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Anne Estrade* and Julie Fournier?
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Abstract

Let d be an integer greater or equal to 2 and let k be a d-dimensional
random vector. We call random wave model with random wavevector k
any stationary random field defined on R? with covariance function t €
R? — E[cos(k.t)]. The purpose of the present paper is to link properties
that concern the geometry and the anisotropy of the random wave with
the distribution of the random wavevector. For instance, when k almost
surely belongs to the unit sphere in R? and the random wave model is
nothing but the anisotropic version of Berry’s planar waves, we prove that
the expected length of the nodal lines is decreasing as the anisotropy of
the random wavevector is increasing. Also, when k almost surely belongs
to the Airy surface in R® and the associated random wave serves as a
model for the sea waves, we prove that the direction that maximises the
expected length of the static crests is not always orthogonal to what we
call favorite direction of the random wavevector.

Keywords: Gaussian field; random wave; nodal statistics; level set;
crossing theory; anisotropy

2010 Mathematics Subject Classification: primary 60G60; secondary
60G15, 60K40, 62H11, 86A05

1 Introduction

For many centuries, physicists have been using wave models defined on a multi-
dimensional space in various domains as different as acoustics, electronics, geo-
physics, oceanography or seismology. In order to take into account variability or
uncertainty, it is useful to consider random wave models. It is the exact purpose
of a pioneer exhaustive study by Longuet and Higgins [17] that was concerned
by sea waves modelized as a random moving surface. Another mathematical pi-
oneer study was raised by Berry in several papers, [8] or [9] for instance. These
seminal works opened a wide area of research in the last decades, either for
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statistical purposes ([4], [16], [1], [5], [7], [20]), or more recently for topologi-
cal purposes in link with number theory ([25], [13], [19]). Ten years ago, the
interest for nodal sets or level sets also met the theory of crossings developed
by Rice for one-dimensional stochastic processes fifty years before, yielding two
inspiring books by Adler and Taylor [2] and by Azals and Wschebor [6]. The
present paper is clearly inspired by all the above references but to the best of
our knowledge it is the first time that the different models are gathered in the
same work and are studied under the same focus, the influence of anisotropy.

A big demand for anisotropic models is nowadays observed, in particular
by practitioners in geostatistics, offshore engineering, heterogeneous material or
medical imaging (see for instance [24], [12], [3]), but also for more theoretical
studies dedicated to image synthesis and analysis, cosmology or arithmetic ([21],
110], [22], [14)).

In the present paper, we aim at exploring the anisotropy of anisotropic ran-
dom waves that are defined on a d-dimensional space with d > 1. We start
with a single random wave given by ¢ € R? + a cos(k - t +7), whose directional
structure is given by a d-dimensional random wavevector k, random phase 7 is
uniformly distributed on [0, 27] and independent of k, and amplitude a is kept
constant. Since our focus is only dedicated to anisotropy, the latter assump-
tion will remain all along the paper. We also study the stationary Gaussian
counterpart, i.e. a stationary Gaussian random field on R? with the same co-
variance function ¢ € R? + aE[cos(k - t)]. Our purpose is to link the geometric
and anisotropic behaviour properties of the random wave with the distribution
of its random wavevector, in particular its moments of finite order and its di-
rectional statistics. In particular, considering Berry’s anisotropic planar waves,
we prove that the expected length of the nodal lines is a decreasing function
of the (properly quantified) anisotropy of the random wavevector. At the op-
posite, considering random sea waves, we prove that no general statement can
be established: the direction that maximises the expected length of the static
crests may be orthogonal to the favorite direction (properly defined) of the ran-
dom wavevector as it may not. We like to mention that when k is equal to Au
with A a matrix and u a random vector in R? whose distribution is invariant
under rotations, the associated random wave has the same distribution as an
isotropic random wave deformed by the linear transformation A”. In that case,
the study of anisotropy, either in the spectral domain, or in the parameter do-
main, is equivalent. In the general case where no linear deformation is involved,
studing anisotropy in those two domains are two different approaches. The lat-
ter point of view is adopted in [3] for instance, whereas our paper definitively
belongs to the former type as did [11] or [24].

The paper is organised as follows. General facts are presented in Section 2, in
particular the key point of spectral representation. Another important point is
the link with partial differential equations that are solved by the random waves.
Section 3 deals with the study of planar waves through specific tools that are
used in directional statistical studies in dimension two, such as most probable
direction, favorite or principal directions. In the fourth section, we introduce
anisotropic versions of Berry’s random waves, which are anisotropic solutions of



Helmholtz equation. We focus on the nodal ets, their Hausdorff measure and
their directional statistics. Section 5 is devoted to a model for sea waves, that
is to say a space-time model indexed by R? x R. We study the mean length of
static crests from a directional point of view. All over the paper, two specific
distributions for the random wavevector in dimension two are examined. One is
called “elementary model”. It is described by a main direction and a bandwidth
that quantifies the anisotropy. We call the other one “toy model”. It is given
by a positive probability density function only depending on a single parameter
that carries out the whole quantified information on anisotropy. The technical
computations are detailed in the Appendix Section.

Notations.

Let d be a positive integer. For z € R? 22" stands for the d x d matrix
(zizj)1<i,j<d, ||#|| for the Euclidean norm of z and z - 2’ for the usual scalar
product of z with 2’ € R%.

For k being a random vector in R?, we respectively denote by E[k] and V[k] the
expectation (d-dimensional vector) of k and the variance (d x d matrix) of k.
For ¢ € [0, 27], u, denotes the vector (cosp,sin ) in R?.

We use Ny for the set {0,1,2,---} of all non-negative integers and for j =
(J1, -+ ,Ja) € No?, we write il = 27:1 ji. Moreover, if A € R? and if F is a
smooth map from R% to R, we write

ol

d
j_ Ji i ol
N =] and P = S iing

=1

For s any positive integer, ¢ denotes the Hausdorff measure of dimension s.

2 General setting

2.1 Anisotropic elementary random wave

Let d be a positive integer. We consider a random multi-dimensional model of
elementary wave defined by,

vt e RY Xy (t) = V2 cos(k -t + 1), (1)

where k is a d-dimensional random vector called the random wavevector and
where the random phase 7 is uniformly distributed on [0, 27].

The random field Xy is clearly not isotropic and the kind of anisotropy
depends on the law of k. As it will be stated in Proposition 2.1, isotropy occurs
if and only if k is isotropically distributed. If ||k|| is almost surely constant, we
write k = ||k|| the wavenumber of X.

We will be particularly interested in examples where the random wavevector
k is supported by {\ € R? : P()\) = 0}, the zero set of a multivariate polyno-
mial P.



Example 1 (Toy model) A particular case with d = 2 is studied in [12].
The random wavevector is prescribed by k = (cos ©,sin ©) with © a random
variable with support in R/27Z such that, for a fixed a > 0, the density of ©
with respect to Lebesgue measure on [0, 27] is given by
. 1+ «/2)
0 — Cy, 0|*, with C,, = , 2

| cos 617, wi 2/70(1/2 + a/2) @)
where I is the usual Gamma function. Parameter « is considered as an anisotropy
parameter. Indeed, taking @ = 0, one gets the isotropic version of model

(1), whereas, at the opposite, the case @« — 400 corresponds with a totally
anisotropic version of model (1) where k is a.s. along the z-axis.

Example 2 (Elementary model) Another particular case with d = 2 is stud-
ied in [10] and [23]. The random wavevector is prescribed by k = (cos ©,sin ©)
with © a random variable uniformly distributed on [ag — §, g + ] with 0 < § <
w. Parameter aq indicates the main direction whereas parameter § quantifies
anisotropy. Actually, 6 = 0 corresponds with a totally anisotropic model, § =~ 0
corresponds with a model that could be named narrow spectrum, and § = 7
corresponds with the isotropic model. If one wishes a symmetric model, one can
also consider © uniformly distributed on [ag — 8, g+ 8] U [ag + 7 — 6, ap + 7+ 9]
with 0 <6 < 7/2.

Example 3 (Berry random wave) We assume that the wavevector k satisfies
|lk|| = &, a.s. for some constant x > 0 and that it is not necessarily isotropically
distributed. The associated elementary wave is an anisotropic generalization of
Berry’s random wave model, an isotropic model that has originally been pre-
sented in [8] and intensively studied in the last years. Parameter « is called the
wavenumber. This model is the purpose of Section 4.

Example 4 (Sea waves) We will also examine the case where the random
wavevector k is supported by the Airy surface in R? (d = 3), namely {(z,vy,2) €
R3; 22 +y? — 2* = 0}. The associated elementary wave is related to the space-
time model used for the modelization of sea waves, assuming that the depth
of the sea is infinite (see [17] for the original idea, [4] or [6] for more recent
developments). Section 5 is devoted to the study of this model.

In the following proposition, we give some basic properties of the covariance
function of Xk.

Proposition 2.1 1. The random field Xy is centred and second-order sta-
tionary with covariance function

r(t) := Cov[Xy(0), Xk (t)] = E[cos(k - t)], t € R?. (3)

In particular, Var(Xy(0)) = 1.



2. Let k° be the symmetrized random variable associated to k and let F be
its probability measure'. Then

r(t) = Elexp(ik® - t)] = / exp(iu - t) dF (u), (4)
Rd

which means that r is the characteristic function of the random variable

k® and that F is the spectral measure of Xy.

Moreover, Xy is second-order isotropic if and only if the law of k® is

invariant under rotations.

3. The covariance function v admits derivatives up to order m (m € Ny) if
and only if k admits moments of order m. In this case, for any j € Ny
such that |j| < m, we have

Fr(0) =0 if|j| is odd ; &r(0) = (=D)BVZEKI] if |j| is even.

In particular, v (0) = — E[kkT].

2.2 Anisotropic Gaussian wave model

We are still given a random vector k in R? and we now consider a Gaussian,
stationary and centred random field Gy with the same covariance function as
the elementary random wave Xy introduced in the previous section. Such a
field exists, consequently to Kolmogorov’s extension theorem (see [6] Sections
1.1 and 1.2 for instance).

Note that such a Gaussian field can be obtained as a limit by considering
independent and identically distributed versions of 7 and of k, denoted respec-
tively by () en and by (k;) en. According to the central limit theorem applied
to finite-dimensional distributions, the distribution of

5 N
“N Zcos(kj “t+1;)
j=1

converges as IV tends to co towards a Gaussian random field with the appropriate
covariance function.

teRd

The covariance function of Gy, being equal to the covariance function of Xy,
is given according to (4) in Proposition 2.1: r(t) = [, exp(iu-t) dF(u), t € R%,
where F' is the distribution of k®. From this, we deduce a spectral representation
of the field Gx.
Let Wr be a complex Gaussian F-noise on R?, 4.e. a C-valued process defined
on the set B(R?) of Borelians such that

f F and F_y are respectively the probability measures of k and —k, then the sym-
metrized random variable associated with k is defined as the random variable with probability
measure F = %(Fk + F_y).



e a.s. Wr is a complex-valued measure on B(R9),

e VA € B(R?), Wr(A) is a complex-valued Gaussian variable with E[Wrg(A)] =
0 and E[Wgr(A)Wr(A)] = F(A), where = denotes the complex conjuga-

tion,

e for any sequence (A,), of pairwise disjoint Borel sets, (Wr(Ay)), are
independent random variables.

Moreover, we add the property that for any A € B(R?),

We(A) = Wp(-A).

Then, it is easy to check that the Gaussian stationary random field prescribed

by
(/Rd o dWF(U)> teRd ®)

is real-valued, centred and that its covariance function is given by (4).

Reciprocally, if Y : R? — R is a centred and stationary Gaussian random
field with unit variance, according to Bochner’s theorem, there exists a symmet-
ric probability measure on R?, denoted by F, such that the covariance function
r of Y is given by (4). It follows that we can associate with Y a symmetric
random variable in R? of probability measure F, denoted by ky and referred to
in the following as the random wavevector of Y.

2.3 Link with partial differential equation

We will show that both Xy and Gy satisfy a specific partial differential equation
if and only if the random wavevector k is supported by a specific hypersurface
of R%,

Let P be an even d-multivariate polynomial. Then there exists a sequence
of real numbers (j)jen,+ With only finitely many non-zero terms, such that

VAERY,  PN)= > N (6)
jeNg4; |j| even
We associate with P the following differential operator:

Lp(X)= > (—D)IP0X,

J€No?; |jl even

Let us remark that the random field Xy defined by (1) is obviously almost surely
of class C*.

Proposition 2.2 Let P be an even multivariate polynomial given by (6). Then
Xy almost surely satisfies the partial differential equation

vt € RY, Lp(X)(t)=0 (7)
if and only if P(k) =0 a.s.



Proof. For any j € No? such that |j| is even, we have & Xy (t) = (—1)H/2KJ cos(k-
t 4+ n). Hence, we get Lp(Xx)(t) = P(k) Xk(t) and the proof follows immedi-
ately. m

Applying Proposition 2.2 to the examples given at the beginning of the sec-

tion provides random anisotropic solutions of some famous partial differential

equations. Indeed, we recall that the Laplacian operator A on R¢ is defined by
2

A=>" <j<d 887?. Then, the elementary random wave associated with Example

1 (case d = 2 and k = 1) and Example 3 (any d and any k) is an almost sure
solution of Helmholtz equation AX + k2X = 0. In the same vein, the elemen-
tary random wave associated with Example 4 is an almost sure solution of the
partial differential equation ;—;X + BB—;X + %X =0.

Let us now be concerned with Gi. We assume that the random wavevector k
admits moments of any order. Hence, the covariance function r of Gy is of class
C* and consequently there exists a version of GG whose almost every realization
is of class C; it is given by representation (5) for instance. First, let us point
out that Gy satisfies Proposition 2.2 as well as Xi. Indeed, Gy is centred
and admits the same covariance function as Xy; therefore for any multivariate
polynomial P given by (6), for any t € R?, Var (Lp(Gy)(t)) = Var (Lp(Xik)(1)).
However, the following theorem is a more general result: it provides a sufficient
and necessary condition for any stationary Gaussian random field to satisfy
Equation (7).

Theorem 2.3 Let P be an even multivariate polynomial defined by (6) and let
Y be Gaussian random field defined on R? that is centred, stationary, with unit
variance and almost surely of class C*°. The following properties are equivalent.

1. The Gaussian random field Y almost surely satisfies the partial differential
equation
vteRY,  Lp(Y)(t) =0.

2. The Gaussian random field Y admits a spectral representation given by
(5), where F is a probability measure supported by {\ € R : P()\) = 0}
and Wg is a complex Gaussian F-noise on R?.

3. The random wavevector Ky associated with Y almost surely satisfies P(ky)
0.

We insist on the fact that the above theorem provides all the Gaussian a.s. solu-
tions, isotropic or not, of the partial differential equation Lp(Y') = 0 (Helmholtz
equation in the case of Example 1). Moreover, the equation gives information
on the localization of the random variable k.

Proof. Ttems 2 and 3 in Theorem 2.3 are clearly equivalent as F is the distri-
bution of ky. Since Y is centred, so are all its derivatives and the stationary



random field Lp(Y). Therefore, Lp(Y) is almost surely identically zero if and
only if its variance at each point is zero. But Var(Lp(Y)(t)) can be expressed
as a linear combination of derivatives of the covariance function ry of Y. Hence
Y is an a.s. solution of the partial differential equation Lp(Y) = 0 if and only
if its covariance function ry satisfies

Z (—1)HFRD/2 ;g DUEFR) 1y (0) = 0. (8)
j.keNo4; |jl,|k| even

On the other hand, as it is the covariance function of a stationary centred
field, ry satisfies Bochner’s Theorem: there exists a Radon finite measure F'
on R? such that ry(t) = FE (t), where F' denotes the Fourier transform, i.e.
E(t) = [pa e dF()\). Then ry satisfies (8) if and only if

_ D) g g MK = 2 )
o_/]R ( > (— )R o g M AK) dF(N) / P(A\)2dF())

d d
jkeNo%; |jl,[k| even R

The above integral vanishes if and only if the measure F' is supported by {\ €
R?: P(A\) =0} m

3 Remarkable directions in the planar case

We introduce some definitions related to planar models. One can see [18] or [15]
for more details in the domain of directional statistics.

3.1 Most probable and favorite directions

When Z is a two-dimensional random vector, one can write it out either using
Euclidean coordinates Z = (Z1, Zs) or, if Z # 0, a.s., using polar coordinates
Z = Rug, where ug is the vector (cos®,sin®). Hence, we introduce two
remarkable directions.

Definition 3.1 Let Z be a random vector in R? such that Z # 0, a.s.

If the mode of the random variable © exists and is unique, we call it the most
probable direction of Z. If there exists a mode that is not unique, we define the
set of most probable directions of Z in R/2nZ as the set of all modes of ©.

If © is a discrete random variable then (at least) one most probable direction
exists. If © is a continuous random variable with a probability density function
(p.d.f.) h admitting a maximum on R/27Z (which is ensured if A is continuous),
the set of the most probable directions can be expressed as the direction(s) in
the set

Argmax h(6).

0ER/2TZ
Note that if the distribution of the random vector (R, ®) admits a probability
density function (r,0) — f(r,0) with respect to Lebesgue measure on Rt x

R/2nZ, then for any § € R/2nZ, h(0) = [;. f(r,0)dr.



Definition 3.2 We assume that the matriz E[ZZT] does not belong to the set
{aly, a > 0}. Then the favorite direction of Z is defined as the only element in
Argmaz (E[(Z - uy)?]) = Argmaz (uy - E[ZZ7|u,) ,

ER/TZL pER/TL
where u, = (cosp,sing). Consequently, the favorite direction is nothing but
the direction in R/7Z of the eigensubspace of R? associated with the largest
eigenvalue of the symmetric positive matriz E[ZZ7).

IfE[ZZT) = ady with o > 0, then Argmaz (E[(Z - u,)?]) = R/7Z.
pER/TZ

In some cases, such as in the following Examples 1, 3, 5 and 6, the most probable
direction(s) modulo 7 coincides with the favorite direction(s). Nevertheless, in
the general case, they don’t.

Examples Let Z = Rup, a two-dimensional random vector such that R €
(0, +0), a.s. and © € [0,27), a.s.

1. If © almost surely takes a fixed value 6y € [0,27), that is Z = Rug,,
then the most probable direction of Z is §y. On the other hand, Z - u, =
Rcos(fy — ¢) and hence the favorite direction of Z is 8y modulo 7.

2. If (R, ©) is distributed as Fr ® £ (8o + dx/2) on (0,+00) x [0,27), where
0 stands for the Dirac distribution, then the most probable directions are
0 and 7/2 modulo 27 whereas there is no favorite direction. In the same
vein, with the distribution Fr® %(50 +05/4), the most probable directions
are 0 and 7/4 modulo 27 whereas the favorite direction is 7/8 modulo 7.

3. If © and R are independent and if © is uniformly distributed on [0, 27],
then Z admits R/27Z as its set of most probable directions. Moreover, Z
is centred and E[ZZT] = 1E[R?|I,, thus the set of favorite directions of
Z is R/7Z.

4. If © and R are independent and if © is uniformly distributed on [ag—9, ag+
9] (see Example 2 in Section 2) , then the set of most probable directions is
the whole interval [cg — 6, cvg + 0], whereas the favorite direction is reduced
to the value o modulo .

5. If © admits a p.d.f. given by (2) (see Example 1 in Section 2), for a
given a > 0, and if ©® and R are independent, then the most probable
direction of Z is clearly 0. On the other hand, Z is centred and V[Z] =
ERY] (a+1 0
a+2 0 1
to Lemma A.1 in Appendix section for the detailed computation of the
moments.

) . Hence, the favorite direction of Z is 0 as well. We refer

6. Let Z be a 2-dimensional centred Gaussian vector with a variance matrix
V[Z] that does not belong to {als, @« € R}. Then, the most probable
direction of Z is Argmin,, (uy, - V[Z] 'u,) = Argmax,, (u, - V[Z]u,), thus
it is equal modulo 7 to the favorite direction of Z.



3.2 Principal direction

We now introduce a remarkable direction for real-valued planar random fields.
Let X : R2 — R be a stationary random field that is a.s. differentiable and
satisfies E[||X’(0)||?] < +o0. For ¢ a direction in R/7Z, we denote by X¢ =
(X (2uy))zecr the one-dimensional stationary process obtained by restricting the
X to the line Ru,,.

Definition 3.3 The principal direction of X is defined as

Argmaz(ma(p)), where mao(p) = E[(X“’)’(O)Q],
YER/TZ

understood as a certain value if the mazimum is unique and as a set of values

if it is not.

The latter notion has been introduced by Longuet-Higgins in [17] in his study
of a planar random wave model for sea waves. Note that ms(¢) is nothing but
the second spectral moment of X% and that restricting X to a certain line of
the plane or to any parallel line does not change the law of the obtained process
because X is stationnary. We have also,

ma(p) = E[(X*)'(0)*] = E[(X'(0) - uy)?] = E[(X"(£) - up)?],
for any t € R? by stationarity. It yields the following remark.
Remark 3.4 For any t € R?, the principal direction of X coincides with the
favorite direction of X'(t).

3.3 Random planar waves

Let k be a random vector in R? and let us consider the associated planar single
random wave X and its Gaussian counterpart Gy as defined in Section 2. We
now study these random fields from a directional point of view.

Proposition 3.5 Let k be a random vector in R? and let Y : R2 — R be a

stationary and centred random field with covariance function given by (3). We
assume that E[kkT] ¢ {aly,a € RT}.
Then, the next three remarkable directions in R/wZ coincide

e the favorite direction of k
e the principal direction of Y
e the favorite direction of Y'(t) for any t € R2.

They are given by the direction of the eigensubspace of R? associated with the
largest eigenvalue of matriz E[kkT].

10



Proof. It is enough to prove that the principal direction of Y is the favorite
direction of k and then to apply Remark 3.4.

Let ¢ be fixed, the covariance function of the univariate process along a line of
direction ¢ is given for any « € R by ry(x) = r(zu,) = Elcos(x k.u,)]. Hence
ma(p) = —r2(0) = E[(k.uy,)?], which clearly yields the equality between the

©
principal direction of Xy and the favorite direction of k. m

We now turn to the directional study of the level sets of the Gaussian planar
random waves Gy E[k. We assume that k'] ¢ {aly,a € R*} and we fix a € R.
The level set

Gyl(a) = {t e R?: Gy (t) = a}

is a finite union of curves whose direction at point ¢ € Gy '(a) is orthogonal
to the vector G} (t). Applying Proposition 3.5 yields the next statement, that
sounds physically intuitive.

Proposition 3.6 Let a € R. Let 7, be a two-dimensional vector field defined
on the level set Gy *(a) such that, at any point t, 7,(t) is tangent to Gy."(a) at
t. Then, for any t € G;l(a), the favorite direction of 7,(t) is orthogonal to the
favorite direction of k.

Let us mention that the above proposition still holds in dimension d > 2
once the favorite direction of a d-dimensional random vector is defined as the
direction of the eigenspace associated with the largest eigenvalue of V[Z].

4 Berry’s anisotropic random waves

In this section, we focus on Example 3 of Section 2, i.e. on the case where the
random wavevector k is such that, for some s > 0,

Kk k e S as.

As previously, we consider the (unique in distribution) associated stationary
centred Gaussian random field Gy on R? whose covariance function r is given
by (3). Since |k|| is a.s. bounded, it is clear that Gk is a.s. smooth then,
rephrasing Theorem 2.3, we get that Gy is the generic Gaussian solution of
Helmholtz equation

AY +*Y =0.

Equivalently, Gy is an eigenfunction of the operator —A, for the eigenvalue 2.

Therefore, extending the definition introduced by Berry in [8], we refer to G
as a Berry’s anisotropic wave with random wavenumber x.

Applying the appropriate change of variables t — kt yields the scaling prop-
erty that (Gk(t)),;cge and (Gy-1k(kt)),cpa have the same distribution, where
we recall that the random vector £~ 'k takes its values in S?~!. We also remark
that, if the distribution of x~'k® admits a density f with respect to the surface

11



measure o on S%~! we can deduce from (4) that the covariance function of Gy
is given by

r(t) = /S ) do(u).

4.1 Expected measure of level sets

We are now interested in the random level sets: for any a € R,
Gy '(a) = {t € R?/ G(t) = a},

which has Hausdorff dimension d — 1 a.s.. If a = 0, this is exactly the nodal
set of Gy and more precisely in the case d = 2, it is the nodal line of a Berry’s
anisotropic planar wave.

Let @ be a compact set in R? with non empty interior and let a € R. We
focus on the (d — 1)-dimensional Hausdorff measure of the a-level set of Gk
restricted to @, namely

Ua,k, Q) = Ha—1 (G (a) N Q) =Ha1 ({t € Q/Gx(t) = a}).

Proposition 4.1 Let k > 0 and assume that k is a random vector in R such
that k := k 1k € S% 1 qa.s.

Let &4 stand for the standard Gaussian probability density function on R .
Then,

efa2/2

=" L., (EKKT )z - 2)/2®y(z) da. (9)

Elf(a,k, Q)] = Ha(Q)

Proof. Kac-Rice formula (see [6] Theorem 6.8 for instance) yields
it Q) = | B GLlt) | 1Gk(1) = al o (@)

where pg, (1), the probability density function of Gi(t), is actually given by the
standard Gaussian distribution. Using the stationarity of Gk and the fact that
for a fixed point ¢, Gx(t) and G} (t) are independent random variables, we have

67a2/2

Ver

In order to conclude, it only remains to state that | G (0) | is the Eu-
clidean norm of a d-dimensional centred Gaussian vector with variance matrix

—"(0) = E[kk”] = x*E[kk”]. m

Elf(a, k, Q)] = Ha(Q) E[ll Gy (0) [I]-

We remark that the same proof (except last equality) can be applied to any ran-
dom wavevector k with finite moments, even if ||k|| is not constant. It yields the
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next identity that is valid when dropping the condition k:=r'keSlas
in Proposition 4.1,

2
ea/2

— T T 1/2 xT)ax.
TS (E[kk"]z - 2)/*®y(x) d

Elt(a,k, Q)] = Ha(Q)

Let us come back to Berry’s random waves. In the isotropic case, that is to say
when k is uniformly distributed on %!, E[kk”] = V[k] = (1/d) 1. Hence,

—a?/2

E[¢(a, k, Q)] = Ha(Q) m

where the above integral is the mean of a y-distributed random variable with d

degrees of freedom and is known to be equal to V2 %.

n/ |2 || Gu(a)da,
Rd

4.2 Expected length of level curves

In the planar case, i.e. d = 2, the level sets G} 1(a) are one-dimensional and
Formula (9) can be made much more precise. In particular, the following propo-
sition states that the level curves mean length is decreasing as anisotropy is
increasing.

Proposition 4.2 Let k be a random vector in R? such that k = kk with K a
positive constant and k € St a.s. Let us denote by c(k) the difference between

the eigenvalues of ]E[EET] (0 < c(k) < 1). Let € be the elliptic integral given by
E(x) = 77/ (1 — 22 sin?0)'/2d0, for x € [0,1]. Then,

€7a2/2

E[t(a,k, Q)] = H2(Q) ——= 1 F(c(k)),

where the map F : c € [0,1] — (1+¢)'/2& ((%)1/2) is strictly decreasing.

Remark 4.3 In the isotropic case, C(E) = 0 and hence we recover the following
result concerning the nodal line of the isotropic Berry’s planar wave (see [8]):

B[00,k Q)] = Ha(Q) 25€(0) = Ha(Q) 525

Remark 4.4 In directional statistics, it is usual to introduce a parameter termed
coherency index and defined as the ratio between the difference of eigenvalues
and the sum of eigenvalues of a certain positive symmetric matriz M, see [18].
This index is performed in [25] (see also [12]) with M given by the so-named
structure tensor in order to quantify the anisotropy of an anisotropic Gaus-
sian planar field. In our context, we like to remark that the trace of matriz
M = E[kkT] is equal to one, since ||k|| =1, a.s.. Parameter c(k) actually coin-
cides with the coherency index of our model and hence quantifies its anisotropy.
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Proof. We use Proposition 4.1 in the case d = 2. For computing the integral in
the right-hand side of (9), we use the next well known fact, that can be proven
with simple algebra.

If M is a symmetric definite positive matrix with eigenvalues v_ and v4 (0 <
v— <74+ and 4 > 0), then

1/2

[ e ot = (25) e (=) o

In our case, M = E[EKT] and 7— + v+ = 1. Hence, 2y = 1+ ¢ and

1 7’7—/7—4— = 1%,.6(;'

The proof of the decreasing of mapping F is postponed to the Appendix section,
see Lemma A.2. m

We end the section applying Proposition 4.2 to our two favorite examples.

Example 1 (Toy model) Take k distributed on S! with probability den-
sity function given by (2) for some positive « (see Example 1 Section 2). The
moments of k are computed in the Appendix section, Lemma A.1. In particu-

lar, it holds E[kk”] = ;15 (O‘ F)L 1 (1)

increasing function of parameter a. Thus, the more anisotropic the model is,
the smaller the expected length of level sets is.

) . Consequently, C(E) = 595, which is an

Example 2 (Elementary model) We choose the random wavevector k = & K
with k uniformly distributed on [ag — 0, ag + 0] U [ovg + 7 — §, g + 7 + 9] for some
0 < 6 < /2, see Example 2 of Section 2. In order to simplify the computation,

sin(26) 0

let us assume that ag = 0. In that case, E[kk”] = i (1 + 0 26 | sin(2)
T2

and hence ¢(k) = %, which is decreasing on [0, 7/2]. Again, the mean length
of level sets is decreasing with anisotropy, i.e. as J is growing.
5 (Gaussian sea waves

In this section, we now concentrate on Example 4 of Section 2 that considers
the case where the random wavevector is 3-dimensional and a.s. belongs to Airy
surface, i.e.

ke A={(A,X,A3) €R3; (A% 4+ (M2)2 = (\3)*} as.

Then, following Proposition (2.1), the associated stationary Gaussian field G
admits as covariance function

r(t) = / cos(t- \)dF(\) , t € R?,
A

14



where F' is the probability distribution of k.

The field Gy coincides with the spatio-temporal Gaussian random fields that are
used for the modelization of sea waves [17, 4, 6]. Indeed, for (x,y,s) € R? x R,
Gx(z,y, s) can be seen as the algebraic height of a wave at point (x,y) and time
s.

We use the following parametrization of A,
(0,2) €10,27) x R+ (22 cosh, 2% sin b, z),

which provides a bijection ¢ from [0, 27) x R\ {0} onto A\{(0,0,0)}. Performing
the appropriate change of variables yields

r(z,y,s) = / cos(zz? cos B + yz2 sin b + s2) dF (6, z),
(0,2m) xR

where F is the image of measure F' by the map ¢~'. When k admits f as
probability density function with respect to the surface measure on A, we get

r(z,y,s) = / cos(x2% cos O + yz>sin 0 + s2) (0, z) ddz,
(0,2m) xR

where the map fis given by
f(& z) = f(z% cos, 2% sin 0, z) 22(1 + 42%)1/2.

Following the literature, f is called directional power spectrum of Gy (see [4]
and [6] Chapter 11). Experimental directional power spectra are exhibited in
[4], derived from sea data provided by Ifremer.

In order to avoid heavy notations, from now on we assume that the random

wavevector k is symmetrically distributed. Hence, until the end of the present
section we deal with the following covariance function

r(z,y,s) :/ei((x’y’s)"\) dF(N),
A

where F' is a probability measure on A satisfying F'(—A) = F(A) for any Bore-
lian set A C A. In other words,

r(x,y, S) — / ei(zz2 cos 0+yz2 sin 0+s2) dﬁ(o’ Z)
(0,2m) xR

with F a probability measure on R/27Z x R\ {0} that is invariant under the
mapping (0, z) — (0 + 7, —z). If k is not symmetrically distributed, the key to
get the above expressions is to use the symmetrized probability measure of k
instead of its probability measure.
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Let us fix time s = s¢ and look at the random field defined on R?,

Zk(w7y) = Gk(xayvs()) (xay) € RQa

as a picture of the sea height at time sg. It is a two-dimensional stationary
centred Gaussian random field, whose covariance function is given by

Moy =rla0)= [ ol amrnsin gy o)
(0,2m) xR

Actually, the random wavevector associated with Zy is nothing but the projec-
tion of the A-valued random wavevector k onto the first two coordinates. We
call it w(k) in what follows. We will also need the spectral moments of Zy,
namely for any integers j and k in Ny

mj g = (=) TF 9URT(0,0)

:/(02 : R(ZQCOSQ)j(ZQSine)kdﬁ(@,z). (11)
27) X

5.1 Mean length of static crests

We are now interested in the (static) crest in direction ¢ € R/7wZ. More pre-
cisely, we introduce the random set

{(.%‘,y) € RQ ; Z{((x,y) CUp = 0},

which contains all points (z,y) in R? such that the gradient of Zy at point
(z,y) is orthogonal to direction ¢. One can also say that the derivative of Zx in
direction ¢ at those points is zero. Hence, the crest in direction ¢ is a special
case of a specular points set as defined in [17]. Its Hausdorfl dimension is clearly

equal to one and one can compute its length within a compact domain @ C R?
such that H1(Q) > 0,

Ik, Q,¢) =M1 ({(z,y) € Q; Zi(x,y) -uy, =0}).

Using the same arguments as for the proof of Proposition 4.1 and Formula (10),
we get the following result that is also stated in [6] (Proposition 11.4) or in [4]
(Assertion 3).

1/2
Bl Q)] =@ 1 (T} (0 o)), (2

where v(¢) = Var(Z}(0)-u,) and v_(¢) < 74 () are the eigenvalues of the vari-
ance matrix V[Z}/(0) u,]. The expressions for these quantities in terms of the

spectral moments 1 of Zyx are recalled in the Appendix section, see Lemma
A3.
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The end of this section is dedicated at showing that the direction that max-
imises the expected crest length may be orthogonal to the most probable direc-
tion of the wavevector 7(k), as it may not (in the case where such directions
exist). It is a clear consequence of (12), which depends on both the second order
and the fourth order moments of k, while the most probable direction depends
on the mode of k. Nevertheless, a rule of thumb is suggested in [17] or in [4]
for instance, claiming that the direction [that maximises the expected length of
crests] is orthogonal to the direction for the mazimum integral of the spectrum,
i.e. 1s the most probable direction for the waves. In this statement, the “most
probable direction for the waves” has to be understood as the most probable
direction of the random wavevector m(k), as defined in Section 3.1.

Example 5.1 (Elementary wave) We take a random wavevector k with
values in A a.s. and with a deterministic orientation. Precisely, the distribution
of k is prescribed on [0,27) X R by F = (84, +0ag+r) ® b, where 8o, stands for
the Dirac measure at «g € [0, 7) and with h any symmetric probability measure
on R\ {0}.

On the one hand, the most probable direction of 7 (k) is clearly ap modulo 7.
On the other hand, the spectral moments of Zx are easy to compute from (11).
In the simplest case where op = 0, we get that mo o = My and my4 o = My with
My, = fR 22k dh(z), and that all the other moments up to order 4 are vanishing.
Hence, following Lemma A.3, v(¢) = Mz cos? ¢ and

2 .
" B 2 cos’  cospsing
V[Z (0) uyp] = My cos” ¢ (cosgosincp sin? > .

Hence v_(¢) = 0 and v, (¢) = My cos? ¢, and Formula (12) allows us to state
that the expected length of the crests of Zy in direction ¢ does not depend on .
Therefore, for this model, no link can be established between the direction that
maximises the expected length of crests and the most probable direction of 7 (k).

Example 5.2 (Counter-example) We now take a random vector k whose
distribution is prescribed on [0,27) x R by F = (1 Z?:o dd;r/2) @ h, with h
any symmetric probability measure on R\ {0}. Then, the set of most probable
directions of k is {jn/2 : j=0,1,2,3}.

Computing the spectral moments of Zy from (11), we get my ;1 = mg o = ms3 1 =
0 whereas mo,g = mp,2 = % and my,0 = mo4 = %, where we have introduced
M = [ 22k dh(z). Consequently, using Lemma A.3, for any ¢ € [0, 2],
v(p) = Var(Z{(0) - uy,) = 22 and

V[ZL(0) uy] = % (COS c‘os4 <p.+2sinicp ) oS ¢ sin gp(gin2 29 cos? @)) .

@ sin p(sin® ¢ — cos® @) 2 cos® psin®

The eigenvalues of the later matrix being 2% (1 % | cos(2¢)|), we apply (12) to
get the expected length of the crests of Zy in direction ¢. Up to a positive
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multiplicative constant that does not depend on ¢, E[i(k, @, )] is equal to

2| cos(2¢)]

_ZICOREP)L Y12y cos
1+|COS(2<p)|) ) F(| (29))),

(1 + | COS(2<p)|)1/2 e((

where the function F is defined in Proposition 4.2. Since F is strictly decreasing
on [0, 1] (see Lemma A.2), the mean length of crests is maximal when cos(2¢) =
0, ie. for p = x/4 or 3w/4 modulo 7. These directions are not orthogonal to
the most probable directions of 7 (k).

We also like to mention that any other distribution of the wavevector could
serve as a counter-example, as soon as it is invariant by the transformation
0 — /2 — 6. Indeed, this invariance yields the same values of the spectral
moments.

5.2 Mean length of static crests with the toy model

We choose as a particular Gaussian wave the one whose directional power spec-
trum f is given by _

f(0,2) = Cy|cosb|* h(z), (13)
where « is a positive real number (see Equation (2)) and & is an even probability
density function on R. As already mentioned, the most probable direction of
m(k) is 0 in that case.

The spectral moments (see (11)) of this particular Gaussian wave are given,
for any j,k in Ny, by

mj gk = (/ 222K B (2) d2) Ca/ (cos 0) (sin B)F | cos 0]* d
R (0,27)
= Mtk Mk

The first integral M; ) equals the moment of order 2j + 2k of h. Note that it
does not contain any information on the anisotropy of the model. The second
integral, named as f; %, is computed in Lemma A.1 in Appendix section.

Hence, the expected length of crests in a given direction ¢ can be evaluated
through Formula (12) applied to this specific model. An asymptotic expansion
of p = E[l(k,Q, )] near ¢ = 7/2 is performed in Lemma A.4. It shows that
the expected length of crests admits a local maximum at ¢ = 7/2, which is
precisely orthogonal to the most probable direction of 7 (k) and to its favorite
direction as well (see the fifth example in Section 3.1).
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A Appendix

A.1 Moments of a random wavevector given by the toy
model

We perform some computations related to our toy model given by Example 1 in
Section 2. We fix o > 0 and we consider a two-dimensional random wavevector
k = (cos ©,sin ©), with O that takes value in [0, 27] with a probability density
function given by

I'(1+a/2)
2/a0(1/2 + a)2)

Lemma A.1 For any non negative integers j and k, let (i be the (j,k)-
moment of k, i.e.

0 — Cq|cos8|* with Cy =

ik = E[(cos ©) (sin ©)*] = C,, (cos )7 (sin 0)* | cos O]~ db.
[0,27]

Then
® ppo=1
e ;=0 whenever j or k is odd

Co  _ (atD)(at3)--(atj—1)

Cals = @t a oty JOT even =2

® Hjo=

o for any even integers j and k, pj 1 = Zfi%(—l)l (%2) Hj+2i,0-

In particular, it yields the non-zero second and fourth order moments of k:

a+1 1 T 1 a+1 0

— & s = —— and hence E[KkT]= —— :
H20 ="~ po2 = ——— and hence [kk” ] a+2< 0 1),

_(a+1)(a+3). B 3 _ B a+1
o= i ) ara) " T a1 2)at+d) "2 T Gr2)(ata)

Proof. It is clear that pugo = 1, pjr = 0 whenever j or k is odd and that
tj0 = Co/Cayj for any even integer j. Using the explicit value of C, yields the
value of pj0. Finally, for any even integers j and k, writing sin®f =1 — cos? 0
yields the formula for ;. m

A.2 Variations of map F

Lemma A.2 The map F : c— (1+¢)'/2 €& ((1271)1/2) is strictly decreasing on
[0, 1].
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Proof. Recall that (k) = 077/2(1 —k%sin®0)'/2d6 for k € [0,1]. Then, for any
kel0,1), & (k)=—k foﬂﬂ % df. Therefore, for any ¢ € [0,1),

/ 1 -1/2 2¢ \1/2 1/2 (20712, 2¢ \1/2
= -1 = 1
F'(c) 51+ 7 (1+C) +(1+0) (1+C)3/g5 (1+c)
T 2 22
- 1(1+c)*1/2/ : (1- 26 guzgpz TS0 o
2 0 1+c (1— £ sin”0)1/2

1 /2 cos(26)
= — 1 + _1/2/ d@.
51+¢) o (1— 2= sin? )1/

2¢ \1/2
)

df into two parts,

It remains to show that the above integral, which we call J(k) with k = (
/2 cos(20)
—J0  (1—-k2sin20)1/2
on [0, 7/4] and on [7/4, /2], and performing the change of variables ' = w/2—60
within the second part, we get

)

is negative. Splitting the integral J(k) :

/4 1 1
J(k) = 20 - do 14
(k) /0 cos(26) [(1 — k2 gin? 0)1/2 (1 — k2 cos? 6)1/2 ? (14)

which is negative since cos@ > sin6 for 6 € (0,7/4). m

A.3 Second moments of Z'(0) - u, and of Z"(0)u,

Let Z be a two-dimensional stationary Gaussian field that is centred and that
admits a spectral density f on R%2. We assume that Z admits spectral moments
of all orders and we denote them by (m;x)jryenz, i€

R j k
m]»k_/Rz()\l) (A2)® f(A) dA.

The following statements are borrowed from [4] page 412. Recall that for any
@ € [0,27], u, = (cos,sing).

Lemma A.3 For any ¢ € [0,27], we have
v(p) = Var(Z'(0) - uy,) = ma,gcos® ¢ + 2my 1 cos psin g + mg 2 sin® ¢
and

VIZ"(0)u,] = (GW) azzw))

a23(p) ass(p)
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where

az(p) = maygcost p +mgasin® g + 6ma o cos? psin ¢
+4ms 1 cos® psin p + 4mq 3 cos sin® o,
ass(p) = (mao+moa) cos? psin? ¢ + ma,2 ((cos2 @ —sin? )% — 2 cos? psin? ap)
+2(my 3 +m3.1) cos @ sin p(cos? p — sin? ),
azs(p) = —magcos® psing +mg 1 cos? p(cos? o — 3sin® ) + 3ma o cos psin p(cos? ¢ — sin? p)

+my 3 sin (3 cos® p — sin® ) + mg 4 cos p sin® .

Moreover the eigenvalues v () and v—(p) of matriz V[Z"(0)u,] are equal to

1) = 5 (T(0) £ VAR)),

where T(p) = Trace(V[Z"(0)u,]) = agz(e) + ass(p) and A(p) = (ax(p) —
azz())? + 4agz(p)*.

A.4 Length of crests with the toy model

Considering Formula (12) prescribing the expected length of crests in a given
direction and a given domain, we focus on the case where the direction of k is
given by the toy model (see Example 1 in Section 2). As ¢ tends to 0, we write
g(p) = O(h(p)) if there exists ¢g € (0,27) and M > 0 such that

Vi € 10,27], [o] < lpol = [g(0)| < M|h(p)].

Lemma A.4 Let Q be a compact set in R% and let k be a random wavevector
in R? prescribed by its directional spectral density f(@,z) gien by (13) for a
fized a > 0.
Let f(o) = E[l(k,Q,7/2+ ¢)] where E[¢(k,Q, )] is given by (12). Then, as ¢
tends to 0,

fl@) = £(0) — K¢? + O(p?), with K > 0.

Proof. From (12), we get

(2N L (T2 @)\
r0= (S s) - EEE),

where v_(¢), 7+ () and v(p) are given in Lemma A.3. Moreover, the spectral
moments m,  are prescribed by (11) with p; 5 given by Lemma A.1.

Since cos(m/2+ @) = —p + %3 +O(¢*) and sin(7/2 +¢) =1 — %2 + O(p*), we
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get

V(T/2 + ) = pag sin® () + po2 cos? (@) = poz + (120 — p102)p> + O(p*)

_ 1 2 1
—a+2(1+a</> )+ O0(¥")

az2 (/2 + @) = puao sin® (9) + poa cos™ (p) + 6mas sin®(p) cos® ()
= poa + 2(3p22 — poa)® + O(¢")

= m(l + 2a0%) 4+ O(¢h)

as3(m/2 + @) = (pa0 + pos) sin® () cos® () + paa((sin®(¢) — cos®(¢))? — 2sin’(p) cos? ()

= p2o + (fa0 + poa — 6p22) 9 + O(p*)

1
= CEDICET) (a4 1+ a(a—2)p?) + O(ph)

a23(T/2 + @) = fua0 8in° (p) cos(p) — Bpuaz sin(p) cos(i) (sin” (1p) — cos () — proa sin(p) cos’ ()

5
= (322 — poa)p + (prao + FHos — 8puaz) > + O(p*)

1
= i@ rplertale- )%+ O(¢").

The eigenvalues 4 (7/2 + ¢) are given by

1
Y£(m/2+¢) = 5(@2(77/24'@) +az3(m/2+ ) £ VA(T/2+ 9),
with discriminant
A(m/2 4 ¢) = aga (/2 + @) — ags(7/2 + ©))? + 40330z /24 4)
1

= m[@ —a)? 4+ 2a(a + 4202 + O(p*).

For o # 2, it yields the following expansions

_ 2-q ala+4)?
_ min(3,a+ 1) ala+4)
V-(m/24¢) = m (1 - |a_2<P2> +0(p"),
max(3,a+ 1) ala+4)
V+(m/2+¢) = @+ 2(atd) (1 + |a_2<P2> +0(¢ph).

The quantity k(7/2 + ¢) == (1 — %)1/2 € [0,1] admits the following
expansion
ma(a+4)

k()2 + @) = ko <1 + o 27

> ¢° +0(¢h),
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where m = min(3,a+1), M = max(3,a+1) and ko = (17%)1/2 = (Lﬂf)l/?.

Introducing the derivating of the map & : k — fﬂ/2 — k%sin? 0)Y/2 df, we get
Eh(n/2 + 9)) = Elho) + o E o €1(kn)  + O),
where &'(k) = —k [/* =l df and £/(0) = 0.
It remains to expand (%)1/2:
1/2
Cormr” = (a%a) [t e +oen

Finally, as claimed, we get the asymptotic expansion of function f as ¢ tends
to 0:

fle) = £(0) = K + O(p%),
with £(0) = H2(Q) £ (24) " €((1 — m/M)/2) and

1, M )1/2 mao

K:_HQ(Q);(OH—ZL law — 2

J(ko),

where J(k) is introduced within the proof of Lemma A.2. As J(k) is proven
to be negative for any k, see (14), we obtain that K > 0 and the lemma is
established in the case o # 2.

For a =2, we get /A(m/2+¢) = 1]o|(1+ O(p?)), v+(n/2 + ¢) = %(lj:
4] + 2¢%) + O(¢*) and hence k( 77/2 + ) \/8\g0 (1 —2[p| + O(¢?)). The
performing a Taylor expansion at order 4 of function £ and using £”(0) =

E®(0) =0, EW(0) = —9%, we obtain

Flp) = F(0)(1 = %) + O(p%),

with f(0) = H;\(/@ Lemma A.4 is proven. m
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