

NH 3 treatments of Hf-based layers for application as NVM active dielectrics

Marc Bocquet, G. Molas, E. Martínez, H. Grampeix, F. Martin, J P Colonna,

J Buckley, C. Licitra, N. Rochat, T Veyron, et al.

▶ To cite this version:

Marc Bocquet, G. Molas, E. Martínez, H. Grampeix, F. Martin, et al.. NH 3 treatments of Hf-based layers for application as NVM active dielectrics. IEEE Semiconductor Interface Specialists Conference (SISC), Dec 2007, Arlington, United States. hal-01745607

HAL Id: hal-01745607 https://hal.science/hal-01745607v1

Submitted on 30 Mar 2018 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NH3 treatments of Hf-based layers for application as NVM active dielectrics

Abstract— The goal of this work is to investigate the effect of NH₃ nitridation on high-κ materials in view of application to non-volatile memories (NVMs). Our study focuses on the trapping properties of thick HfO₂ and HfAlO layers (6-14nm-thick). Through in-depth physical and electrical analyses, we demonstrate that an appropriate nitridation of these layers significantly reduces the charge trapping phenomena. Based on morphological analyses and analytical models, we argue that the lower trapping capability can be related to a smaller ratio of the crystalline phase of the high-κ layers.

Introduction — High-κ materials are currently under strong investigation for non-volatile memory (NVM) applications. They can offer important benefits both when they are used as interpoly (IPD) layer ^[1, 2], in terms of coupling and insulating properties, and as tunnel stacks ^[3, 4], due to the improved injection properties. However, the important trap density which characterizes these new materials constitutes a serious roadblock for the large-scale device integration, due to the VT instability and the trap-assisted gate leakage currents ^[5]. However, it is also possible to benefit from high- κ deep traps when they are used for charge storage in charge-trap memory applications ^[6]. Hence, today a major challenge is the process control of the high-κ trap properties.

Poly Si N+

Sample description

Materials study

leti

Trapping layers capacitor devices :

- High-k were integrated as charge trapping layers in capacitors in order to investigate
 - their trapping properties, depending on the thermal treatments
- Tunnel oxide: $SiO_2 2nm$
- Trapping layer : HfO_2 or HfAlO (57% Hf) 6nm, 10nm or 14nm.
- Blocking oxide: High Thermal Oxide (HTO) 10nm

High-к thermal treatments :

- Post-deposition anneals (PDA):
 - (i) nitridation treatment, under NH₃ at 750°C during 30min. Role: trap passivation
- (ii) inert treatment, under N₂ at 750°C during 1 min High temperature anneals, simulating the dopant activation : (iii) spike anneal under N_2 at 1050°C. (iv) 950°C under N_2 during 15s.

(1v) 950°C under N_2 during 15s.							/ HTO – 10nm
Thermal treatment	Sample						
	A	B	C	D	E	F	HfO ₂
(i) NH ₃ 750°C 30min	X		X		X		HfAIO 1:2
(ii) N ₂ 750°C 2min		X		X		X	$\begin{array}{c c} \hline 0 - 10 - 14 \\ \hline 0 \hline \hline 0 \\ \hline 0 \hline$
(iii) N ₂ 1050°C spike			X	X			$\int 3IO_2 - 2IIII$
(iv) N ₂ 950°C 15s					Х	X	Si–N Sub

Based on Auger measurements, the nitrogen incorporation after NH₃ anneal was found localized:

- HfO₂ layer \blacktriangleright At the Si-sub/high-k interface.
- HfAlO layer \blacktriangleright In the high-k bulk layer: nitrogen absorption~15%.

Polycrystalline structure

Sputter time (au)

 \rightarrow The NH₃ anneal limited the crystallization of the HfAIO layer.

Results and discussion

Programming characteristics of the capacitors

- Localization of the trapped charge: interface or bulk distribution?
- Interface normalization is consistent with the experimental results

Simulations of trapping in the high-k layer

- Analytical model based on the SRH statistics presented in [6] and [7]
- Good fit with the experimental data

The charging time constants increase with the distance between the traps and the cathode

Charge loss rate does not increase after anneals

Tunnel oxide is not modified after high temperature anneals or nitridation treatment \mathbb{N}_{st} : trap density $\mathbf{E}_{\mathbf{T}}$: trap depth

cn/en & cp/ep : electron and hole capture/emission rates

Most of the trapped charges are located close to the **High-k/bottom oxide interface** (the charging time constants increase with the distance between the traps and the cathode).

Conclusion —

The trapping capability of the studied high-k layers increases with the crystalline ratio (electrical results + TEM observations)

[1] G. Molas et al, ESSDERC, 2006, pp. 242-245. [2] D. Wellekens et al, ESSDERC, 2006, pp. 238-241. [3] B. Govoreanu, et al, in IEEE Electron Device Letters, February 2003. [4] *R. van Schaijk et al, IEEE NVSMW, 2006, pp. 50-51.* [5] M. Bocquet et al, Proc. of ICMTD, 2007, pp. 239-242. [6] J. Buckley et al, IEDM Tech. Dig., 2006, pp. 251-254. [7] X. Garros et al, IRPS, 2007, pp. 61-66.

The electron trapping mainly occurs at the bottom oxide/high-k interface due to faster charging time constants (electrical results + simulations)

NH₃ anneals can be used to reduce the parasitic trapping in high-k layers: suitable for interpoly or tunnel applications