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Stress time [s]

Nst : trap density

ET : trap depth

ft : trap occupation probability

cn/en & cp/ep : electron and hole capture/emission rates
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Thermal treatment Sample

A B C D E F

(i) NH3 750°C 30min X X X

(ii) N2 750°C 2min X X X

(iii) N2 1050°C spike X X

(iv) N2 950°C 15s X X
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Abstract— The goal of this work is to investigate the effect of NH3 nitridation on high-κ materials in view of application to non-volatile memories (NVMs). Our 

study focuses on the trapping properties of thick HfO2 and HfAlO layers (6-14nm-thick). Through in-depth physical and electrical analyses, we demonstrate that an 

appropriate nitridation of these layers significantly reduces the charge trapping phenomena. Based on morphological analyses and analytical models, we argue that the 

lower trapping capability can be related to a smaller ratio of the crystalline phase of the high-κ layers.

Conclusion —

Sample description
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Results and discussion
Programming characteristics of the capacitors

Localization of the trapped charge:
interface or bulk distribution?
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Materials study
Based on Auger measurements, the nitrogen incorporation after NH3

anneal was found localized:

HfO2 layer   ► At the Si-sub/high-k interface. 

HfAlO layer ► In the high-k bulk layer: nitrogen absorption~15%.

 The NH3 anneal limited the crystallization of the HfAlO layer.Si–N Sub

SiO2 – 2nm

HfO2

HfAlO 1:2

6 – 10 – 14 nm

HTO – 10nm

Poly Si N+

Trapping layers capacitor devices : 
High-k were integrated as charge trapping layers in capacitors in order to investigate 

their trapping properties, depending on the thermal treatments

 Tunnel oxide: SiO2 – 2nm

 Trapping layer : HfO2 or HfAlO (57% Hf ) – 6nm, 10nm or 14nm.

 Blocking oxide: High Thermal Oxide (HTO) – 10nm

High-κ thermal treatments :
Post-deposition anneals (PDA):

(i)  nitridation treatment, under NH3 at 750°C during 30min. Role: trap passivation

(ii) inert treatment, under N2 at 750°C during 1 min

High temperature anneals, simulating the dopant activation : 

(iii) spike anneal under N2 at 1050°C. 

(iv) 950°C under N2 during 15s.

HfO2 layer: 
High temperature anneal ► Trapping increasing

Nitridation treatment ► Trapping reduction

HfAlO layer: 
High temperature anneal ► Trapping increasing

Nitridation treatment ► Trapping reduction of layers that have undergone a high T° anneal

Charge loss rate does not increase after anneals 

 Tunnel oxide is not modified after high 

temperature anneals or nitridation treatment

Cross section : 5x10-18 cm2

Nt  : 4.5x1019 cm3

ET=0.8eV

HfO2:

ΔEc = 1.8eV

ΔEv = 3eV

k=20

SiO2:

ΔEc = 3eV

ΔEv = 4.9eV

k=3.9

2nm 6nm 10nm

 Correlation with the smaller ratio of crystalline phase 

of nitridated HfAlO layer (see TEM images)

Si–N Sub

Poly Si N+

σ

Si–N Sub

Poly Si N+

ρ

Simulations of trapping in the high-k layer

Interface normalization is consistent with the experimental results

Bulk normalization do not match with the experimental data

 Most of the trapped charges are located close to the 

High-k/bottom oxide interface (the charging time constants 

increase with the distance between the traps and the cathode).

Analytical model based on the SRH statistics presented in [6] and [7]

Good fit with the experimental data

The charging time constants increase with the distance between the traps and the cathode

The trapping capability of the studied high-k layers increases with the crystalline ratio 

(electrical results + TEM observations)

The electron trapping mainly occurs at the bottom oxide/high-k interface due to faster charging time constants 

(electrical results + simulations)

NH3 anneals can be used to reduce the parasitic trapping in high-k layers: suitable for interpoly or tunnel applications
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Polycrystalline structure

10nm

Sample C :

Polycrystalline structure

6nm

10nm

HTO - 10nm

HfAlO - 6nm

SiO2 - 2nm

Sample B: amorphous structure

Introduction — High-κ materials are currently under strong investigation for non-volatile memory (NVM) applications. They can offer important benefits both when they are used as interpoly 

(IPD) layer [1, 2], in terms of coupling and insulating properties, and as tunnel stacks [3, 4], due to the improved injection properties. However, the important trap density which characterizes these new 

materials constitutes a serious roadblock for the large-scale device integration, due to the VT instability and the trap-assisted gate leakage currents [5]. However, it is also possible to benefit from high-κ 

deep traps when they are used for charge storage in charge-trap memory applications [6]. Hence, today a major challenge is the process control of the high-κ trap properties.
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