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3 LIRIS, Université Lyon 1, France

Abstract. We propose a SSReflect library for logic programming in
the Datalog setting. As part of this work, we give a first mechaniza-
tion of standard Datalog and of its extension with stratified negation.
The library contains a formalization of the model theoretical and fix-
point semantics of the languages, implemented through bottom-up and,
respectively, through stratified evaluation procedures. We provide cor-
responding soundness, termination, completeness and model minimality
proofs. To this end, we rely on the Coq proof assistant and SSReflect. In
this context, we also construct a preliminary framework for dealing with
stratified programs. We consider this to be a necessary first step towards
the certification of security-aware data-centric applications.

1 Introduction

Datalog [7] is a deductive language capturing the function-free fragment of Horn
predicate logic. Syntactically a subset of Prolog [22], Datalog has the advantage
of guaranteed termination (in PTIME [33]). Expressivity-wise, it extends rela-
tional algebra/calculus with recursion; also, it allows for computing transitive
closures and, generally, for compactly formulating graph traversals and ana-
lytics. Comparatively, more popular query languages, such as SQL, XPath, or
SPARQL, are either not capable of expressing these directly/inherently or do so
with limitations. Given the present ubiquity of interconnected data, seamlessly
supporting such recursive queries has regained relevance. For example, these are
key to Web infrastructure, being used by webcrawlers and PageRank algorithms.
Efficiently querying and reasoning about graph topologies is, in fact, fundamen-
tal in a variety of areas, including, but not limited to: the Semantic Web; social,
communication and biological networks; and geographical databases.

Due to its purely declarative nature and simplicity (few primitives), Datalog
lends itself particularly well to domain-specific extensions. As surveyed in the
literature [28,2], multiple additions to its core language have been introduced,
e.g, with negation, existentials, aggregates, functions, updates, etc. Indeed, Dat-
alog can be seen as the lingua franca for a plethora of custom query languages,
e.g, Starlog [25], Overlog [24], Netlog [17], datalog± [6], SociaLite [30], LogiQL
[4], etc. In a recent resurge of interest [1], marked by the Datalog 2.0 Workshop,
such tailored versions of Datalog found new applications in data integration,
security [10], program analysis [34], cloud computing, parallel and distributed
programming [18], etc. An overview is given in [19].



These applications have not only sparked interest in the academic setting,
but also in the industry one. Indeed, commercial Datalog engines have started to
gain popularity, with LogicBlox [23], Google’s Yedalog [8], Datomic [9], Exeura
[12], Seemle [29], and Lixto [16], as prominent examples. Moreover, their scope
has extended to include safety-critical, large-scale use cases. A case in point is
the LogicBlox platform, which underpins high-value web retail and insurance
applications. Its Datalog-based engine unifies the modern enterprise software
stack (encompassing bookkeeping, analytics, planning, and forecasting) and runs
with impressive efficiency [5]. Also, more recently, Datalog has been proposed
as tool for automating the verification of railway infrastructure high-security
regulations against its CAD design [26].

We argue that, given the role Datalog is starting to play in data-centric and
security-sensitive applications, obtaining the strong guarantees Coq certifica-
tion provide is an important endeavour. We envisage a methodology aimed at
ultimately certifying a realistic Datalog engine by refinement. This would en-
compass: 1) a high-level formalization suitable for proof-development and, thus,
employing more inefficient algorithms, 2) a mechanization of the real-world en-
gine implementation, and 3) (refinement) proofs of their extensional equivalence.

This paper describes the first necessary step towards realizing this vision. As
such, we propose a deep specification of a stratified Datalog inference engine in
the SSReflect extension [15] of the Coq proof-assistant [27]. With respect to the
scope of our formalization, the chosen fragment is the one used by LogicBlox and
it is the most expressive one that retains termination4. Our chosen evaluation
heuristic is bottom-up, as ensuring that top-down/more optimized heuristics
do not get stuck in infinite loops is harder to establish. Also, this allows us
to modularly extend and reuse our standard Datalog inference engine in the
stratified setting. We do envisage supporting, for example, magic-sets rewriting.

The choice of using SSReflect is due to the fact that the model-theoretic
semantics of Datalog is deeply rooted in finite model theory. To quote [21]: “For
many years, finite model theory was viewed as the backbone of database theory,
and database theory in turn supplied finite model theory with key motivations
and problems. By now, finite model theory has built a large arsenal of tools that
can easily be used by database theoreticians without going to the basics”. The
Mathematical Components library5, built on top of SSReflect, is especially well-
suited for our purposes, as it was the basis of extensive formalizations of finite
model theory, in the context of proving the Feit-Thompson theorem [14], central
to finite group classification. Moreover, as detailed next, our proof-engineering
efforts were much greatly by our reuse of the fintype, finset and bigop libraries.

Contributions Our key modeling choice is properly setting up the base types
to make the most of the finite machinary of SSReflect. Heavily relying on type
finiteness ensures desirable properties, such as decidability. As every Datalog
program has a finite model [2], i.e, its Herbrand Base (Section 2.1), this does
not restrict generality. The paper’s contributions are:
4 Arithmetic predicates and skolem function destroy this guarantee.
5 http://math-comp.github.io/math-comp/
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1. a certified “positive” inference engine for standard Datalog: We give a scal-

able formalization of the syntax, semantics and bottom-up inference of Dat-
alog. The latter consists of mechanizing a matching algorithm for terms,
atoms and clause bodies and proving corresponding soundness and complete-
ness results. We formally characterize the engine, by establishing soundness,
termination, completeness and model minimality, based on monotonicity,
boundedness and stability proofs.

2. a certified “negative” inference engine for stratified Datalog: We extend the

syntax and semantics of Datalog with negation and mechanize its stratified
evaluation. We model program stratification and “slicing”, embed negated
literals as flagged positive atoms and extend the notion of an interpretation
to that of a “complemented interpretation”. The crux of stratified evalua-
tion is the reuse of the “positive” engine, for each program “slice”. When
formally characterizing the “negative engine”, this required us to precisely
identify additionaly properties, i.e, incrementality and modularity, and to
correspondingly extend the previous library. We establish soundness, termi-
nation, completeness and model minimality.

Lastly, we extract our standard Datalog engine in OCaml as a proof-of-concept.

Organization The paper is organized as follows. In Section 2, we give a concise
theoretical summary of standard and stratified Datalog. In Sections 3 and 4, we
present the corresponding SSReflect inference engine mechanizations. Section 5
describes related work. We conclude in Section 6.

2 Preliminaries

We review the theory of standard and stratified Datalog in Sections 2.1 and 2.2.

2.1 Standard Datalog

Syntax Given the sets V, C and P of variables, constants and predicate sym-
bols, a program is a finite collection of clauses, as captured by the grammar:
Programs P ::= C1, . . . , Ck

Clauses C ::= A0 ← A1, . . . , Am

Atoms A ::= p(~t), where p ∈ P is denoted sym(A) and has arity ar(p) = |~t| 6
Terms t ::= x ∈ V | c ∈ C

A clause is a sentence separating hypotheses body atoms from the conclusion
head atom. Clauses allow inferring new facts (true assertions) from existing ones.
The below restriction ensures finitely many facts are inferred.

Definition 1 (Safety). A standard Datalog program is safe iff all of its clauses
are safe, i.e, all of their head variables appear in their body.
Consequentely, safe program facts are ground 7.

6 Term sequences t1, . . . , tn are abbreviated as ~t and |~t| = n denotes their length.
7 We call language constructs that are variable-free, ground and, otherwise, open.
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Semantics Let B(P ) be the Herbrand Base of P , i.e, the ground atom set built
from its predicates and constants. By the Herbrand semantics, an interpretation
I is a subset of B(P ). For a valuation ν, mapping bound clause variables to
program constants8, and a clause C equal to p0(~t0) ← p1(~t1), . . . , pm( ~tm), the
clause grounding9 νC is p0(ν~t0)← p1(ν~t1), . . . , pm(ν ~tm). Note that variables are
implicitly universally quantified and, hence, occurences of the same variable in
C have to be instantiated in the same way by ν. C is then satisfied by I iff, for
all valuations ν, if {p1(ν~t1), . . . , pm(ν ~tm)} ⊆ I then p0(ν~t0) ∈ I. I is a model
of P iff all clauses in P are satisfied by I. The intended semantics of P is MP,
its minimal model w.r.t set inclusion. This model-theoretic semantics indicates
when an interpretation is a model, but not how to construct such a model. Its
computational counterpart centers on the least fixpoint of the following operator.

Definition 2 (The TP Consequence Operator). Let P be a program and I
an interpretation. The TP operator is the set of program consequences F :
TP (I) = {F ∈ B(P ) | F ∈ I ∨ F = head(νC), for C ∈ P ∧ body(νC) ⊆ I}.

Definition 3 (Fixpoint Evaluation). The iterations of the TP operator are:
TP ↑ 0 = ∅, TP ↑ (n+ 1) = TP (TP ↑ n). Since TP is monotonous and bound by
B(P ), the Knaster-Tarski theorem [31] ensures ∃ω, TP ↑ ω =

⋃
n≥0

TP ↑ n, where

TP ↑ ω = lfp(TP ). The fixpoint evaluation of P is thus defined as lfp(TP ).

Note that, by van Emden and Kowalski [32], lfp(TP ) = MP.

Example 1. Let P =

 e(1, 3). e(2, 1). e(4, 2). e(2, 4).
t(X,Y )← e(X,Y ).
t(X,Y )← e(X,Z), t(Z, Y ).

TP ↑ 0 = ∅; TP ↑ 1 = {e(1, 3), e(2, 1), e(4, 2), e(2, 4)}; TP ↑ 2 = TP ↑ 1 ∪
{t(1, 3), t(2, 1), t(4, 2), t(2, 4)}; TP ↑ 3 = TP ↑ 2 ∪ {t(2, 3), t(4, 1), t(4, 4), t(2, 2)}.
The minimal model of P is MP = lfp(TP ) = TP ↑ 4 = TP ↑ 3 ∪ {t(4, 3)}.

2.2 Stratified Datalog

Syntax Adding stratified negation amounts to extending the syntax of stan-
dard Datalog, by introducing literals and adjusting the definition for clauses.

Clauses C ::= A← L1, . . . , Lm

Literals L ::= A | ¬A
Definition 4 (Predicate Definitions). Let P be a program. The definition
def (p) of program predicate p ∈ P is {C ∈ P | sym(head(C)) = p}.

Definition 5 (Program Stratification and Slicing).
Let P be a program with clauses C of the form H ← L1, . . . , Lk,¬Lk+1, . . . ,¬Ll,
where body+(C) = {L1, . . . , Lk} and body−(C) = {Lk+1, . . . ,¬Ll}. Consider a
mapping σ : P → [1, n], such that: 1) σ(sym(Lj)) ≤ σ(sym(H)), for j ∈ [1, k],
and 2) σ(sym(Lj)) < σ(sym(H)), for j ∈ [k + 1, l]. σ induces a partitioning 10

8 The set of program constants is also called its active domain, denoted adom(P ).
9 Also called clause instantiation.

10 t denotes the pairwise disjoint set union.
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P =
⊔

j ∈ [1,n]

Pσj
with σj = {p ∈ P | σ(p) = j} and Pσj

=
⋃

p∈σj

def (p). We have

that, for C ∈ Pσj
: 1) if p ∈ {sym(L) | L ∈ body−(C)}, then def (p) ⊆

⋃
1≤ k< j

Pσk
,

and 2) if p ∈ {sym(L) | L ∈ body+(C)}, then def (p) ⊆
⋃

1≤ k≤ j
Pσk

.

We call P stratified; σ, a stratification; σj, a stratum; the set {Pσ1
, . . . , Pσn

},
a program slicing 11 and Pσj

, a program slice, henceforth denoted Pj.

Stratification ensures program slices Pj are semipositive programs [2] that can
be evaluated independently. Indeed, checking if their negated atoms belong to
some interpretation I is equivalent to checking that their positive counterparts
belong to the complement of I w.r.t the Herbrand Base B(Pj).

Semantics The model of a stratified Datalog program is given by the step-
wise, bottom-up computation of the least fixpoint model for each of its slices.

Definition 6 (Stratified Evaluation). For P = P1 t . . . tPn, the model 12,
Mn = TPn ↑ ω(Mn−1), where Mj = TPj ↑ ω(Mj−1), j ∈ [2, n], M1 = TP1 ↑ ω(∅).

Example 2. Let P =


q(a). s(b). t(a). r(X)← t(X).
p(X)← ¬q(X), r(X).
p(X)← ¬t(X), q(X).
q(X)← s(X),¬t(X).

for which a stratification

σ(s) = 1, σ(t) = 1, σ(r) = 1, σ(q) = 2, σ(p) = 3, with the strata σ1 = {s, t, r},
σ2 = {q}, σ3 = {p}, induces the partitioning P = P1 t P2 t P3, with the slices

P1 =
{s(b). t(a).
r(X)← t(X).

P2 =
{ q(a).
q(X)← s(X),¬t(X).

P3 =
{p(X)← ¬q(X), r(X).
p(X)← ¬t(X), q(X).

M1 = TP1
↑ ω(∅) = {r(a), s(b), t(a)}; M2 = TP2

↑ ω(M1) = M1 ∪ {q(a), q(b)};
MP = M3 = TP3

↑ ω(M2) = M2 ∪ {p(b)} = {r(a), s(b), t(a), q(a), q(b), p(b)}.

3 A Mechanized Standard Datalog Engine

In Section 3.1, we present our formalization of the syntax and semantics of stan-
dard Datalog. Next, in Section 3.2, we detail the bottom-up evaluation heuristic
of its inference engine. We formally characterize the engine in Section 3.3.

3.1 Formalizing Standard Datalog

Syntax We assume the stype and ctype finite types for predicate symbols and
constants, as well as an arity finitely-supported function.

Variables (stype ctype : finType) (arity : {ffun stype → nat}).

Terms are encoded by an inductive joining 1) variables, of ordinal type ’I_n,
bound by a computable maximal value n, and 2) constants.

11 A program can have multiple stratifications.
12 As proven by Apt[3], Mn is independent from the choice of stratification.
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Inductive term : Type := Var of ’I_n | Val of constant.

To avoid redundant case analyses, we henceforth distinguish between ground and
open (non-ground) atoms and clauses. Intuitively, this dichotomy is desirable as
the former are primitives of the semantics, while the latter, of the syntax. As
such, ground atoms are modeled with gatom records, joining the rgatom base type
and the boolean well-formedness condition wf_rgatom. The first packs a symbol
and a list of constants, while the second ensures symbol arity and argument size
match. Note that, as we set up the gatom subtyping predicate to be inherently
proof-irrelevant, checking ground atom equality can be conveniently reduced to
checking the equality of their underlying base types. Atoms are encoded similarly,
except that their base type packs a term list instead.

Inductive rgatom := RawGAtom of symtype & seq constant.

Definition wf_rgatom rga := size (arg rga) == arity (sym rga).

Structure gatom := GAtom {rga :> rgatom; _ : wf_rgatom rga}.

(Ground) clauses pack a distinguished (ground) atom and a (ground) atom list.
Programs are clause lists. The safety condition formalization mirrors Definition 1.

Semantics An interpretation i is a finite set of ground atoms. Note that, since
its type, interp, is finite, the latter has a lattice structure, whose top element,
setT, is the set of all possible ground atoms. The satisfiability of a ground clause
gcl w.r.t i is encoded by gcl_true. As in Section 2.1, we define i to be a model
of a program p, if, for all grounding substitutions ν, it satisfies all corresponding
clause instantiations. We discuss the encoding of grounding substitutions next.
Notation interp := {set gatom}.

Definition gcl_true gcl i := (* i satisfies gcl *)

all (mem i) (body_gcl gcl) =⇒ (head_gcl gcl ∈ i).

Definition prog_true p i := (* i is a model of p *)

∀ ν : gr, all (fun cl ⇒ gcl_true (gr_cl ν cl) i) p.

3.2 Mechanizing the Bottom-up Evaluation Engine

The inference engine iterates the logical consequence operator from Definition 2.
To build a model of an input program, it maintains a current “candidate model”
interpretation, which it iteratively tries to “repair”. The repair process first
identifies clauses that violate satisfiability, i.e, whose ground instance bodies are
in the current interpretation, but whose heads are not. The current interpretation
is then “fixed”, adding to it the missing facts, i.e, the head groundings. This
is done by a matching algorithm, incrementally constructing substitutions that
homogeneously instantiate all clause body atoms to “candidate model” facts.
As safety ensures all head variables appear in the body, these substitutions are
indeed grounding. Hence, applying them to the head produces new facts. Once
the current interpretation is “updated” with all facts inferrable in one forward
chain step, the procedure is repeated, until a fixpoint is reached. We prove this to
be a minimal model of the input program. As outlined, the mechanization of the
engine centers around the encoding of substitutions and of matching functions.
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Groundings and Substitutions Following a similiar reasoning to that in
Section 3.1, we define a separate type for grounding substitutions (groundings).
Both groundings and substitutions are modeled as finitely-supported functions
from variables to constants, except for the latter being partial 13.

Definition gr := {ffun ’I_n → constant}.

Definition sub := {ffun ’I_n → option constant}.

We account for the engine’s gradual extension of substitutions, by introducing
a partial ordering14 over these. To this end, using finitely-supported functions
was particularly conveninent, as they can be used both as functions and as lists
of bindings. We say a substitution σ2 extends a substitution σ1, if all variables
bound by σ1 appear in σ2, bound to the same values. We model this predicate
as sub_st15 and the extension of a substition σ, as the add finitely-supported
function.Definition sub_st σ1 σ2 := (* henceforth denoted as σ1 ⊆ σ2 *)

[∀ v : ’I_n, if σ1 v is Some c then (v, c) ∈ σ2 else true].

Definition add σ v c :=
[ffun u ⇒ if u == v then Some c else σ u].

Term Matching Matching a term t to a constant d under a substitution σ,
will either: 1) return the input substitution, if t or σ t equal d, 2) return the
extension of σ with the corresponding binding, if t is a variable not previously
bound in σ, or 3) fail, if t or σ t differ from d.
Definition match_term d t σ : option sub :=
match t with

| Val e ⇒ if d == e then Some σ else None

| Var v ⇒ if σ v is Some e

then (if d == e then Some σ else None)

else Some (add σ v d)

end.

Atom Matching We define the match_atom and match_atom_all functions that
return substitutions and, respectively, substitution sets, instantiating an atom
to a ground atom and, respectively, to an interpretation. To compute the substi-
tution matching a raw-atom ra to a ground one rga, we first check their symbols
and argument sizes agree. If such, we extend the initial substitution σ, by it-
erating term matching over the itemwise pairing of their terms zip arg2 arg1.
As term matching can fail, we wrap the function with an option binder extract-
ing the corresponding variable assignations, if any. Hence, match_raw_atom is a
monadic option fold that either fails or returns substitutions extending σ. Atom
matching equals raw atom matching, by coercion to raw_atom.

Definition match_raw_atom rga ra σ : option sub :=
match ra, rga with RawAtom s1 arg1, RawGAtom s2 arg2 ⇒
if (s1 == s2) && (size arg1 == size arg2)

then foldl (fun acc p ⇒ obind (match_term p.1 p.2) acc)

(Some σ) (zip arg2 arg1)

13 Groundings can be coerced to substitutions and substitutions can be lifted to ground-
ings, by padding with a default element def.

14 We establish corresponding reflexivity, antisymmetry and transitivity properties.
15 We cand use the boolean quantifier, as the ordinal type of variables is finite.
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else None

end.

Definition match_atom σ a ga := match_raw_atom σ a ga.

Next, we compute the substitutions that can match an atom a to a fact in an
interpretation i. This is formalized as the set of substitutions σ that belong to
the set gathering all substitutions matching a to ground atoms ga in i.

Definition match_atom_all i a σ :=
[set σ’ | Some σ’ ∈ [set match_atom ga a σ | ga ∈ i]].

While the match_term and match_atom functions are written as Gallina algo-
rithms, we were able to cast the match_atom_all algorithm mathematically as:
{σ′ | σ′ ∈ {match atom ga a σ | ga ∈ i}}. The function is key for expressing
forward chain and fixpoint evaluation. Propagating its implementation, we could
“reduce” soundness and completeness proofs to set theory ones. As such, it was
particularly convenient we could rely on finset properties.

Body Matching The match_body function extends an initial substitution set
ssb with bindings matching all atoms in the atom list tl, to an interpretation
i. These are built using match_atom_all and uniformly extending substitutions
matching each atom to i. We model this based on our definition of foldS, a
monadic fold for the set monad. This iteratively composes the applications of
a seeded function to all the elements of a list, flattening intermediate outputs.
Definition match_body i tl ssb := foldS (match_atom_all i) ssb tl.

The TP Consequence Operator We model the logical consequences of a
clause cl w.r.t an interpretation i as the set of new facts inferrable from cl by
matching its body to i. Such a fact, gr_atom_def def σ (head cl), is the head
instantiation with the grounding matching substitution σ16.

Definition emptysub : sub := [ffun _ ⇒ None].

Definition cons_clause def cl i :=
[set gr_atom_def def σ (head cl) |

σ ∈ match_body i (body cl) [set emptysub]].

One-Step Forward Chain One inference engine iteration computes the set
of all consequences inferrable from a program p and an interpretation i. This
amounts to taking the union of i with all the program clause consequences. The
encoding mirrors the mathematical expression i ∪

⋃
cl ∈ p

cons_clause def i cl17.

Definition fwd_chain def p i :=
i ∪ \bigcup_(cl ← p) cons_clause def cl i.

3.3 Formal Characterization of the Bottom-Up Evaluation Engine

We first state the main intermediate theorems, leading up to the key Theorem 7.
The first two results are established based on analogous ones for terms and atoms.
We assume an intepretation i and a seed substitution set ssb.

16 gr_atom_def lifts substitutions to groundings, by padding with the def constant.
17 Thanks to using the bigcup operator from the SSReflect bigop library.
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Theorem 1 (Matching Soundness). Let tl be an atom list. If a substitution
σ is in the output of match_body, extending ssb with bindings matching tl to i,
then there exists a ground atom list gtl such that: 1) gtl is the instantiation of
tl with σ and 2) all gtl atoms belong to i. Proof by induction on tl.

Theorem 2 (Matching Completeness). Let cl be a clause and ν a ground-
ing compatible with any substitution σ in ssb. If ν makes the body of gcl true
in i, then match_body outputs a compatible substitution smaller or equal to ν.
Proof by induction on tl.

Theorem 3 (TP Stability). Let cl be a clause and i an interpretation satis-
fying it. The facts inferred by cons_clause are in i. Proof by Theorem 1.

Theorem 4 (TP Soundness). Let cl be a safe clause and i an interpretation.
If the facts inferred by cons_clause are in i, then i is a model of cl.
Proof by Theorems 3 and 2.

Theorem 5 (Forward Chain Stability and Soundness). Let p be a safe
program. Then, an interpretation i is a model of p iff it is a fwd_chain fixpoint.18

Proof by Theorems 3 and 4.

Theorem 6 (Forward Chain Fixpoint Properties). The fwd_chain func-
tion is monotonous, increasing and bound by B(P ).
Proof by compositionality of set-theoretical properties.

Theorem 7 (Bottom-up Evaluation Soundness and Completeness). Let
p be a safe program. By iterating forward chain as many times as there are
elements in B(P ), the engine terminates and outputs a minimal model for p.
Proof by Theorems 5 and 6, using a corrolary of the Knaster-Tarski result, as
established in Coq by [11].

4 A Mechanized Stratified Datalog Engine

We overview the formalization of the syntax and semantics of stratified Datalog
in Section 4.1. In Section 4.2 we present the mechanization of the stratified
Datalog engine. We outline its formal characterization in Section 4.3.

4.1 Formalizing Stratified Datalog

Syntax We extend the syntax of positive Datalog with literals, reusing the
definitions of ground/non-ground atoms. As before, we distinguish ground/non-
ground literals and clauses. The former are encoded enriching ground/non-
ground atoms with a boolean flag, marking whether they are negated.

Inductive glit := GLit of bool * gatom.

Inductive lit := Lit of bool * atom.

(Ground) clauses pack (ground) atoms and (ground) literal lists. The encodings
of programs and their safety condition are the same as in Section 3.1.

18 We state this as the fwd_chainP reflection lemma.
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Semantics The only additions to Section 3.1 concern ground literals and
clauses. The glit_true definition captures the fact that an interpretation i satis-
fies a ground literal gl, by casing on the latter’s flag. If it is true, i.e the literal is
positive, we check if the underlying ground atom is in i; otherwise, validity holds
if the underlying ground atom is not in i. The definition for the satisfiability of
a ground clause w.r.t i is analogous to that given in Section 3.1.

Definition glit_true i gl := if flag gl then gatom_glit gl ∈ i

else gatom_glit gl /∈ i.

4.2 Mechanizing the Stratified Evaluation Engine

Stratification We model a stratification as a list of symbol sets, implicitly as-
suming the first element to be its lowest stratum. As captured by is_strata_rec,
the characteristic properties mirror those in Definition 5. Namely, these are 1)
disjointness: no two strata share symbols, 2) negative-dependency : stratum sym-
bols can only refer to negated symbols in strictly lower strata, and 3) positive-
dependency : stratum symbols only depend on symbols from lower or equal strata.
We can give an effective, albeit inefficient algorithm for computing a stratifica-
tion satisfying the above, by exploring the finite set of all possible program
stratifications. Hence, we use the finite search infrastructure of SSReflect, i.e,
the [pick e : T | P e] construct that, among all inhabitants of a finite type T,
picks an element e, satisfying a predicate P.

Positive Embedding To enable the reuse of the forward chain operator in
Section 3.2, we will embed the Coq representation of Datalog programs with
stratified negation into that of standard Datalog programs, used by the positive
engine. This is realized via functions that encode/uncode constructs to/from
their “positive” counterparts; we denote these as p·q/x·y. To the end, we aug-
ment symbol types with a boolean flag, marking if the original atom is negated.
For example, ps(a)q = (s,>)(a), p¬s(a)q = (s,⊥)(a), x(>, s)(a)y = s(a) and
x(⊥, s)(a)y = ¬s(a). We show literal encoding/uncoding are inverse w.r.t each
other and, hence, injective, by proving the corresponding cancelation lemmas.
For clauses, encoding is inverse to uncoding and, hence, injective, only when the
flag of its encoded head atom is positive. This is expressed by a partial cance-
lation lemma; for the converse direction the cancelation lemma holds. Based on
these injectivity properties, we prove Theorem 9.

Stratified Evaluation Let p be a program and str, a strata. The evalp strat-
ified evaluation of p traverses str, accumulating the processed strata as str<.
It then computes the minimal model, cf. Theorem 7, for each induced program
slice, pstr< . The main modeling choice is to construct the complemented intepre-
tation for pstr< . This accounts for the all “negative” facts that hold, by absence
from the current model. These will be collected, uncoded, in a second interpre-
tation. The corresponding cinterp type is thus defined as an interp pairing.
To bookkeep the accumulated strata str<, we wrap cinterp and the symbol set
type of str< in a cumulative interpretation type, sinterp .
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Notation cinterp := (interp * interp)%type.

Definition sinterp := (cinterp * {set symtype})%type.

At an intermediate step, having already processed str<, we encode the p_curr

program slice up to the current stratum ss. We feed it, together with the previous
complemented interpretation ci, to the positive engine pengine_step. Since this
operates on positive interpretations 19, we have to relate the two. As such, we
define the c2p_bij bijection between them, i.e, mutually inverse functions c2p

and p2c, and apply it to obtain the needed types. The positive engine iterates
the forward chain operator, as many times as there are elements in the program
bound bp 20. It adds the facts inferable from the current stratum and outputs a
positive intepretation. It does not add the implicitly true negated ground atoms.
Definition bp : pinterp := setT.

Definition pengine_step def (pp : pprogram) (ci : cinterp) : cinterp :=
p2c (iter #|bp| (P.fwd_chain pdef pp) (c2p ci)).

Hence, the ciC complementation function augments m_next.2 with the comple-
ment of m_next.1 w.r.t setT 21; the complement is filtered to ensure only atoms
with symbols in ss are retained (see the encoding of ic_ssym).

Variables (def : constant) (p : program) (psf : prog_safe p).

Fixpoint evalp (str : strata) ((ci, str<) : sinterp) :=
match str with [::] ⇒ (ci, str<) | ss :: str> ⇒
let p_curr := slice_prog p (str< ∪ ss) in

let m_next := pengine_step def (encodep p_curr) ci in

let m_cmpl := ciC ss m_next in evalp str> (m_cmpl, str< ∪ ss)

end.

The resulting m_cmpl is thus well-complemented. As encoded by ci_wc, the prop-
erty states that, for any ci of cinterp type and any symbol set ss, the ci

components partition the slicing of setT with ss, i.e, the set of all ground atoms
with symbols in ss. The next strata, i.e, str>, are processed by the recursive call.

Example 3. Revisiting Example 2, the slice encodings, marked by p·q, are:

pP1q =
{ (>, s)(b). (>, t)(a).

(>, r)(X)← (>, t)(X).
pP2q =

{ (>, q)(a).
(>, q)(X)← (>, s)(X), (⊥, t)(X).

pP3q =
{

(>, p)(X)← (⊥, q)(X), (>, r)(X).
(>, p)(X)← (⊥, t)(X), (>, q)(X).

The positive engine computes the minimal model of pP1q: M1 = TpP1q ↑ ω(∅) =
{(>, r)(a), (>, s)(b), (>, t)(a)}; complementing it w.r.t the Herband Base B(pP1q)
yields: M1 = {(⊥, r)(b), (⊥, s)(a), (⊥, t)(b)}). Next, when passing the resulting
positive interpretation M2 ∪ M2 to the positive engine: M2 = TP2

↑ ω(M1 ∪
M1) = M1 ∪ {(>, q)(a), (>, q)(b)}. Its complement w.r.t B(pP2q) is M2 =
{(⊥, r)(b), (⊥, s)(a), (⊥, t)(b)}. Finally, M3 = TP3 ↑ ω(M2 ∪ M2) = M2 ∪
{(>, p)(b)}, whose complement w.r.t B(pP3q) is M3 = {(⊥, p)(a)}. The stratified
model M(P) of P is the uncoding of M3, i.e, {r(a), s(b), t(a), q(a), q(b), p(b)}.
19 “Positive” interpretations are sets of ground atoms with a true flag.
20 This corresponds to the set of all “positive” ground atoms.
21 This is the top element of interp cf. Section 3.1
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4.3 Formal Characterization of the Stratified Evaluation Engine

We first state the main intermediate results, leading up to the key Theorem 16.
We assume p to be a program; pp, pp1 and pp2, “positive” programs; ci, an initial
complemented interpretation and pdef, the default “positive” constant.

Theorem 8 (Complementation Preserves Satisfiability). If symbols of a
stratum ss do not appear negated in the body of p clauses, then the satisfiability
of pp w.r.t (c2p ci) is preserved when complementing ci w.r.t ss.

Theorem 9 (Encoding/Uncoding Preserves Satisfiability). In the fol-
lowing, assume ci is well-complemented. If ci.1 is a model of p and all p

symbols are in ss, then (c2p ci) is a model of ppq. If (c2p ci) is a model of
pp and all pp body symbols are in ss, then ci.1 is a model of xppy.
Intuitively, this is captured by the relations in the informal diagram below:22

pp : pprogram p : program

pi : pinterp (ci.1, ci.2) : cinterp

|= |=
encodep

uncodep

c2p

p2c

Theorem 10 (Preservation Properties). If pp is safe, its pengine_step eval-
uation w.r.t ci is sound, bound by its Herbrand Base, increasing and stable.

Theorem 11 (Symbol Stratifiability). The atoms outputted by pengine_step

are either in ci or have symbols appearing in the head of pp clauses.

Theorem 12 (Positivity). The “negative” component of ci, i.e, ci.2, is not
modified by pengine_step, i.e, (pengine_step pdef pp ci).2 = ci.2.

Theorem 13 (Injectivity). If pp1 and pp2 are extensionally equal, their cor-
responding pengine_step evaluations w.r.t ci are equal.

Theorem 14 (Modularity). If pp1 is safe and does not contain head symbols
in pp2 and pi is a model of pp1, then evaluating the concatenation of pp1 and
pp2 w.r.t pi equals the union of their respective evaluations w.r.t pi.

Theorem 15 (Incrementality). Let p be a stratifiable program; (ci, str≤), a
cumulative interpretation of pstr≤ , and ss, a stratum. Assume that: 1) ppstr≤q
symbols are not head symbols in ppssq, 2) pstr≤ symbols are in str≤, 3) ci is
well-complemented w.r.t str≤, and 4) ci.1 is a model of pstr≤ . The pengine_step

evaluation of ppstr≤ ∪ ssq increments ci.1 with facts having symbols in ss.

22 The dashed encodep arrow marks the partiality of the cancelation lemma.
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Stratified Evaluation Invariant Let p be a stratifiable program and (ci,
str≤), a cumulative interpretation of pstr≤ . The invariant of stratified evaluation
si_invariant states: 1) ci.1 is a model of pstr≤ , 2) pstr≤ symbols are in str≤, 3)
ci is well-complemented with respect to str≤, and 4) ci symbols are in str≤.

Theorem 16 (Stratified Evaluation Soundness and Completeness). Let
p be a program, str, a strata - consisting of lower and upper strata, str≤ and
str>

23 - and ci, a complemented interpretation. If the input cumulative in-
terpretation (ci, str≤) satisfies the above invariant conditions, then the output
interpretation of the one-step evaluation of pstr> also satisfies them.
Proof by induction on str>.

As a corollary of Theorem 16, the encoded evaluation engine computes a model
for a stratifiable program p. A more subtle discussion concerns its minimality :

Example 4. Let P =


p← q.
r ← ¬q.
s← ¬q.
t← ¬q.

 = P1 t P2, P1 =
{
p← q.

}
, P2 =

 r ← ¬q.
s← ¬q.
t← ¬q.

.

As M1 = TP1
↑ ω(∅) = ∅, M2 = TP2

↑ ω(M1) = {r, s, t}, the computed model
MP = {r, s, t} differs from the minimal model Mmin

P = {p}.
This is because the minimality of a computed stratified model depends on fixing
its input. Hence, a model is minimal w.r.t others, if they agree on the submodel
relative to the accumulated stratification. Since we need to consider the previous
and current candidates, we state the is_min_str_rec condition independently
from the strata invariant conditions. Its proof also follows by induction on str>.

5 Related Work

The work of [20] provides a Coq formalization of the correctness and equiva-
lence of forward and backward, top-down and bottom-up semantics, based on
a higher-order abstract syntax for Prolog. Related to our work, as it provides
formal soundness proofs regarding the fixpoint semantics, it nonetheless differs
in perspective and methodology. Also, while we do not support function symbols
and other evaluation heuristics, we do support negation and manage to establish
correctness and completeness for the underlying algorithms of bottom-up infer-
ence. The work in [10] gives a Coq mechanization of standard Datalog in the
context of expressing distributed security policies24. The development contains
the encoding of the language, of bottom-up evaluation and decidability proofs. In
our corresponding formalizations, we did not need to explicitly prove the latter,
as we set up our types as finite. While we did not take into account modelling
security policies, the scope of our established results is wider.

23 i.e, str≤ stratifies pstr≤ and str> stratifies pstr>
24 http://www.cs.nott.ac.uk/types06/slides/NathanWhitehead.pdf
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6 Conclusion, Lessons and Perspectives

The exercise of formalizing database aspects has been an edifying experience.
It helped clarify both the fundamentals underlying theoretical results and the
proof-engineering implications of making these machine readable and user reusable.

On the database side, it quickly became apparent that, while foundational
theorems appeared intuitively clear, if not obvious, understanding their rigorous
justification required deeper reasoning. Resorting to standard references (even
comprehensive ones, such as [2]), led at times to the realization that low-level
details were either glanced over or left to the reader. For instance, to the best
of our knowledge, no scrupulous proofs exist for the results we established. In-
deed, as these are theoretically uncontroversial, their proofs are largely taken
for granted and, understandably so, as they ultimately target database prac-
titioners. Hence, these are mostly assumed in textbook presentations or when
discussing further language extensions. It was only by mechanizing these proofs
“from the ground up”, in a proof assistant, that the relevance of various prop-
erties (e.g, safety and finiteness), the motivation behind certain definitions (e.g,
predicate intensionality/extensionality, strata restrictions, logical consequence,
stratified evaluation), or the precise meaning of ad-hoc notions/notations (e.g,
“substitution compatibility”, B(P ), model restrictions) became apparent.

As it is well known, database theory is based on solid mathematical foun-
dations, from model theory to algebra. This suggests that, when compared to
off-the-shelf program verification, verification in the database context requires
that proof systems have good support for mathematics. It was an interesting
to discover, in practice, the extent to which database theory proofs could be
recast into mathematical ones. To exemplify, by expressing forward chain as an
elegant set construct, we transferred proofs about Datalog inference engines into
set-theory ones, which are more natural to manipulate. Conversely, when for-
malizing the stratified semantics of Datalog with negation, we were compelled
to resort to some ad-hoc solutions to handle the lack of native library support for
lattice theory. Indeed, textbooks largely omit explainations as to why and how
it is necessary to reason about such structures when proving properties of strat-
ified evaluation. To this end, we were led to introduce specialized notions, such
as interpretation complementation. Also, we had to explicitly establish that, at
each evaluation step, the Herbrand Base of the program’s restriction w.r.t the
set of already processed strata symbols was a well-complemented lattice.

On the theorem proving side, a crucial lesson is the importance of relying
on infrastructure that is well-tailored to the nature of the development. This
emerged as essential while working on the formalization of standard Datalog.
The triggering realization was that, as we could, without loss of generality, re-
strict ourselves to the active domain, models could be reduced to the finite
setting and atoms could be framed as finite types. Therefore, the Mathemati-
cal Components library, prominently used in carrying out finite model theory
proofs, stood out as best suited for our purposes. Indeed, since we could heavily
rely on the convenient properties of finite types and on already established set
theory properties, proofs were rendered much easier and more compact.
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Apart from having good library support, making adequate type encoding
choices proved essential. Having experimented with many alternatives, we no-
ticed first-hand the dramatic effect this could have on the size and complexity of
proofs. For example, while having too many primitives is undesirable in program-
ming language design, it turned out to be beneficial to opt for greater base gran-
ularity. Separating the type of ground and non-ground constructs helped both
at a conceptual level, in understanding the relevance of standard range restric-
tions, and at a practical one, in facilitating proof advancement. Another example
concerns the mechanization of substitutions. Having the option to representing
them as finitely supported functions, together with all the useful properties this
type has, was instrumental to finding a suitable phrasing for the soundness and
completeness of the matching algorithm. Indeed, as the algorithm incrementally
constructs groundings, it seemed natural to define an ordering on substitutions
leading up to these. Being able to have a type encoding allowing to regard sub-
stitutions both as functions and as lists was essential for this purpose. A final
example regards the formalization of models. As previously mentioned, setting
up the type of ground atoms as finite payed off in that we could use many re-
sults and properties from the fintype library, when reasoning about models -
which was often the case. In particular, we took advantage of the inherent lattice
structure of such types and did not need to explicitly construct B(P ).

Finally, relying on characteristic properties (the SSReflect P-lemmas), many
of which are conveniently stated as reflection lemmas, led to leaner proofs by
compositionality. In cases in which induction would have been the default ap-
proach, these provided a shorter alternative (also, see [13], which gives a com-
prehensive fomalization of linear algebra without induction).
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