Xk is centred and second-order sta-
tionary with covariance function

r(t) := Cov[Xk(0), Xk(t)] = E[cos(k · t)], t ∈ Rd. (3)

In particular, Var(Xk(0)) = 1.
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2. Let ks be the symmetrized random variable associated to k and let F be
its probability measure1. Then

r(t) = E[exp(iks · t)] =

∫
Rd

exp(iu · t) dF (u), (4)

which means that r is the characteristic function of the random variable
ks and that F is the spectral measure of Xk.
Moreover, Xk is second-order isotropic if and only if the law of ks is
invariant under rotations.

3. The covariance function r admits derivatives up to order m (m ∈ N0) if
and only if k admits moments of order m. In this case, for any j ∈ N0

d

such that |j| ≤ m, we have

∂jr(0) = 0 if |j| is odd ; ∂jr(0) = (−1)|j|/2 E[kj] if |j| is even.

In particular, r′′(0) = −E[kkT ].

2.2 Anisotropic Gaussian wave model

We are still given a random vector k in Rd and we now consider a Gaussian,
stationary and centred random field Gk with the same covariance function as
the elementary random wave Xk introduced in the previous section. Such a
field exists, consequently to Kolmogorov’s extension theorem (see [6] Sections
1.1 and 1.2 for instance).

Note that such a Gaussian field can be obtained as a limit by considering
independent and identically distributed versions of η and of k, denoted respec-
tively by (ηj)j∈N and by (kj)j∈N. According to the central limit theorem applied
to finite-dimensional distributions, the distribution of√ 2

N

N∑
j=1

cos(kj · t+ ηj)


t∈Rd

converges asN tends to∞ towards a Gaussian random field with the appropriate
covariance function.

The covariance function of Gk, being equal to the covariance function of Xk,
is given according to (4) in Proposition 2.1: r(t) =

∫
Rd exp(iu · t) dF (u), t ∈ Rd,

where F is the distribution of ks. From this, we deduce a spectral representation
of the field Gk.
Let WF be a complex Gaussian F -noise on Rd, i.e. a C-valued process defined
on the set B(Rd) of Borelians such that

1If Fk and F−k are respectively the probability measures of k and −k, then the sym-
metrized random variable associated with k is defined as the random variable with probability
measure F = 1

2
(Fk + F−k).
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• a.s. WF is a complex-valued measure on B(Rd),

• ∀A ∈ B(Rd), WF (A) is a complex-valued Gaussian variable with E[WF (A)] =
0 and E[WF (A)WF (A)] = F (A), where · denotes the complex conjuga-
tion,

• for any sequence (An)n of pairwise disjoint Borel sets, (WF (An))n are
independent random variables.

Moreover, we add the property that for any A ∈ B(Rd),

WF (A) = WF (−A).

Then, it is easy to check that the Gaussian stationary random field prescribed
by (∫

Rd
eit·u dWF (u)

)
t∈Rd

(5)

is real-valued, centred and that its covariance function is given by (4).

Reciprocally, if Y : Rd → R is a centred and stationary Gaussian random
field with unit variance, according to Bochner’s theorem, there exists a symmet-
ric probability measure on Rd, denoted by F , such that the covariance function
r of Y is given by (4). It follows that we can associate with Y a symmetric
random variable in Rd of probability measure F , denoted by kY and referred to
in the following as the random wavevector of Y .

2.3 Link with partial differential equation

We will show that both Xk and Gk satisfy a specific partial differential equation
if and only if the random wavevector k is supported by a specific hypersurface
of Rd.

Let P be an even d-multivariate polynomial. Then there exists a sequence
of real numbers (αj)j∈N0

d with only finitely many non-zero terms, such that

∀λ ∈ Rd, P (λ) =
∑

j∈N0
d; |j| even

αj λ
j. (6)

We associate with P the following differential operator:

LP (X) =
∑

j∈N0
d; |j| even

(−1)|j|/2αj ∂
jX,

Let us remark that the random field Xk defined by (1) is obviously almost surely
of class C∞.

Proposition 2.2 Let P be an even multivariate polynomial given by (6). Then
Xk almost surely satisfies the partial differential equation

∀t ∈ Rd, LP (X)(t) = 0 (7)

if and only if P (k) = 0 a.s.
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Proof. For any j ∈ N0
d such that |j| is even, we have ∂jXk(t) = (−1)|j|/2kj cos(k·

t + η). Hence, we get LP (Xk)(t) = P (k)Xk(t) and the proof follows immedi-
ately.

Applying Proposition 2.2 to the examples given at the beginning of the sec-
tion provides random anisotropic solutions of some famous partial differential
equations. Indeed, we recall that the Laplacian operator ∆ on Rd is defined by

∆ =
∑

1≤j≤d
∂2

∂t2j
. Then, the elementary random wave associated with Example

1 (case d = 2 and κ = 1) and Example 3 (any d and any κ) is an almost sure
solution of Helmholtz equation ∆X + κ2X = 0. In the same vein, the elemen-
tary random wave associated with Example 4 is an almost sure solution of the

partial differential equation ∂2

∂x2X + ∂2

∂y2X + ∂4

∂z4X = 0.

Let us now be concerned with Gk. We assume that the random wavevector k
admits moments of any order. Hence, the covariance function r of Gk is of class
C∞ and consequently there exists a version of Gk whose almost every realization
is of class C∞; it is given by representation (5) for instance. First, let us point
out that Gk satisfies Proposition 2.2 as well as Xk. Indeed, Gk is centred
and admits the same covariance function as Xk; therefore for any multivariate
polynomial P given by (6), for any t ∈ Rd, Var (LP (Gk)(t)) = Var (LP (Xk)(t)).
However, the following theorem is a more general result: it provides a sufficient
and necessary condition for any stationary Gaussian random field to satisfy
Equation (7).

Theorem 2.3 Let P be an even multivariate polynomial defined by (6) and let
Y be Gaussian random field defined on Rd that is centred, stationary, with unit
variance and almost surely of class C∞. The following properties are equivalent.

1. The Gaussian random field Y almost surely satisfies the partial differential
equation

∀t ∈ Rd, LP (Y )(t) = 0.

2. The Gaussian random field Y admits a spectral representation given by
(5), where F is a probability measure supported by {λ ∈ Rd : P (λ) = 0}
and WF is a complex Gaussian F -noise on Rd.

3. The random wavevector kY associated with Y almost surely satisfies P (kY ) =
0.

We insist on the fact that the above theorem provides all the Gaussian a.s. solu-
tions, isotropic or not, of the partial differential equation LP (Y ) = 0 (Helmholtz
equation in the case of Example 1). Moreover, the equation gives information
on the localization of the random variable k.

Proof. Items 2 and 3 in Theorem 2.3 are clearly equivalent as F is the distri-
bution of kY . Since Y is centred, so are all its derivatives and the stationary
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random field LP (Y ). Therefore, LP (Y ) is almost surely identically zero if and
only if its variance at each point is zero. But Var(LP (Y )(t)) can be expressed
as a linear combination of derivatives of the covariance function rY of Y . Hence
Y is an a.s. solution of the partial differential equation LP (Y ) = 0 if and only
if its covariance function rY satisfies∑

j,k∈N0
d; |j|,|k| even

(−1)(|j|+|k|)/2 αj αk ∂
(j+k)rY (0) = 0. (8)

On the other hand, as it is the covariance function of a stationary centred
field, rY satisfies Bochner’s Theorem: there exists a Radon finite measure F
on Rd such that rY (t) = F̂ (t), where F̂ denotes the Fourier transform, i.e.
F̂ (t) =

∫
Rd e

it·λ dF (λ). Then rY satisfies (8) if and only if

0 =

∫
Rd

( ∑
j,k∈N0

d; |j|,|k| even

(−1)|j|+|k| αj αk λ
j λk

)
dF (λ) =

∫
Rd
P (λ)2 dF (λ).

The above integral vanishes if and only if the measure F is supported by {λ ∈
Rd : P (λ) = 0}.

3 Remarkable directions in the planar case

We introduce some definitions related to planar models. One can see [18] or [15]
for more details in the domain of directional statistics.

3.1 Most probable and favorite directions

When Z is a two-dimensional random vector, one can write it out either using
Euclidean coordinates Z = (Z1, Z2) or, if Z 6= 0, a.s., using polar coordinates
Z = RuΘ, where uΘ is the vector (cos Θ, sin Θ). Hence, we introduce two
remarkable directions.

Definition 3.1 Let Z be a random vector in R2 such that Z 6= 0, a.s.
If the mode of the random variable Θ exists and is unique, we call it the most
probable direction of Z. If there exists a mode that is not unique, we define the
set of most probable directions of Z in R/2πZ as the set of all modes of Θ.

If Θ is a discrete random variable then (at least) one most probable direction
exists. If Θ is a continuous random variable with a probability density function
(p.d.f.) h admitting a maximum on R/2πZ (which is ensured if h is continuous),
the set of the most probable directions can be expressed as the direction(s) in
the set

Argmax
θ∈R/2πZ

h(θ).

Note that if the distribution of the random vector (R,Θ) admits a probability
density function (r, θ) 7→ f̃(r, θ) with respect to Lebesgue measure on R+ ×
R/2πZ, then for any θ ∈ R/2πZ, h(θ) =

∫
R+ f̃(r, θ) dr.
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Definition 3.2 We assume that the matrix E[ZZT ] does not belong to the set
{αI2, α ≥ 0}. Then the favorite direction of Z is defined as the only element in

Argmax
ϕ∈R/πZ

(
E[(Z · uϕ)2]

)
= Argmax

ϕ∈R/πZ

(
uϕ · E[ZZT ]uϕ

)
,

where uϕ = (cosϕ, sinϕ). Consequently, the favorite direction is nothing but
the direction in R/πZ of the eigensubspace of R2 associated with the largest
eigenvalue of the symmetric positive matrix E[ZZT ].

If E[ZZT ] = αI2 with α ≥ 0, then Argmax
ϕ∈R/πZ

(
E[(Z · uϕ)2]

)
= R/πZ.

In some cases, such as in the following Examples 1, 3, 5 and 6, the most probable
direction(s) modulo π coincides with the favorite direction(s). Nevertheless, in
the general case, they don’t.

Examples Let Z = Ruθ0 a two-dimensional random vector such that R ∈
(0,+∞), a.s. and Θ ∈ [0, 2π), a.s.

1. If Θ almost surely takes a fixed value θ0 ∈ [0, 2π), that is Z = Ruθ0 ,
then the most probable direction of Z is θ0. On the other hand, Z · uϕ =
R cos(θ0 − ϕ) and hence the favorite direction of Z is θ0 modulo π.

2. If (R,Θ) is distributed as FR ⊗ 1
2 (δ0 + δπ/2) on (0,+∞) × [0, 2π), where

δ stands for the Dirac distribution, then the most probable directions are
0 and π/2 modulo 2π whereas there is no favorite direction. In the same
vein, with the distribution FR⊗ 1

2 (δ0 +δπ/4), the most probable directions
are 0 and π/4 modulo 2π whereas the favorite direction is π/8 modulo π.

3. If Θ and R are independent and if Θ is uniformly distributed on [0, 2π],
then Z admits R/2πZ as its set of most probable directions. Moreover, Z
is centred and E[ZZT ] = 1

2E[R2]I2, thus the set of favorite directions of
Z is R/πZ.

4. If Θ andR are independent and if Θ is uniformly distributed on [α0−δ, α0+
δ] (see Example 2 in Section 2) , then the set of most probable directions is
the whole interval [α0−δ, α0 +δ], whereas the favorite direction is reduced
to the value α0 modulo π.

5. If Θ admits a p.d.f. given by (2) (see Example 1 in Section 2), for a
given α > 0, and if Θ and R are independent, then the most probable
direction of Z is clearly 0. On the other hand, Z is centred and V[Z] =

E[R2]
α+2

(
α+ 1 0

0 1

)
. Hence, the favorite direction of Z is 0 as well. We refer

to Lemma A.1 in Appendix section for the detailed computation of the
moments.

6. Let Z be a 2-dimensional centred Gaussian vector with a variance matrix
V[Z] that does not belong to {αI2, α ∈ R}. Then, the most probable
direction of Z is Argminϕ

(
uϕ · V[Z]−1uϕ

)
= Argmaxϕ (uϕ · V[Z]uϕ), thus

it is equal modulo π to the favorite direction of Z.
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3.2 Principal direction

We now introduce a remarkable direction for real-valued planar random fields.
Let X : R2 → R be a stationary random field that is a.s. differentiable and
satisfies E[||X ′(0)||2] < +∞. For ϕ a direction in R/πZ, we denote by Xϕ =
(X(xuϕ))x∈R the one-dimensional stationary process obtained by restricting the
X to the line Ruϕ.

Definition 3.3 The principal direction of X is defined as

Argmax
ϕ∈R/πZ

(m2(ϕ)) , where m2(ϕ) = E[(Xϕ)′(0)2],

understood as a certain value if the maximum is unique and as a set of values
if it is not.

The latter notion has been introduced by Longuet-Higgins in [17] in his study
of a planar random wave model for sea waves. Note that m2(ϕ) is nothing but
the second spectral moment of Xϕ and that restricting X to a certain line of
the plane or to any parallel line does not change the law of the obtained process
because X is stationnary. We have also,

m2(ϕ) = E[(Xϕ)′(0)2] = E[(X ′(0) · uϕ)2] = E[(X ′(t) · uϕ)2],

for any t ∈ R2 by stationarity. It yields the following remark.

Remark 3.4 For any t ∈ R2, the principal direction of X coincides with the
favorite direction of X ′(t).

3.3 Random planar waves

Let k be a random vector in R2 and let us consider the associated planar single
random wave Xk and its Gaussian counterpart Gk as defined in Section 2. We
now study these random fields from a directional point of view.

Proposition 3.5 Let k be a random vector in R2 and let Y : R2 → R be a
stationary and centred random field with covariance function given by (3). We
assume that E[kkT ] /∈ {αI2, α ∈ R+}.
Then, the next three remarkable directions in R/πZ coincide

• the favorite direction of k

• the principal direction of Y

• the favorite direction of Y ′(t) for any t ∈ R2.

They are given by the direction of the eigensubspace of R2 associated with the
largest eigenvalue of matrix E[kkT ].

10



Proof. It is enough to prove that the principal direction of Y is the favorite
direction of k and then to apply Remark 3.4.
Let ϕ be fixed, the covariance function of the univariate process along a line of
direction ϕ is given for any x ∈ R by rϕ(x) = r(xuϕ) = E[cos(xk.uϕ)]. Hence
m2(ϕ) = −r′′ϕ(0) = E[(k.uϕ)2], which clearly yields the equality between the
principal direction of Xk and the favorite direction of k.

We now turn to the directional study of the level sets of the Gaussian planar
random waves Gk E[k. We assume that kT ] /∈ {αI2, α ∈ R+} and we fix a ∈ R.
The level set

G−1
k (a) = {t ∈ R2 : Gk(t) = a}

is a finite union of curves whose direction at point t ∈ G−1
k (a) is orthogonal

to the vector G′k(t). Applying Proposition 3.5 yields the next statement, that
sounds physically intuitive.

Proposition 3.6 Let a ∈ R. Let τa be a two-dimensional vector field defined
on the level set G−1

k (a) such that, at any point t, τa(t) is tangent to G−1
k (a) at

t. Then, for any t ∈ G−1
k (a), the favorite direction of τa(t) is orthogonal to the

favorite direction of k.

Let us mention that the above proposition still holds in dimension d > 2
once the favorite direction of a d-dimensional random vector is defined as the
direction of the eigenspace associated with the largest eigenvalue of V[Z].

4 Berry’s anisotropic random waves

In this section, we focus on Example 3 of Section 2, i.e. on the case where the
random wavevector k is such that, for some κ > 0,

κ−1k ∈ Sd−1 a.s.

As previously, we consider the (unique in distribution) associated stationary
centred Gaussian random field Gk on Rd whose covariance function r is given
by (3). Since ||k|| is a.s. bounded, it is clear that Gk is a.s. smooth then,
rephrasing Theorem 2.3, we get that Gk is the generic Gaussian solution of
Helmholtz equation

∆Y + κ2Y = 0.

Equivalently, Gk is an eigenfunction of the operator −∆, for the eigenvalue κ2.
Therefore, extending the definition introduced by Berry in [8], we refer to Gk

as a Berry’s anisotropic wave with random wavenumber κ.
Applying the appropriate change of variables t 7→ κt yields the scaling prop-

erty that (Gk(t))t∈Rd and (Gκ−1k(κt))t∈Rd have the same distribution, where

we recall that the random vector κ−1k takes its values in Sd−1. We also remark
that, if the distribution of κ−1ks admits a density f̃ with respect to the surface
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measure σ on Sd−1, we can deduce from (4) that the covariance function of Gk

is given by

r(t) =

∫
Sd−1

eiκu·tf̃(u) dσ(u).

4.1 Expected measure of level sets

We are now interested in the random level sets: for any a ∈ R,

G−1
k (a) = {t ∈ Rd /Gk(t) = a},

which has Hausdorff dimension d − 1 a.s.. If a = 0, this is exactly the nodal
set of Gk and more precisely in the case d = 2, it is the nodal line of a Berry’s
anisotropic planar wave.

Let Q be a compact set in Rd with non empty interior and let a ∈ R. We
focus on the (d − 1)-dimensional Hausdorff measure of the a-level set of Gk

restricted to Q, namely

`(a,k, Q) = Hd−1

(
G−1

k (a) ∩Q
)

= Hd−1 ({t ∈ Q/Gk(t) = a}) .

Proposition 4.1 Let κ > 0 and assume that k is a random vector in Rd such
that k̃ := κ−1k ∈ Sd−1 a.s.
Let Φd stand for the standard Gaussian probability density function on Rd .
Then,

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
2π

κ

∫
Rd

(E[k̃k̃T ]x · x)1/2Φd(x) dx. (9)

Proof. Kac-Rice formula (see [6] Theorem 6.8 for instance) yields

E[`(a,k, Q)] =

∫
Q

E[‖ G′k(t) ‖ |Gk(t) = a] pGk(t)(a) dt,

where pGk(t), the probability density function of Gk(t), is actually given by the
standard Gaussian distribution. Using the stationarity of Gk and the fact that
for a fixed point t, Gk(t) and G′k(t) are independent random variables, we have

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
2π

E[‖ G′k(0) ‖].

In order to conclude, it only remains to state that ‖ G′k(0) ‖ is the Eu-
clidean norm of a d-dimensional centred Gaussian vector with variance matrix
−r′′(0) = E[kkT ] = κ2E[k̃k̃T ].

We remark that the same proof (except last equality) can be applied to any ran-
dom wavevector k with finite moments, even if ||k|| is not constant. It yields the

12



next identity that is valid when dropping the condition k̃ := κ−1k ∈ Sd−1 a.s.
in Proposition 4.1,

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
2π

∫
Rd

(E[kkT ]x · x)1/2Φd(x) dx.

Let us come back to Berry’s random waves. In the isotropic case, that is to say
when k̃ is uniformly distributed on Sd−1, E[k̃k̃T ] = V[k̃] = (1/d) Id. Hence,

E[`(a,k, Q)] = Hd(Q)
e−a

2/2

√
2πd

κ

∫
Rd
‖ x ‖ Φd(x) dx,

where the above integral is the mean of a χ-distributed random variable with d

degrees of freedom and is known to be equal to
√

2 Γ((d+1)/2)
Γ(d/2) .

4.2 Expected length of level curves

In the planar case, i.e. d = 2, the level sets G−1
k (a) are one-dimensional and

Formula (9) can be made much more precise. In particular, the following propo-
sition states that the level curves mean length is decreasing as anisotropy is
increasing.

Proposition 4.2 Let k be a random vector in R2 such that k = κ k̃ with κ a
positive constant and k̃ ∈ S1 a.s. Let us denote by c(k̃) the difference between

the eigenvalues of E[k̃k̃T ] (0 ≤ c(k̃) ≤ 1). Let E be the elliptic integral given by

E(x) =
∫ π/2

0
(1− x2 sin2 θ)1/2dθ, for x ∈ [0, 1]. Then,

E[`(a,k, Q)] = H2(Q)
e−a

2/2

π
√

2
κF
(
c(k̃)

)
,

where the map F : c ∈ [0, 1] 7→ (1 + c)1/2 E
((

2c
1+c

)1/2)
is strictly decreasing.

Remark 4.3 In the isotropic case, c(k̃) = 0 and hence we recover the following
result concerning the nodal line of the isotropic Berry’s planar wave (see [8]):
E[`(0,k, Q)] = H2(Q) κ

π
√

2
E(0) = H2(Q) κ

2
√

2
.

Remark 4.4 In directional statistics, it is usual to introduce a parameter termed
coherency index and defined as the ratio between the difference of eigenvalues
and the sum of eigenvalues of a certain positive symmetric matrix M , see [18].
This index is performed in [23] (see also [12]) with M given by the so-named
structure tensor in order to quantify the anisotropy of an anisotropic Gaus-
sian planar field. In our context, we like to remark that the trace of matrix
M = E[k̃k̃T ] is equal to one, since ||k̃|| = 1, a.s.. Parameter c(k̃) actually coin-
cides with the coherency index of our model and hence quantifies its anisotropy.
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Proof. We use Proposition 4.1 in the case d = 2. For computing the integral in
the right-hand side of (9), we use the next well known fact, that can be proven
with simple algebra.
If M is a symmetric definite positive matrix with eigenvalues γ− and γ+ (0 ≤
γ− ≤ γ+ and γ+ > 0), then∫

R2

(Mx · x)1/2Φ2(x) dx =

(
2γ+

π

)1/2

E
(

(1− γ−/γ+)1/2
)
. (10)

In our case, M = E[k̃k̃T ] and γ− + γ+ = 1. Hence, 2γ+ = 1 + c and
1− γ−/γ+ = 2c

1+c .
The proof of the decreasing of mapping F is postponed to the Appendix section,
see Lemma A.2.

We end the section applying Proposition 4.2 to our two favorite examples.

Example 1 (Toy model) Take k̃ distributed on S1 with probability den-
sity function given by (2) for some positive α (see Example 1 Section 2). The

moments of k̃ are computed in the Appendix section, Lemma A.1. In particu-

lar, it holds E[k̃k̃T ] = 1
α+2

(
α+ 1 0

0 1

)
. Consequently, c(k̃) = α

α+2 , which is an

increasing function of parameter α. Thus, the more anisotropic the model is,
the smaller the expected length of level sets is.

Example 2 (Elementary model) We choose the random wavevector k = κ k̃

with k̃ uniformly distributed on [α0−δ, α0 +δ]∪ [α0 +π−δ, α0 +π+δ] for some
0 < δ ≤ π/2, see Example 2 of Section 2. In order to simplify the computation,

let us assume that α0 = 0. In that case, E[k̃k̃T ] = 1
2

(
1 + sin(2δ)

2δ 0

0 1− sin(2δ)
2δ

)
and hence c(k̃) = sin(2δ)

2δ , which is decreasing on [0, π/2]. Again, the mean length
of level sets is decreasing with anisotropy, i.e. as δ is growing.

5 Gaussian sea waves

In this section, we now concentrate on Example 4 of Section 2 that considers
the case where the random wavevector is 3-dimensional and a.s. belongs to Airy
surface, i.e.

k ∈ Λ = {(λ1, λ2, λ3) ∈ R3 ; (λ1)2 + (λ2)2 = (λ3)4} a.s.

Then, following Proposition (2.1), the associated stationary Gaussian field Gk

admits as covariance function

r(t) =

∫
Λ

cos(t · λ) dF (λ) , t ∈ R3,

14



where F is the probability distribution of k.
The field Gk coincides with the spatio-temporal Gaussian random fields that are
used for the modelization of sea waves [17, 4, 6]. Indeed, for (x, y, s) ∈ R2 × R,
Gk(x, y, s) can be seen as the algebraic height of a wave at point (x, y) and time
s.

We use the following parametrization of Λ,

(θ, z) ∈ [0, 2π)× R 7→ (z2 cos θ, z2 sin θ, z),

which provides a bijection φ from [0, 2π)×R\{0} onto Λ\{(0, 0, 0)}. Performing
the appropriate change of variables yields

r(x, y, s) =

∫
(0,2π)×R

cos(xz2 cos θ + yz2 sin θ + sz) dF̃ (θ, z),

where F̃ is the image of measure F by the map φ−1. When k admits f as
probability density function with respect to the surface measure on Λ, we get

r(x, y, s) =

∫
(0,2π)×R

cos(xz2 cos θ + yz2 sin θ + sz)f̃(θ, z) dθdz,

where the map f̃ is given by

f̃(θ, z) = f(z2 cos θ, z2 sin θ, z) z2(1 + 4z2)1/2.

Following the literature, f̃ is called directional power spectrum of Gk (see [4]
and [6] Chapter 11). Experimental directional power spectra are exhibited in
[4], derived from sea data provided by Ifremer.

In order to avoid heavy notations, from now on we assume that the random
wavevector k is symmetrically distributed. Hence, until the end of the present
section we deal with the following covariance function

r(x, y, s) =

∫
Λ

ei((x,y,s)·λ) dF (λ),

where F is a probability measure on Λ satisfying F (−A) = F (A) for any Bore-
lian set A ⊂ Λ. In other words,

r(x, y, s) =

∫
(0,2π)×R

ei(xz
2 cos θ+yz2 sin θ+sz) dF̃ (θ, z)

with F̃ a probability measure on R/2πZ × R \ {0} that is invariant under the
mapping (θ, z) 7→ (θ + π,−z). If k is not symmetrically distributed, the key to
get the above expressions is to use the symmetrized probability measure of k
instead of its probability measure.
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Let us fix time s = s0 and look at the random field defined on R2,

Zk(x, y) = Gk(x, y, s0) (x, y) ∈ R2,

as a picture of the sea height at time s0. It is a two-dimensional stationary
centred Gaussian random field, whose covariance function is given by

Γ(x, y) = r(x, y, 0) =

∫
(0,2π)×R

ei(xz
2 cos θ+yz2 sin θ) dF̃ (θ, z).

Actually, the random wavevector associated with Zk is nothing but the projec-
tion of the Λ-valued random wavevector k onto the first two coordinates. We
call it π(k) in what follows. We will also need the spectral moments of Zk,
namely for any integers j and k in N0

mj,k := (−i)j+k ∂(j,k)Γ(0, 0)

=

∫
(0,2π)×R

(z2 cos θ)j(z2 sin θ)k dF̃ (θ, z). (11)

5.1 Mean length of static crests

We are now interested in the (static) crest in direction ϕ ∈ R/πZ. More pre-
cisely, we introduce the random set

{(x, y) ∈ R2 ; Z ′k(x, y) · uϕ = 0},

which contains all points (x, y) in R2 such that the gradient of Zk at point
(x, y) is orthogonal to direction ϕ. One can also say that the derivative of Zk in
direction ϕ at those points is zero. Hence, the crest in direction ϕ is a special
case of a specular points set as defined in [17]. Its Hausdorff dimension is clearly
equal to one and one can compute its length within a compact domain Q ⊂ R2

such that H1(Q) > 0,

l(k, Q, ϕ) := H1 ({(x, y) ∈ Q ; Z ′k(x, y) · uϕ = 0}) .

Using the same arguments as for the proof of Proposition 4.1 and Formula (10),
we get the following result that is also stated in [6] (Proposition 11.4) or in [4]
(Assertion 3).

E[l(k, Q, ϕ)] = H2(Q)
1

π

(
γ+(ϕ)

v(ϕ)

)1/2

E
(
(1− γ−(ϕ)/γ+(ϕ))1/2

)
, (12)

where v(ϕ) = Var(Z ′k(0)·uϕ) and γ−(ϕ) ≤ γ+(ϕ) are the eigenvalues of the vari-
ance matrix V[Z ′′k(0)uϕ]. The expressions for these quantities in terms of the
spectral moments mj,k of Zk are recalled in the Appendix section, see Lemma
A.3.
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The end of this section is dedicated at showing that the direction that max-
imises the expected crest length may be orthogonal to the most probable direc-
tion of the wavevector π(k), as it may not (in the case where such directions
exist). It is a clear consequence of (12), which depends on both the second order
and the fourth order moments of k, while the most probable direction depends
on the mode of k. Nevertheless, a rule of thumb is suggested in [17] or in [4]
for instance, claiming that the direction [that maximises the expected length of
crests] is orthogonal to the direction for the maximum integral of the spectrum,
i.e. is the most probable direction for the waves. In this statement, the “most
probable direction for the waves” has to be understood as the most probable
direction of the random wavevector π(k), as defined in Section 3.1.

Example 5.1 (Elementary wave) We take a random wavevector k with
values in Λ a.s. and with a deterministic orientation. Precisely, the distribution
of k is prescribed on [0, 2π)×R by F̃ = 1

2 (δα0
+δα0+π)⊗h, where δα0

stands for
the Dirac measure at α0 ∈ [0, π) and with h any symmetric probability measure
on R \ {0}.
On the one hand, the most probable direction of π(k) is clearly α0 modulo π.
On the other hand, the spectral moments of Zk are easy to compute from (11).
In the simplest case where α0 = 0, we get that m2,0 = M2 and m4,0 = M4 with
Mk :=

∫
R
z2k dh(z), and that all the other moments up to order 4 are vanishing.

Hence, following Lemma A.3, v(ϕ) = M2 cos2 ϕ and

V[Z ′′k(0)uϕ] = M4 cos2 ϕ

(
cos2 ϕ cosϕ sinϕ

cosϕ sinϕ sin2 ϕ

)
.

Hence γ−(ϕ) = 0 and γ+(ϕ) = M4 cos2 ϕ, and Formula (12) allows us to state
that the expected length of the crests of Zk in direction ϕ does not depend on ϕ.
Therefore, for this model, no link can be established between the direction that
maximises the expected length of crests and the most probable direction of π(k).

Example 5.2 (Counter-example) We now take a random vector k whose

distribution is prescribed on [0, 2π) × R by F̃ =
(

1
4

∑3
j=0 dδjπ/2

)
⊗ h, with h

any symmetric probability measure on R \ {0}. Then, the set of most probable
directions of k is {jπ/2 : j = 0, 1, 2, 3}.
Computing the spectral moments of Zk from (11), we get m1,1 = m2,2 = m3,1 =
0 whereas m2,0 = m0,2 = M2

2 and m4,0 = m0,4 = M4

2 , where we have introduced
Mk :=

∫
R z

2k dh(z). Consequently, using Lemma A.3, for any ϕ ∈ [0, 2π],

v(ϕ) = Var(Z ′k(0) · uϕ) = M2

2 and

V[Z ′′k(0)uϕ] =
M4

2

(
cos4 ϕ+ sin4 ϕ cosϕ sinϕ(sin2 ϕ− cos2 ϕ)

cosϕ sinϕ(sin2 ϕ− cos2 ϕ) 2 cos2 ϕ sin2 ϕ

)
.

The eigenvalues of the later matrix being M4

4 (1 ± | cos(2ϕ)|), we apply (12) to
get the expected length of the crests of Zk in direction ϕ. Up to a positive
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multiplicative constant that does not depend on ϕ, E[l(k, Q, ϕ)] is equal to

(
1 + | cos(2ϕ)|

)1/2
ε
(( 2 | cos(2ϕ)|

1 + | cos(2ϕ)|
)1/2)

= F(| cos(2ϕ)|),

where the function F is defined in Proposition 4.2. Since F is strictly decreasing
on [0, 1] (see Lemma A.2), the mean length of crests is maximal when cos(2ϕ) =
0 , i.e. for ϕ = π/4 or 3π/4 modulo π. These directions are not orthogonal to
the most probable directions of π(k).
We also like to mention that any other distribution of the wavevector could
serve as a counter-example, as soon as it is invariant by the transformation
θ 7→ π/2 − θ. Indeed, this invariance yields the same values of the spectral
moments.

5.2 Mean length of static crests with the toy model

We choose as a particular Gaussian wave the one whose directional power spec-
trum f̃ is given by

f̃(θ, z) = Cα | cos θ|α h(z), (13)

where α is a positive real number (see Equation (2)) and h is an even probability
density function on R. As already mentioned, the most probable direction of
π(k) is 0 in that case.

The spectral moments (see (11)) of this particular Gaussian wave are given,
for any j, k in N0, by

mj,k =
( ∫

R
z2j+2k h(z) dz

) (
Cα

∫
(0,2π)

(cos θ)j (sin θ)k | cos θ|α dθ

)
:= Mj+k µj,k.

The first integral Mj+k equals the moment of order 2j + 2k of h. Note that it
does not contain any information on the anisotropy of the model. The second
integral, named as µj,k, is computed in Lemma A.1 in Appendix section.

Hence, the expected length of crests in a given direction ϕ can be evaluated
through Formula (12) applied to this specific model. An asymptotic expansion
of ϕ 7→ E[`(k, Q, ϕ)] near ϕ = π/2 is performed in Lemma A.4. It shows that
the expected length of crests admits a local maximum at ϕ = π/2, which is
precisely orthogonal to the most probable direction of π(k) and to its favorite
direction as well (see the fifth example in Section 3.1).
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A Appendix

A.1 Moments of a random wavevector given by the toy
model

We perform some computations related to our toy model given by Example 1 in
Section 2. We fix α ≥ 0 and we consider a two-dimensional random wavevector
k = (cos Θ, sin Θ), with Θ that takes value in [0, 2π] with a probability density
function given by

θ 7→ Cα| cos θ|α with Cα =
Γ(1 + α/2)

2
√
πΓ(1/2 + α/2)

.

Lemma A.1 For any non negative integers j and k, let µj,k be the (j, k)-
moment of k, i.e.

µj,k = E[(cos Θ)j (sin Θ)k] = Cα

∫
[0,2π]

(cos θ)j(sin θ)k | cos θ|α dθ.

Then

• µ0,0 = 1

• µj,k = 0 whenever j or k is odd

• µj,0 = Cα
Cα+j

= (α+1)(α+3)···(α+j−1)
(α+2)(α+4)···(α+j) for j even ≥ 2

• for any even integers j and k, µj,k =
∑k/2
i=0(−1)i

(
k/2
i

)
µj+2i,0.

In particular, it yields the non-zero second and fourth order moments of k:

µ2,0 =
α+ 1

α+ 2
; µ0,2 =

1

α+ 2
and hence E[kkT ] =

1

α+ 2

(
α+ 1 0

0 1

)
;

µ4,0 =
(α+ 1)(α+ 3)

(α+ 2)(α+ 4)
; µ0,4 =

3

(α+ 2)(α+ 4)
; µ2,2 =

α+ 1

(α+ 2)(α+ 4)
.

Proof. It is clear that µ0,0 = 1, µj,k = 0 whenever j or k is odd and that
µj,0 = Cα/Cα+j for any even integer j. Using the explicit value of Cα yields the
value of µj,0. Finally, for any even integers j and k, writing sin2 θ = 1− cos2 θ
yields the formula for µj,k.

A.2 Variations of map F

Lemma A.2 The map F : c 7→ (1+c)1/2 E
((

2c
1+c

)1/2)
is strictly decreasing on

[0, 1].
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Proof. Recall that E(k) =
∫ π/2

0
(1− k2 sin2 θ)1/2 dθ for k ∈ [0, 1]. Then, for any

k ∈ [0, 1), E ′(k) = −k
∫ π/2

0
sin2 θ

(1−k2 sin2 θ)1/2
dθ. Therefore, for any c ∈ [0, 1),

F ′(c) =
1

2
(1 + c)−1/2E

(( 2c

1 + c

)1/2)
+ (1 + c)1/2 (2c)−1/2

(1 + c)3/2
E ′
(( 2c

1 + c

)1/2)
=

1

2
(1 + c)−1/2

∫ π/2

0

[
(1− 2c

1 + c
sin2 θ)1/2 −

2
1+c sin2 θ

(1− 2c
1+c sin2 θ)1/2

]
dθ

=
1

2
(1 + c)−1/2

∫ π/2

0

cos(2θ)

(1− 2c
1+c sin2 θ)1/2

dθ.

It remains to show that the above integral, which we call J(k) with k = ( 2c
1+c )

1/2,

is negative. Splitting the integral J(k) :=
∫ π/2

0
cos(2θ)

(1−k2 sin2 θ)1/2
dθ into two parts,

on [0, π/4] and on [π/4, π/2], and performing the change of variables θ′ = π/2−θ
within the second part, we get

J(k) =

∫ π/4

0

cos(2θ)

[
1

(1− k2 sin2 θ)1/2
− 1

(1− k2 cos2 θ)1/2

]
dθ, (14)

which is negative since cos θ > sin θ for θ ∈ (0, π/4).

A.3 Second moments of Z ′(0) · uϕ and of Z ′′(0)uϕ

Let Z be a two-dimensional stationary Gaussian field that is centred and that
admits a spectral density f on R2. We assume that Z admits spectral moments
of all orders and we denote them by (mj,k)(j,k)∈N2

0
, i.e.

mj,k =

∫
R2

(λ1)j (λ2)k f(λ) dλ.

The following statements are borrowed from [4] page 412. Recall that for any
ϕ ∈ [0, 2π], uϕ = (cosϕ, sinϕ).

Lemma A.3 For any ϕ ∈ [0, 2π], we have

v(ϕ) = Var
(
Z ′(0) · uϕ

)
= m2,0 cos2 ϕ+ 2m1,1 cosϕ sinϕ+m0,2 sin2 ϕ

and

V[Z ′′(0)uϕ] =

(
a22(ϕ) a23(ϕ)
a23(ϕ) a33(ϕ)

)

20



where

a22(ϕ) = m4,0 cos4 ϕ+m0,4 sin4 ϕ+ 6m2,2 cos2 ϕ sin2 ϕ

+4m3,1 cos3 ϕ sinϕ+ 4m1,3 cosϕ sin3 ϕ,

a33(ϕ) = (m4,0 +m0,4) cos2 ϕ sin2 ϕ+m2,2

(
(cos2 ϕ− sin2 ϕ)2 − 2 cos2 ϕ sin2 ϕ

)
+2(m1,3 +m3,1) cosϕ sinϕ(cos2 ϕ− sin2 ϕ),

a23(ϕ) = −m4,0 cos3 ϕ sinϕ+m3,1 cos2 ϕ(cos2 ϕ− 3 sin2 ϕ) + 3m2,2 cosϕ sinϕ(cos2 ϕ− sin2 ϕ)

+m1,3 sin2 ϕ(3 cos2 ϕ− sin2 ϕ) +m0,4 cosϕ sin3 ϕ.

Moreover the eigenvalues γ+(ϕ) and γ−(ϕ) of matrix V[Z ′′(0)uϕ] are equal to

γ±(ϕ) =
1

2

(
T (ϕ)±

√
∆(ϕ)

)
,

where T (ϕ) = Trace(V[Z ′′(0)uϕ]) = a22(ϕ) + a33(ϕ) and ∆(ϕ) = (a22(ϕ) −
a33(ϕ))2 + 4a23(ϕ)2.

A.4 Length of crests with the toy model

Considering Formula (12) prescribing the expected length of crests in a given
direction and a given domain, we focus on the case where the direction of k is
given by the toy model (see Example 1 in Section 2). As ϕ tends to 0, we write
g(ϕ) = O(h(ϕ)) if there exists ϕ0 ∈ (0, 2π) and M > 0 such that

∀ϕ ∈ [0, 2π], |ϕ| < |ϕ0| ⇒ |g(ϕ)| ≤M |h(ϕ)|.

Lemma A.4 Let Q be a compact set in R2 and let k be a random wavevector
in R2 prescribed by its directional spectral density f̃(θ, z) given by (13) for a
fixed α > 0.
Let f(ϕ) = E[`(k, Q, π/2 + ϕ)] where E[`(k, Q, ϕ)] is given by (12). Then, as ϕ
tends to 0,

f(ϕ) = f(0)−Kϕ2 +O(ϕ4), with K > 0.

Proof. From (12), we get

f(ϕ) =

(
γ+(π/2 + ϕ)

v(π/2 + ϕ)

)1/2

E
((

1− γ−(π/2 + ϕ)

γ+(π/2 + ϕ)

)1/2)
,

where γ−(ϕ), γ+(ϕ) and v(ϕ) are given in Lemma A.3. Moreover, the spectral
moments mj,k are prescribed by (11) with µj,k given by Lemma A.1.

Since cos(π/2 +ϕ) = −ϕ+ ϕ3

6 +O(ϕ4) and sin(π/2 +ϕ) = 1− ϕ2

2 +O(ϕ4), we
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get

v(π/2 + ϕ) = µ20 sin2(ϕ) + µ02 cos2(ϕ) = µ02 + (µ20 − µ02)ϕ2 +O(ϕ4)

=
1

α+ 2
(1 + αϕ2) +O(ϕ4)

a22(π/2 + ϕ) = µ40 sin4(ϕ) + µ04 cos4(ϕ) + 6m22 sin2(ϕ) cos2(ϕ)

= µ04 + 2(3µ22 − µ04)ϕ2 +O(ϕ4)

=
3

(α+ 2)(α+ 4)
(1 + 2αϕ2) +O(ϕ4)

a33(π/2 + ϕ) = (µ40 + µ04) sin2(ϕ) cos2(ϕ) + µ22((sin2(ϕ)− cos2(ϕ))2 − 2 sin2(ϕ) cos2(ϕ))

= µ22 + (µ40 + µ04 − 6µ22)ϕ2 +O(ϕ4)

=
1

(α+ 2)(α+ 4)
(α+ 1 + α(α− 2)ϕ2) +O(ϕ4)

a23(π/2 + ϕ) = µ40 sin3(ϕ) cos(ϕ)− 3µ22 sin(ϕ) cos(ϕ)(sin2(ϕ)− cos2(ϕ))− µ04 sin(ϕ) cos3(ϕ)

= (3µ22 − µ04)ϕ+ (µ40 +
5

3
µ04 − 8µ22)ϕ3 +O(ϕ4)

=
1

(α+ 2)(α+ 4)
[3αϕ+ α(α− 4)ϕ3] +O(ϕ4).

The eigenvalues γ±(π/2 + ϕ) are given by

γ±(π/2 + ϕ) =
1

2
(a22(π/2 + ϕ) + a33(π/2 + ϕ))±

√
∆(π/2 + ϕ),

with discriminant

∆(π/2 + ϕ) = a22(π/2 + ϕ)− a33(π/2 + ϕ))2 + 4 a2
23(π/2+ϕ)

=
1

(α+ 2)2(α+ 4)2
[(2− α)2 + 2α(α+ 4)2ϕ2] +O(ϕ4).

For α 6= 2, it yields the following expansions

√
∆(π/2 + ϕ) =

|2− α|
(α+ 2)(α+ 4)

(1 +
α(α+ 4)2

(2− α)2
ϕ2) +O(ϕ4)

γ−(π/2 + ϕ) =
min(3, α+ 1)

(α+ 2)(α+ 4)

(
1− α(α+ 4)

|α− 2|
ϕ2

)
+O(ϕ4),

γ+(π/2 + ϕ) =
max(3, α+ 1)

(α+ 2)(α+ 4)

(
1 +

α(α+ 4)

|α− 2|
ϕ2

)
+O(ϕ4).

The quantity k(π/2 + ϕ) :=
(
1 − γ−(π/2+ϕ)

γ+(π/2+ϕ)

)1/2 ∈ [0, 1] admits the following
expansion

k(π/2 + ϕ) = k0

(
1 +

mα(α+ 4)

(α− 2)2

)
ϕ2 +O(ϕ4),
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where m = min(3, α+1), M = max(3, α+1) and k0 =
(
1− m

M

)1/2
= ( |α−2|

M )1/2.

Introducing the derivating of the map E : k 7→
∫ π/2

0
(1− k2 sin2 θ)1/2 dθ, we get

E(k(π/2 + ϕ)) = E(k0) +
mα(α+ 4)

(α− 2)2
k0 E ′(k0)ϕ2 +O(ϕ4),

where E ′(k) = −k
∫ π/2

0
sin2 θ

(1−k2 sin2 θ)1/2
dθ and E ′(0) = 0.

It remains to expand
(γ+(π/2+ϕ)
v(π/2+ϕ)

)1/2
:

(γ+(π/2 + ϕ)

v(π/2 + ϕ)

)1/2
=

(
M

α+ 4

)1/2 [
1 +

mα

|α− 2|
ϕ2

]
+O(ϕ4).

Finally, as claimed, we get the asymptotic expansion of function f as ϕ tends
to 0:

f(ϕ) = f(0)−Kϕ2 +O(ϕ4),

with f(0) = H2(Q) 1
π

(
M
α+4

)1/2 E((1−m/M)1/2) and

K = −H2(Q)
1

π

( M

α+ 4

)1/2 mα

|α− 2|
J(k0),

where J(k) is introduced within the proof of Lemma A.2. As J(k) is proven
to be negative for any k, see (14), we obtain that K > 0 and the lemma is
established in the case α 6= 2.

For α = 2, we get
√

∆(π/2 + ϕ) = 1
2 |ϕ|(1 + O(ϕ2)), γ±(π/2 + ϕ) = 1

8 (1 ±
4|ϕ| + 2ϕ2) +O(ϕ3) and hence k(π/2 + ϕ) =

√
8|ϕ|(1 − 2|ϕ| +O(ϕ2)). Then,

performing a Taylor expansion at order 4 of function E and using E ′′(0) = −π4 ,

E(3)(0) = 0, E(4)(0) = − 9π
16 , we obtain

f(ϕ) = f(0)(1− ϕ2) +O(ϕ3),

with f(0) = H2(Q)

2
√

2
. Lemma A.4 is proven.
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