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Information constraints in multiple agent
problems with i.i.d. states

Samson Lasaulce and Sophie Tarbouriech

Abstract In this chapter we describe several recent results on the problem of coordi-
nation among agents when they have partial information about a state which affects
their utility, payoff, or reward function. The state is not controlled and rather evolves
according to an independent and identically distributed (i.i.d.) random process. This
random process might represent various phenomena. In control, it may represent a
perturbation or model uncertainty. In the context of smart grids, it may represent a
forecasting noise [1]. In wireless communications, it may represent the state of the
global communication channel. The approach used is to exploit Shannon theory to
characterize the achievable long-term utility region. Two scenarios are described.
In the first scenario, the number of agents is arbitrary and the agents have causal
knowledge about the state. In the second scenario, there are only two agents and the
agents have some knowledge about the future of the state, making its knowledge
non-causal.

Chapter overview

This chapter concerns the problem of coordination among agents. Technically, the
problem is as follows. We consider a set of K ≥ 2 agents. Agent k has a utility,
payoff, or reward function uk(x0,x1, ...,xK) where xk, k ≥ 1, is the action of Agent
k while x0 is the action of an agent called Nature. The Nature’s actions correspond
to the system state and is assumed to be non-controlled; more precisely, Nature
corresponds to an independent and identically distributed (i.i.d.) random process.
The problem studied in this chapter is to characterize the long-term utility region
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under various assumptions in terms of observation at the agents. By long-term utility
for Agent k we mean the following quantities:

Uk(σ1, ...,σK) = lim
T→+∞

1
T
E

[
T

∑
t=1

ui(X0(t), ...,XK(t))

]
(1)

where σk = (σk,t)t≥1 is a sequence of functions which represent the strategy of
Agent k, xk(t) is the action chosen by Agent k at time or stage t ≥ 1, t being the
time or stage index; concerning notations, as far as random variables are concerned,
capital letters will stand for random variables whereas, small letters will stand for
realizations. Note that, implicitly, we assume sufficient conditions (such as utility
boundedness) under which the above limit exists. The functions σk,t , k ∈ {1, ...,K},
map the available knowledge to the action of the considered agent. The available
knowledge depends on the information assumptions made (e.g., the knowledge of
the state can be causal or non-causal). We will distinguish between two scenarios.
In the first scenario, agents are assumed to have some causal knowledge (in the wide
sense) about the state whereas, in the second scenario non-causal knowledge (i.e.,
some knowledge about the future) about the state is assumed. The second scenario
is definitely the most difficult one technically, which is why only two agents will be
assumed.

Remarkably, the long-term utility region, whenever available, can be character-
ized in terms of elegant information constraints. For instance, in the scenario of
non-causal state information, determining the long-term utility region amounts to
solving a convex optimization problem whose non-trivial constraints are the derived
information-theoretic constraints.

1 Introduction

An important example, which illustrates well how the results reported in this chap-
ter can be used, is given by the problem of power control in wireless networks (see
Fig. 1). Each transmitter has to adapt its transmit power not only to the fluctuations
of the quality of the link (or channel gain) between itself and its respective receiver
but also to the transmit power levels of the other transmitters that uses the same radio
resources (and therefore create interference). This problem is a multi-agent problem
where the agents are the transmitters, the actions of the agents are their transmit
power level, and the system state is given by the set of channel gains of the various
links in presence; channel gains are typically non-controlled variables (they do not
depend on the transmit power levels) and evolve in a random manner; in practice,
each transmitter has a partial and imperfect knowledge of the system state. Now, if
the agents (namely, the transmitters in the considered example) have a certain per-
formance criterion, which will be referred to as a utility function for the general
setup considered in the chapter, the important problem of knowing the best achiev-
able utilities appears. For instance, a transmitter might be designed to maximize its
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communication rate. The best data rate of a given transmitter would be obtained if
all the other transmitters would be silent (i.e., when they don’t transmit) and when
the transmitter perfectly adapts its power to the channel gain fluctuations of the link
between itself and its intended receiver. Obviously, in the real life, several transmit-
ters will transmit at the same time, hence the need to coordinate as well as possible,
which leads to the problem of characterizing the best performance possible in terms
of coordination. This precisely corresponds to the problem of characterizing the
long-term utility region i.e., the set of possible achievable points (U1,U2, ...,UK) for
a given definition for the strategies. In Sections. 3 and 4, we will consider two differ-
ent definitions for the strategies, each of them corresponding to a given observation
structure that is, to some given information assumptions.

Fig. 1 The problem of power control in wireless networks is a typical application for the results
provided in this chapter. The agents are the transmitters, the agents’ actions are given by the trans-
mit power level, and the agent utility function may be its communication rate with its intended
receiver.

2 General problem formulation

This chapter aims at describing a few special instances of a general problem which
has been addressed in several recent works [2], [3], [4], [5], [6], [7], [8].
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We consider K ≥ 2 agents, where Agent k ∈ {1, . . . ,K} produces time-t action
xk(t) ∈Xk

1 for t ∈ {1, . . . ,T}, T ≥ 1, the set Xk representing the set of actions
for Agent k. Each agent has access to some observations associated with the chosen
actions and the realization of a random process {X0,t}T

t=1 = {X0,1, ...,X0,T} ∈X T
0 .

In the motivating example described in the introduction, the random process was
given by the global wireless channel state i.e., the set of qualities of all the links in
presence. In a control problem, the random process may represent a non-controlled
perturbation or some uncertainty. All agents’ actions and the random process also
affect the agents’ individual stage or instantaneous utility functions u1, ...,uK where
for all k ∈ {1, ...,K} the function uk writes:

uk : X0×X1× ...×XK → R
(x0,x1, ...,xK) 7→ uk(x0,x1, ...,xK)

. (2)

One of the main goals of the chapter is to explain how to determine the set of feasible
expected long-term utilities:

U (T )
k = E

[
1
T

T

∑
t=1

uk(X0,t ,X1,t , ...,XK,t)

]
, (3)

that are reachable by some strategies for the agents. The set of feasible utilities is
fully characterized by the set of feasible averaged joint probability distributions on
the (K+1)−uple {(X0,t ,X1,t , ...,XK,t)}T

t=1. Indeed, denoting by PX0,t X1,t ...XK,t the joint
probability distribution of the time (K +1)−uple (X0,t ,X1,t , ...,XK,t), we have

U (T )
k =

1
T

T

∑
t=1

E [uk(X0,t ,X1,t , ...,XK,t)]

=
1
T

T

∑
t=1

∑
x0,...,xK

PX0,t X1,t ...XK,t (x0,x1, ...,xK)uk(x0,x1, ...,xK)

= ∑
x0,...,xK

uk(x0,x1, ...,xK)
1
T

T

∑
t=1

PX0,t X1,t ...XK,t (x0,x1, ...,xK).

Therefore the problem of characterizing the long-term utility region amounts to de-
termining the set of averaged distributions

P(T )(x0,x1, ...,xK) =
1
T

T

∑
t=1

PX0,t X1,t ...XK,t (x0,x1, ...,xK) (4)

that can be induced by the agents’ strategies. For simplicity, and in order to obtain
closed-form expressions, we shall focus on the case where T → ∞ [11], [2].

We consider two types of scenarios with two different observation structures. In
the first scenario, referred to as the non-causal state information scenario, the agents

1 Throughout the chapter, we assume that all the alphabets such as Xk are finite.
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observe the system states non-causally. That means, at each stage t ∈ {1, . . . ,T} they
have some knowledge about the entire state sequence XT

0 = (X0,1, . . . ,X0,T ). In the
second scenario, referred to as the causal state information scenario, the agents learn
the states only causally and therefore, at any stage t, the agents have some knowl-
edge about the sequence X t

0 = (X0,1, . . . ,X0,t), where throughout the chapter we use
the shorthand notations Am and am for the tuples (A1, . . . ,Am) and (a1, . . . ,am), when
m is a positive integer.

3 Coordination among agents having causal state information

3.1 Limiting performance characterization

Firstly, we define the information structure under consideration. At every instant
or stage t, Agent k is assumed to have an image or a partial observation Sk,t ∈Sk
of the nature state X0,t with respect to which all agents are coordinating. In the
case of the wireless power control example described in the introduction, this might
be the knowledge of local channel state information, e.g., a noisy estimate of the
direct channel between the transmitter and the associated receiver. The observations
Sk,t are assumed to be generated by a memoryless channel. By memoryless it is
meant that the joint conditional probability on sequences of realizations factorizes
the product of individual conditional probabilities. Denoting by kk the transition
probability for the observation structure of Agent k, the memoryless condition can
be written as:

P(sT
K |xT

0 ) =
T

∏
t=1

kk(sk(t)|x0(t)). (5)

The strategy or the sequence of decision functions for Agent k, σk,t , is defined by:

σk,t : S t
k −→ Xk (6)

(sk(1),sk(2), ...,sk(t)) 7−→ xk(t) (7)

where Sk is observation alphabet for Agent k.
As mentioned in Section 2, the problem of characterizing the long-term utility

region amounts to determining the achievable correlations measured in terms of
joint distribution, hence the notion of implementability for a distribution.

Definition 1. (Implementability) The probability distribution Q(x0,x1, ...,xN) is im-
plementable if there exist strategies (σ1,t)t≥1, ...,σK,t)t≥1 such that as T →+∞, we
have for all x ∈X ,

1
T

T

∑
t=1

PX0,t ...XK,t (x0, ...,xK)−→ Q(x0, ...,xK) (8)

where PX0,t ...XK,t is the joint distribution induced by the strategies at stage t.
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The following theorem is precisely based on the notion of implementability and
characterizes the achievable long-term utilities that are implementable under the
information structure (6); for this, we first define the weighted utility function w as
a convex combination of the individual utilities uk:

w =
K

∑
k=1

λkuk. (9)

Theorem 1. [5] Assume the random process X0,t to be i.i.d. following a probability
distribution ρ and the available information to the transmitters Sk,t to be the output
of a discrete memoryless channel obtained by marginalizing the joint conditional
probability k . An expected payoff w is achievable in the limit T → ∞ if and only if
it can be written as:

w = ∑
x0 ,x1 ,...xN ,
u,s1,...sN

ρ(x0)PU (u)k(s1, ...,sK |x0)×(
∏

K
k=1 PXk|Sk,U (xk|sk,u)

)
w(x0,x1, ...,xK).

(10)

where U is an auxiliary variable, which can be optimized, and PXk|Sk,U (xk|sk,u) is
the probability that Agent k, chooses action xk after observing sk,u.

The auxiliary variable U is an external lottery known to the agents beforehand,
which can be used to achieve better coordination e.g., in presence of individual con-
straints or at equilibrium. Theorem 1 allows us find all the achievable utility vectors
(U1, ...,UK). Indeed, the long-term utility region being convex (this readily follows
from a time-sharing argument), its Pareto boundary can be found by maximizing
the weighted utility w. Of course, remains the problem of determining the strategies
allowing to operate at a given arbitrary point of the utility region. Since, this prob-
lem is non-trivial and there does not exist any methodology for this, we provide an
algorithm which allows one to find a suboptimal strategies. Indeed, the associated
multilinear optimization problem is too complex to be solved and to overcome this
we resort to an iterative technique which is much less complex but is suboptimal.

3.2 An algorithm to determine suboptimal strategies

One of the merits of Theorem 1 is to provide the best performance achievable in
terms of long-term utilities when agents have an arbitrary observation structure.
However, Theorem 1 does not provide practical strategies which would allow a
given utility vector to be reached. Finding ”optimal” strategies consists in finding
good sequences of functions as defined per (6), which is an open and promising
direction to be explored. More pragmatically, the authors of [6] proposed to restrict
to stationary strategies which are merely functions of the form fk : Sk→Xk. This
choice is motivated by practical considerations such as computational complexity
and it is also coherent with the current state of the literature. The water-filling solu-
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tion is a special instance of this class of strategies. To find good decision functions,
the idea, which is proposed in [6], is to exploit Theorem 1. This is precisely the
purpose of this section.

The first observation we make is that the best performance only depends on the
vector of conditional probabilities PX1|S1,U , ...,PXK |SK ,U and the auxiliary variable
probability distribution PU , the other quantities being fixed. It is therefore relevant
to try to find an optimum vector of lotteries for every action possible and use it to
take decisions. Since this task is typically computationally demanding, a possible
and generally suboptimal approach consists in applying a distributed algorithm to
maximize the expected weighted utility. The procedure proposed in [6] is to use the
sequential best response dynamics (see e.g., [10]). The idea is to fix all the vari-
ables (that are probability distributions here) expect one and maximize the expected
weighted utility with respect to the only possible degree of freedom. This operation
is then repeated by considering another variable. The key observation to be made is
then to see that when the distributions of the other agents are fixed, the best distribu-
tion for Agent k boils down to a function of sk, giving us a candidate for a decision
function which can be used in practice.

To describe the algorithm of [6] (see also Fig. 2), we first rewrite the expected
weighted utility in the following manner:

W = ∑
x0,x1,...xK ,u,s1,...sK

ρ(x0)PU (u)× (11)

Γ (s1, ...,sK |x0,x1, ...,xK)× (12)(
K

∏
k=1

PXk|Sk,U (xk|sk,u)

)
w(x0,x1, ...,xK)

= ∑
ik, jk,u

δik, jk,uPXk|Sk,U (xk|sk,u) (13)

where ik, jk,u are the respective indices of xk,sk,u and

δik, jk,u =

[
∑
i0

ρ(xi0)Γk(sk|xi0)∑
i−k

uk(xi0 ,xi1 , ...xiK )×

∑
j−k

∏
k′ 6=k

Γk′(s jk′ |x0) ∏
k′ 6=k

PXk|Sk,U (xk|sk,u)

]
PU (u) (14)

where i−k, j−k are the indices which represent ik, jk being constant, while all
the other indices are summed over. To make the description of the algorithm
clearer, we have also assumed the independence of the observation channels as
well as independence of the signal with the strategies chosen by the agents, i.e.,
Γ (s1, ...,sK |x0,x1, ...,xK) =Γ1(s1|x0)× . . .×ΓK(sK |x0). Written under this form, for
every agent, optimizing the expected weighted utility in a distributed manner im-
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plies giving a probability 1 for the optimal coefficient δik, jk,u, and every player does
that turn by turn.

!

Fig. 2 Pseudo-code of the Algorithm proposed in [6] to find suboptimal strategies.

To conclude, note that the above algorithm always converges. This can be proved
e.g., by induction or by calling for an exact potential game property (see e.g., [9],
[10]).
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4 Coordination between two agents having noncausal state
information

4.1 Limiting performance characterization

As explained previously, the problem of characterizing the utility region in the case
where the state is known non-causally to the agents is much more involved techni-
cally. Even in the case of two agents, one may have to face with an open problem,
depending on the observation structure assumed for the agents. Here, we consider
an important case for which the problem can be solved, as shown in [5]. Therein,
the authors consider an asymmetric observation structure. In the case of non-causal
state information, agents’ strategies are sequences of functions that are defined as
follows. For Agent 1 the strategy is defined by:

σ1,t : S T
1 ×Y t−1

1 −→ X1 (15)
(s1(1), ...,sK(T ),y1(1), ...,y1(t−1)) 7−→ x1(t) (16)

and for Agent 2 the strategy is defined by:

σ2,t : S T
2 ×Y t−1

2 −→ X2 (17)
(s2(1), ...,s2(t),y2(1), ...,y2(t−1)) 7−→ x2(t) (18)

where yk(t) ∈ Yk is the observation Agent k has about the triplet (x0(t),x1(t),x2(t))
whereas sk(t) ∈Sk is the observation Agent k has about the state x0(t). Note that
distinguishing between the two observations sk and yk is instrumental. Indeed, it
does not make any sense physically speaking to assume that an agent might have
some future knowledge about the actions of the other agents, which is why the
feedback signal is strictly causal. On the other hand, assuming some knowledge
about the future of the non-controlled state x0 perfectly makes sense, as motivated
the chapter abstract and the works quoted in the list of references. More precisely the
observation is assumed to be the output of a memoryless channel whose transition
law is denoted by Γ :

Pr
[
Y1(t) = y1(t),Y2(t) = y2(t)

∣∣X t
0 = st

0,X
t
1 = xt

1,X
t
2 = xt

2,Y
t−1
1 = yt−1

1 ,Y t−1
2 = yt−1

2

]
= Γ (y1(t),y2(t)|sx0(t),x1(t),x2(t)).

(19)
We now provide the characterization of the set of implementable probability dis-

tributions both for the considered non-causal strategies.

Theorem 2. [5] The distribution Q is implementable if and only if it satisfies the
following condition2

2 The notation IQ(A;B) indicates that the mutual information should be computed with respect to
the probability distribution Q.
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IQ(S1;U)≤ IQ(V ;Y2|U)− IQ(V ;S1|U). (20)

where U and V are auxiliary random variables and Q is any joint distribution that
factorizes as

Q(x0,s1,s2,u,v,x1,x2,y1,y2) =
ρ(x0)k(s1,s2|x0)PUV X1|S1(u,v,x1|s1)PX2|US2(x2|u,s2)Γ (y1,y2|x0,x1,x2)

(21)

In practice, to plot the utility region, one typically has to solve a convex optimiza-
tion problem. To be illustrative, we consider the special case of [2] namely, Y =X1.
Denoting by H the entropy function, the problem of finding the Pareto-frontier of the
utility region exactly corresponds to solving the following optimization problem:

minimize − ∑
x0,x1,x2

Q(x0,x1,x2)w(x0,x1,x2)

subject to HQ(X0)+HQ(X2)−HQ(X0,X1,X2) ≤ 0
−Q(x0,x1,x2) ≤ 0

−1+ ∑
x0,x1,x2

Q(x0,x1,x2) = 0

−ρ(x0)+ ∑
x1,x2

Q(x0,x1,x2) = 0

.

The above problem can be shown to be convex (see [2]). In the next section we
exploit this result to assess the performance gain brought by implementing coordi-
nation for distributed power control in wireless networks.

4.2 Application to distributed power control

Here we apply the results of the previous section to the wireless power control prob-
lem.

A flat-fading interference channel (IC) with two transmitter-receiver pairs is con-
sidered. Transmissions are assumed to be time-slotted and synchronized; the time-
slot or stage index is denoted by t ∈ N∗. For k ∈ {1,2} and “` = −k” (−k stands
for the terminal other than k), the signal-to-noise plus interference ratio (SINR)
at Receiver k on a given stage writes as SINRk = gkkxk

σ2+g`kx−k
where xk ∈ X IC

i =

{0,Pmax} is the power level chosen by Transmitter k, gk` represents the channel
gain of link k`, and σ2 the noise variance. If Transmitter 1 is fully informed of
x0 = (g11,g12,g21,g22) for the next stage and Transmitter 2 has no transmit CSI
while both transmitters want to maximize the average of a common stage payoff
which is wIC(x0,x1,x2) = ∑

2
k=1 f (SINRk(x0,x1,x2)), there may be an incentive for

Transmitter 1 to inform Transmitter 2 what to do for the next stage; a typical choice
for f is f (a) = log(1+ a). Since Transmitter 1 knows the optimal pair of power
levels to be chosen on the next stage, say (x∗1,x

∗
2) ∈ arg max

(x1,x2)
w(x0,x1,x2), a simple
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coded power control (CPC) policy for Transmitter 1 consists in transmitting on stage
t at the level Transmitter 2 should transmit on stage t + 1. Therefore, if Transmit-
ter 2 is able to observe the actions of Transmitter 1, power levels will be optimally
tuned half of the time. Such a simple policy, which will be referred to as semi-
coordinated PC (SPC), may outperform (in terms of average payoff) pragmatical
PC policies such as the one for which the maximum power level is always chosen
by both Transmitters ((x1,x2) = (Pmax,Pmax) is the Nash equilibrium of the static
game whose individual utilities are uk = f (SINRk)).

The channel gain of the link between Transmitter k and Receiver ` is assumed
to be Bernouilli distributed: gk` ∈ {gmin,gmax} is i.i.d. and Bernouilli distributed
gk` ∼ B(pk`) with P(gk` = gmin) = pk`. The utility function is either f (a) =
log(1 + a) or f (a) = a. We define SNR[dB] = 10log10

Pmax
σ2 and set gmin = 0.1,

gmax = 1.9, σ2 = 1. The low and high interference regimes (LIR for low inter-
ference regime, HIR and for high interference regime) are respectively defined by
(p11, p12, p21, p22) = (0.5,0.9,0.9,0.5) and (p11, p12, p21, p22) = (0.5,0.1,0.1,0.5).
At last, Y ≡ X1 and we define two reference PC policies : full power control (FPC)
policy xk = Pmax for every stage ; the semi-coordinated PC (SPC) policy x2 = Pmax,
x†

1 ∈ argmaxx1 wIC(x0,x1,Pmax). Fig. 3 and 4 depict the relative gain in % in terms of
average payoff versus SNR[dB] which is obtained by costless optimal coordination
and information-constrained coordination. Compared to FPC, gains are very signif-
icant whatever the interference regime and provided the SNR has realistic values.
Compared to SPC, the gain is of course less impressive since SPC is precisely a
coordinated PC scheme but, in the HIR and when the communication cost is negli-
gible, gains as high as 25% can be obtained with f (a) = log(1+ a) and 45% with
f (a) = a.

5 Conclusion

In this chapter, we have described an information-theoretic framework to charac-
terize the limiting performance of a multiple agent problem. More precisely, the
theoretical performance analysis has been conducted in terms of long-term utility
region. We have seen that the problem amounts to finding the set of implementable
joint distribution over the system state and actions. Both in the scenarios of causal
and non-causal state information, auxiliary random variables appear in the charac-
terization of implementable joint distribution. To be able to assess numerically the
limiting performance for given utility functions, an optimization problem has to be
solved. In the causal state information scenario, the problem is multilinear and the
challenge is due to the dimension of the vectors involved. In the non-causal state
information scenario, the problem to be solved is a convex problem; more precisely,
the information constraint function which translates the agent capabilities in terms
of coordination is a convex function of the joint distribution. Note that although the
state is not controlled and evolves randomly, the general problem of characterizing
the utility region for any number of agents is not trivial. Of course, the problem
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Fig. 3 Relative gain in terms of expected payoff (“CPC/FPC - 1” in [%]) vs SNR[dB] obtained
with CPC (with and without communication cost) when the reference power control policy is to
transmit at full power (FPC).
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Fig. 4 The difference with Fig. 3 is that the reference power control policy is the semi-coordinated
power control policy (SPC), which is already a CPC policy. Additionally, the top curve is obtained
with f (a) = a.
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is even more difficult in the case of controlled states, which therefore constitutes
one possible non-trivial extension of the results reported in this chapter. Another
interesting research direction would be to consider the case where the state and
actions are continuous. A first attempt to this has be made in [12]. Interestingly,
the corresponding problem can be shown to be strongly connected to the famous
Witsenhausen problem [13], [14], which is a typical decentralized control problem
where control and communication intervene in an intricate manner.
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