Véronique Benzaken 
  
Évelyne Contejean 
  
Stefania Dumbrava 
  
Certifying Standard and Stratified Datalog Inference Engines in SSReflect

come  

Introduction

Datalog [START_REF] Ceri | Logic Programming and Databases[END_REF] is a deductive language capturing the function-free fragment of Horn predicate logic. Syntactically a subset of Prolog [START_REF] Lloyd | Foundations of Logic Programming[END_REF], Datalog has the advantage of guaranteed termination (in PTIME [START_REF] Vardi | The Complexity of Relational Query Languages[END_REF]). Expressivity-wise, it extends relational algebra/calculus with recursion; also, it allows for computing transitive closures and, generally, for compactly formulating graph traversals and analytics. Comparatively, more popular query languages, such as SQL, XPath, or SPARQL, are either not capable of expressing these directly/inherently or do so with limitations. Given the present ubiquity of interconnected data, seamlessly supporting such recursive queries has regained relevance. For example, these are key to Web infrastructure, being used by webcrawlers and PageRank algorithms. Efficiently querying and reasoning about graph topologies is, in fact, fundamental in a variety of areas, including, but not limited to: the Semantic Web; social, communication and biological networks; and geographical databases.

Due to its purely declarative nature and simplicity (few primitives), Datalog lends itself particularly well to domain-specific extensions. As surveyed in the literature [START_REF] Ramakrishnan | A Survey of Research on Deductive Database Systems[END_REF][START_REF] Abiteboul | Foundations of Databases[END_REF], multiple additions to its core language have been introduced, e.g, with negation, existentials, aggregates, functions, updates, etc. Indeed, Datalog can be seen as the lingua franca for a plethora of custom query languages, e.g, Starlog [START_REF] Lu | An Operational Semantics of Starlog[END_REF], Overlog [START_REF] Loo | Implementing Declarative Overlays[END_REF], Netlog [START_REF] Grumbach | Netlog, a Rule-Based Language for Distributed Programming[END_REF], datalog± [START_REF] Calì | Datalog±;: A Unified Approach to Ontologies and Integrity Constraints[END_REF], SociaLite [START_REF] Seo | Distributed Socialite: A Datalog-based Language for Large-scale Graph Analysis[END_REF], LogiQL [START_REF] Aref | Design and Implementation of the LogicBlox System[END_REF], etc. In a recent resurge of interest [START_REF]Datalog in Academia and Industry[END_REF], marked by the Datalog 2.0 Workshop, such tailored versions of Datalog found new applications in data integration, security [START_REF] Detreville | Binder, a Logic-Based Security Language[END_REF], program analysis [START_REF] Whaley | Using Datalog with Binary Decision Diagrams for Program Analysis[END_REF], cloud computing, parallel and distributed programming [START_REF] Hellerstein | The Declarative Imperative: Experiences and Conjectures in Distributed Logic[END_REF], etc. An overview is given in [START_REF] Huang | Datalog and Emerging Applications: An Interactive Tutorial[END_REF]. These applications have not only sparked interest in the academic setting, but also in the industry one. Indeed, commercial Datalog engines have started to gain popularity, with LogicBlox [23], Google's Yedalog [START_REF] Chin | Yedalog: Exploring Knowledge at Scale[END_REF], Datomic [START_REF] Datomic | [END_REF], Exeura [START_REF] Exeura | [END_REF], Seemle [29], and Lixto [START_REF] Gottlob | The Lixto Data Extraction Project: Back and Forth Between Theory and Practice[END_REF], as prominent examples. Moreover, their scope has extended to include safety-critical, large-scale use cases. A case in point is the LogicBlox platform, which underpins high-value web retail and insurance applications. Its Datalog-based engine unifies the modern enterprise software stack (encompassing bookkeeping, analytics, planning, and forecasting) and runs with impressive efficiency [START_REF] Bagan | gMark: Schema-Driven Generation of Graphs and Queries[END_REF]. Also, more recently, Datalog has been proposed as tool for automating the verification of railway infrastructure high-security regulations against its CAD design [START_REF] Luteberget | Rule-Based Incremental Verification Tools Applied to Railway Designs and Regulations[END_REF].

We argue that, given the role Datalog is starting to play in data-centric and security-sensitive applications, obtaining the strong guarantees Coq certification provide is an important endeavour. We envisage a methodology aimed at ultimately certifying a realistic Datalog engine by refinement. This would encompass: 1) a high-level formalization suitable for proof-development and, thus, employing more inefficient algorithms, 2) a mechanization of the real-world engine implementation, and 3) (refinement) proofs of their extensional equivalence.

This paper describes the first necessary step towards realizing this vision. As such, we propose a deep specification of a stratified Datalog inference engine in the SSReflect extension [START_REF] Gonthier | A Small Scale Reflection Extension for the Coq system[END_REF] of the Coq proof-assistant [START_REF]The Coq Development Team: The Coq Proof Assistant[END_REF]. With respect to the scope of our formalization, the chosen fragment is the one used by LogicBlox and it is the most expressive one that retains termination4 . Our chosen evaluation heuristic is bottom-up, as ensuring that top-down/more optimized heuristics do not get stuck in infinite loops is harder to establish. Also, this allows us to modularly extend and reuse our standard Datalog inference engine in the stratified setting. We do envisage supporting, for example, magic-sets rewriting.

The choice of using SSReflect is due to the fact that the model-theoretic semantics of Datalog is deeply rooted in finite model theory. To quote [START_REF] Libkin | The Finite Model Theory Toolbox of a Database Theoretician[END_REF]: "For many years, finite model theory was viewed as the backbone of database theory, and database theory in turn supplied finite model theory with key motivations and problems. By now, finite model theory has built a large arsenal of tools that can easily be used by database theoreticians without going to the basics". The Mathematical Components library5 , built on top of SSReflect, is especially wellsuited for our purposes, as it was the basis of extensive formalizations of finite model theory, in the context of proving the Feit-Thompson theorem [START_REF] Gonthier | A Machine-Checked Proof of the Odd Order Theorem[END_REF], central to finite group classification. Moreover, as detailed next, our proof-engineering efforts were much greatly by our reuse of the fintype, finset and bigop libraries.

Contributions

Our key modeling choice is properly setting up the base types to make the most of the finite machinary of SSReflect. Heavily relying on type finiteness ensures desirable properties, such as decidability. As every Datalog program has a finite model [START_REF] Abiteboul | Foundations of Databases[END_REF], i.e, its Herbrand Base (Section 2.1), this does not restrict generality. The paper's contributions are:

1. a certified "positive" inference engine for standard Datalog: We give a scalable formalization of the syntax, semantics and bottom-up inference of Datalog. The latter consists of mechanizing a matching algorithm for terms, atoms and clause bodies and proving corresponding soundness and completeness results. We formally characterize the engine, by establishing soundness, termination, completeness and model minimality, based on monotonicity, boundedness and stability proofs. 2. a certified "negative" inference engine for stratified Datalog: We extend the syntax and semantics of Datalog with negation and mechanize its stratified evaluation. We model program stratification and "slicing", embed negated literals as flagged positive atoms and extend the notion of an interpretation to that of a "complemented interpretation". The crux of stratified evaluation is the reuse of the "positive" engine, for each program "slice". When formally characterizing the "negative engine", this required us to precisely identify additionaly properties, i.e, incrementality and modularity, and to correspondingly extend the previous library. We establish soundness, termination, completeness and model minimality.

Lastly, we extract our standard Datalog engine in OCaml as a proof-of-concept.

Organization The paper is organized as follows. In Section 2, we give a concise theoretical summary of standard and stratified Datalog. In Sections 3 and 4, we present the corresponding SSReflect inference engine mechanizations. Section 5 describes related work. We conclude in Section 6.

Preliminaries

We review the theory of standard and stratified Datalog in Sections 2.1 and 2.2.

Standard Datalog

Syntax Given the sets V, C and P of variables, constants and predicate symbols, a program is a finite collection of clauses, as captured by the grammar: 

P
= x ∈ V | c ∈ C
A clause is a sentence separating hypotheses body atoms from the conclusion head atom. Clauses allow inferring new facts (true assertions) from existing ones. The below restriction ensures finitely many facts are inferred.

Definition 1 (Safety).

A standard Datalog program is safe iff all of its clauses are safe, i.e, all of their head variables appear in their body. Consequentely, safe program facts are ground7 .

Semantics Let B(P ) be the Herbrand Base of P , i.e, the ground atom set built from its predicates and constants. By the Herbrand semantics, an interpretation I is a subset of B(P ). For a valuation ν, mapping bound clause variables to program constants8 , and a clause C equal to p 0 ( t 0 ) ← p 1 ( t 1 ), . . . , p m ( t m ), the clause grounding9 νC is p 0 (ν t 0 ) ← p 1 (ν t 1 ), . . . , p m (ν t m ). Note that variables are implicitly universally quantified and, hence, occurences of the same variable in C have to be instantiated in the same way by ν. C is then satisfied by I iff, for all valuations ν, if {p 1 (ν t 1 ), . . . , p m (ν t m )} ⊆ I then p 0 (ν t 0 ) ∈ I. I is a model of P iff all clauses in P are satisfied by I. The intended semantics of P is M P , its minimal model w.r.t set inclusion. This model-theoretic semantics indicates when an interpretation is a model, but not how to construct such a model. Its computational counterpart centers on the least fixpoint of the following operator.

Definition 2 (The T P Consequence Operator). Let P be a program and I an interpretation. The T P operator is the set of program consequences F :

T P (I) = {F ∈ B(P ) | F ∈ I ∨ F = head(νC), for C ∈ P ∧ body(νC) ⊆ I}.
Definition 3 (Fixpoint Evaluation). The iterations of the T P operator are: T P ↑ 0 = ∅, T P ↑ (n + 1) = T P (T P ↑ n). Since T P is monotonous and bound by B(P ), the Knaster-Tarski theorem [START_REF] Tarski | A Lattice-Theoretical Fixpoint Theorem and its Applications[END_REF] ensures ∃ω, T P ↑ ω = n≥0 T P ↑ n, where

T P ↑ ω = lfp(T P ).
The fixpoint evaluation of P is thus defined as lfp(T P ). Note that, by van Emden and Kowalski [START_REF] Van Emden | The Semantics of Predicate Logic as a Programming Language[END_REF], lfp(T P ) = M P .

Example 1.

Let P =    e(1, 3). e(2, 1). e(4, 2). e(2, 4). t(X, Y ) ← e(X, Y ). t(X, Y ) ← e(X, Z), t(Z, Y ). T P ↑ 0 = ∅; T P ↑ 1 = {e(1, 3), e(2, 1), e(4, 2), e(2, 4)}; T P ↑ 2 = T P ↑ 1 ∪ {t(1, 3), t(2, 1), t(4, 2), t(2, 4)}; T P ↑ 3 = T P ↑ 2 ∪ {t(2, 3), t(4, 1), t(4, 4), t(2, 2)}.
The minimal model of P is M P = lfp(T P ) = T P ↑ 4 = T P ↑ 3 ∪ {t(4, 3)}.

Stratified Datalog

Syntax Adding stratified negation amounts to extending the syntax of standard Datalog, by introducing literals and adjusting the definition for clauses. 

(C) = {L 1 , . . . , L k } and body -(C) = {L k+1 , . . . , ¬L l }. Consider a mapping σ : P → [1, n], such that: 1) σ(sym(L j )) ≤ σ(sym(H)), for j ∈ [1, k], and 2) σ(sym(L j )) < σ(sym(H)), for j ∈ [k + 1, l]. σ induces a partitioning 10 P = j ∈ [1,n] P σj with σ j = {p ∈ P | σ(p) = j} and P σj = p ∈ σj def (p). We have that, for C ∈ P σj : 1) if p ∈ {sym(L) | L ∈ body -(C)}, then def (p) ⊆ 1 ≤ k < j P σ k , and 2) if p ∈ {sym(L) | L ∈ body + (C)}, then def (p) ⊆ 1 ≤ k ≤ j P σ k .
We call P stratified; σ, a stratification; σ j , a stratum; the set {P σ1 , . . . , P σn }, a program slicing 11 and P σj , a program slice, henceforth denoted P j .

Stratification ensures program slices P j are semipositive programs [START_REF] Abiteboul | Foundations of Databases[END_REF] that can be evaluated independently. Indeed, checking if their negated atoms belong to some interpretation I is equivalent to checking that their positive counterparts belong to the complement of I w.r.t the Herbrand Base B(P j ).

Semantics The model of a stratified Datalog program is given by the stepwise, bottom-up computation of the least fixpoint model for each of its slices.

Definition 6 (Stratified Evaluation). For P

= P 1 . . . P n , the model 12 , M n = T Pn ↑ ω(M n-1 ), where M j = T Pj ↑ ω(M j-1 ), j ∈ [2, n], M 1 = T P1 ↑ ω(∅). Example 2. Let P =        q(a). s(b). t(a). r(X) ← t(X). p(X) ← ¬q(X), r(X). p(X) ← ¬t(X), q(X). q(X) ← s(X), ¬t(X).
for which a stratification

σ(s) = 1, σ(t) = 1, σ(r) = 1, σ(q) = 2, σ(p) = 3, with the strata σ 1 = {s, t, r}, σ 2 = {q}, σ 3 = {p},
induces the partitioning P = P 1 P 2 P 3 , with the slices

P 1 = s(b). t(a). r(X) ← t(X). P 2 = q(a). q(X) ← s(X), ¬t(X). P 3 = p(X) ← ¬q(X), r(X). p(X) ← ¬t(X), q(X). M 1 = T P1 ↑ ω(∅) = {r(a), s(b), t(a)}; M 2 = T P2 ↑ ω(M 1 ) = M 1 ∪ {q(a), q(b)}; M P = M 3 = T P3 ↑ ω(M 2 ) = M 2 ∪ {p(b)} = {r(a)
, s(b), t(a), q(a), q(b), p(b)}.

A Mechanized Standard Datalog Engine

In Section 3.1, we present our formalization of the syntax and semantics of standard Datalog. Next, in Section 3.2, we detail the bottom-up evaluation heuristic of its inference engine. We formally characterize the engine in Section 3.3.

Formalizing Standard Datalog

Syntax We assume the stype and ctype finite types for predicate symbols and constants, as well as an arity finitely-supported function.

Variables (stype ctype : finType) (arity : {ffun stype → nat}).

Terms are encoded by an inductive joining 1) variables, of ordinal type 'I_n, bound by a computable maximal value n, and 2) constants. To avoid redundant case analyses, we henceforth distinguish between ground and open (non-ground) atoms and clauses. Intuitively, this dichotomy is desirable as the former are primitives of the semantics, while the latter, of the syntax. As such, ground atoms are modeled with gatom records, joining the rgatom base type and the boolean well-formedness condition wf_rgatom. The first packs a symbol and a list of constants, while the second ensures symbol arity and argument size match. Note that, as we set up the gatom subtyping predicate to be inherently proof-irrelevant, checking ground atom equality can be conveniently reduced to checking the equality of their underlying base types. Atoms are encoded similarly, except that their base type packs a term list instead. Semantics An interpretation i is a finite set of ground atoms. Note that, since its type, interp, is finite, the latter has a lattice structure, whose top element, setT, is the set of all possible ground atoms. The satisfiability of a ground clause gcl w.r.t i is encoded by gcl_true. As in Section 2.1, we define i to be a model of a program p, if, for all grounding substitutions ν, it satisfies all corresponding clause instantiations. We discuss the encoding of grounding substitutions next. 

Mechanizing the Bottom-up Evaluation Engine

The inference engine iterates the logical consequence operator from Definition 2.

To build a model of an input program, it maintains a current "candidate model" interpretation, which it iteratively tries to "repair". The repair process first identifies clauses that violate satisfiability, i.e, whose ground instance bodies are in the current interpretation, but whose heads are not. The current interpretation is then "fixed", adding to it the missing facts, i.e, the head groundings. This is done by a matching algorithm, incrementally constructing substitutions that homogeneously instantiate all clause body atoms to "candidate model" facts.

As safety ensures all head variables appear in the body, these substitutions are indeed grounding. Hence, applying them to the head produces new facts. Once the current interpretation is "updated" with all facts inferrable in one forward chain step, the procedure is repeated, until a fixpoint is reached. We prove this to be a minimal model of the input program. As outlined, the mechanization of the engine centers around the encoding of substitutions and of matching functions.

Groundings and Substitutions Following a similiar reasoning to that in Section 3.1, we define a separate type for grounding substitutions (groundings).

Both groundings and substitutions are modeled as finitely-supported functions from variables to constants, except for the latter being partial 13 .

Definition gr := {ffun 'I_n → constant}. Definition sub := {ffun 'I_n → option constant}.

We account for the engine's gradual extension of substitutions, by introducing a partial ordering14 over these. To this end, using finitely-supported functions was particularly conveninent, as they can be used both as functions and as lists of bindings. We say a substitution σ2 extends a substitution σ1, if all variables bound by σ1 appear in σ2, bound to the same values. We model this predicate as sub_st 15 and the extension of a substition σ, as the add finitely-supported function. Definition sub_st σ1 σ2 := (* henceforth denoted as σ1 ⊆ σ2 *)

[∀ v : 'I_n, if σ1 v is Some c then (v, c) ∈ σ2 else true]. Definition add σ v c := [ffun u ⇒ if u == v then Some c else σ u].
Term Matching Matching a term t to a constant d under a substitution σ, will either: Atom Matching We define the match_atom and match_atom_all functions that return substitutions and, respectively, substitution sets, instantiating an atom to a ground atom and, respectively, to an interpretation. To compute the substitution matching a raw-atom ra to a ground one rga, we first check their symbols and argument sizes agree. If such, we extend the initial substitution σ, by iterating term matching over the itemwise pairing of their terms zip arg2 arg1. As term matching can fail, we wrap the function with an option binder extracting the corresponding variable assignations, if any. Hence, match_raw_atom is a monadic option fold that either fails or returns substitutions extending σ. Atom matching equals raw atom matching, by coercion to raw_atom. Next, we compute the substitutions that can match an atom a to a fact in an interpretation i. This is formalized as the set of substitutions σ that belong to the set gathering all substitutions matching a to ground atoms ga in i.

Definition match_atom_all i a

σ := [set σ' | Some σ' ∈ [set match_atom ga a σ | ga ∈ i]].
While the match_term and match_atom functions are written as Gallina algorithms, we were able to cast the match_atom_all algorithm mathematically as: {σ | σ ∈ {match atom ga a σ | ga ∈ i}}. The function is key for expressing forward chain and fixpoint evaluation. Propagating its implementation, we could "reduce" soundness and completeness proofs to set theory ones. As such, it was particularly convenient we could rely on finset properties.

Body Matching

The match_body function extends an initial substitution set ssb with bindings matching all atoms in the atom list tl, to an interpretation i. These are built using match_atom_all and uniformly extending substitutions matching each atom to i. We model this based on our definition of foldS, a monadic fold for the set monad. This iteratively composes the applications of a seeded function to all the elements of a list, flattening intermediate outputs.

Definition match_body i tl ssb := foldS (match_atom_all i) ssb tl.

The T P Consequence Operator We model the logical consequences of a clause cl w.r.t an interpretation i as the set of new facts inferrable from cl by matching its body to i. Such a fact, gr_atom_def def σ (head cl), is the head instantiation with the grounding matching substitution σ 16 . One-Step Forward Chain One inference engine iteration computes the set of all consequences inferrable from a program p and an interpretation i. This amounts to taking the union of i with all the program clause consequences. The encoding mirrors the mathematical expression i ∪ cl ∈ p cons_clause def i cl 17 .

Definition fwd_chain def p i := i ∪ \bigcup_(cl ← p) cons_clause def cl i.

Formal Characterization of the Bottom-Up Evaluation Engine

We first state the main intermediate theorems, leading up to the key Theorem 7.

The first two results are established based on analogous ones for terms and atoms.

We assume an intepretation i and a seed substitution set ssb.

Theorem 1 (Matching Soundness). Let tl be an atom list. If a substitution σ is in the output of match_body, extending ssb with bindings matching tl to i, then there exists a ground atom list gtl such that: 1) gtl is the instantiation of tl with σ and 2) all gtl atoms belong to i. Proof by induction on tl.

Theorem 2 (Matching Completeness). Let cl be a clause and ν a grounding compatible with any substitution σ in ssb. If ν makes the body of gcl true in i, then match_body outputs a compatible substitution smaller or equal to ν.

Proof by induction on tl.

Theorem 3 (T P Stability). Let cl be a clause and i an interpretation satisfying it. The facts inferred by cons_clause are in i. Proof by Theorem 1.

Theorem 4 (T P Soundness). Let cl be a safe clause and i an interpretation.

If the facts inferred by cons_clause are in i, then i is a model of cl.

Proof by Theorems 3 and 2.

Theorem 5 (Forward Chain Stability and Soundness). Let p be a safe program. Then, an interpretation i is a model of p iff it is a fwd_chain fixpoint. 18Proof by Theorems 3 and 4.

Theorem 6 (Forward Chain Fixpoint Properties). The fwd_chain function is monotonous, increasing and bound by B(P ).

Proof by compositionality of set-theoretical properties.

Theorem 7 (Bottom-up Evaluation Soundness and Completeness). Let p be a safe program. By iterating forward chain as many times as there are elements in B(P ), the engine terminates and outputs a minimal model for p.

Proof by Theorems 5 and 6, using a corrolary of the Knaster-Tarski result, as established in Coq by [START_REF] Doczkal | Completeness and Decidability Results for CTL in Coq[END_REF].

A Mechanized Stratified Datalog Engine

We overview the formalization of the syntax and semantics of stratified Datalog in Section 4.1. In Section 4.2 we present the mechanization of the stratified Datalog engine. We outline its formal characterization in Section 4.3.

Formalizing Stratified Datalog

Syntax We extend the syntax of positive Datalog with literals, reusing the definitions of ground/non-ground atoms. As before, we distinguish ground/nonground literals and clauses. The former are encoded enriching ground/nonground atoms with a boolean flag, marking whether they are negated.

Inductive glit := GLit of bool * gatom. Inductive lit := Lit of bool * atom.

(Ground) clauses pack (ground) atoms and (ground) literal lists. The encodings of programs and their safety condition are the same as in Section 3.1.

Semantics

The only additions to Section 3.1 concern ground literals and clauses. The glit_true definition captures the fact that an interpretation i satisfies a ground literal gl, by casing on the latter's flag. If it is true, i.e the literal is positive, we check if the underlying ground atom is in i; otherwise, validity holds if the underlying ground atom is not in i. The definition for the satisfiability of a ground clause w.r.t i is analogous to that given in Section 3.1.

Definition glit_true i gl := if flag gl then gatom_glit gl ∈ i else gatom_glit gl / ∈ i.

Mechanizing the Stratified Evaluation Engine

Stratification We model a stratification as a list of symbol sets, implicitly assuming the first element to be its lowest stratum. As captured by is_strata_rec, the characteristic properties mirror those in Definition 5. Namely, these are 1) disjointness: no two strata share symbols, 2) negative-dependency: stratum symbols can only refer to negated symbols in strictly lower strata, and 3) positivedependency: stratum symbols only depend on symbols from lower or equal strata. We can give an effective, albeit inefficient algorithm for computing a stratification satisfying the above, by exploring the finite set of all possible program stratifications. Hence, we use the finite search infrastructure of SSReflect, i.e, the [pick e : T | P e] construct that, among all inhabitants of a finite type T, picks an element e, satisfying a predicate P.

Positive Embedding To enable the reuse of the forward chain operator in Section 3.2, we will embed the Coq representation of Datalog programs with stratified negation into that of standard Datalog programs, used by the positive engine. This is realized via functions that encode/uncode constructs to/from their "positive" counterparts; we denote these as • / • . To the end, we augment symbol types with a boolean flag, marking if the original atom is negated. For example, s(a) = (s, )(a), ¬s(a) = (s, ⊥)(a), ( , s)(a) = s(a) and (⊥, s)(a) = ¬s(a). We show literal encoding/uncoding are inverse w.r.t each other and, hence, injective, by proving the corresponding cancelation lemmas. For clauses, encoding is inverse to uncoding and, hence, injective, only when the flag of its encoded head atom is positive. This is expressed by a partial cancelation lemma; for the converse direction the cancelation lemma holds. Based on these injectivity properties, we prove Theorem 9.

Stratified Evaluation Let p be a program and str, a strata. The evalp stratified evaluation of p traverses str, accumulating the processed strata as str < . It then computes the minimal model, cf. Theorem 7, for each induced program slice, p str< . The main modeling choice is to construct the complemented intepretation for p str< . This accounts for the all "negative" facts that hold, by absence from the current model. These will be collected, uncoded, in a second interpretation. The corresponding cinterp type is thus defined as an interp pairing. To bookkeep the accumulated strata str < , we wrap cinterp and the symbol set type of str < in a cumulative interpretation type, sinterp .

Formal Characterization of the Stratified Evaluation Engine

We first state the main intermediate results, leading up to the key Theorem 16. We assume p to be a program; pp, pp1 and pp2, "positive" programs; ci, an initial complemented interpretation and pdef, the default "positive" constant.

Theorem 8 (Complementation Preserves Satisfiability). If symbols of a stratum ss do not appear negated in the body of p clauses, then the satisfiability of pp w.r.t (c2p ci) is preserved when complementing ci w.r.t ss.

Theorem 9 (Encoding/Uncoding Preserves Satisfiability). In the following, assume ci is well-complemented. This is because the minimality of a computed stratified model depends on fixing its input. Hence, a model is minimal w.r.t others, if they agree on the submodel relative to the accumulated stratification. Since we need to consider the previous and current candidates, we state the is_min_str_rec condition independently from the strata invariant conditions. Its proof also follows by induction on str > .

=        p ← q. r ← ¬q. s ← ¬q. t ← ¬q.        = P 1 P 2 , P 1 = p ← q. , P 2 =    r ← ¬q. s ← ¬q. t ← ¬q.    . As M 1 = T P1 ↑ ω(∅) = ∅, M 2 = T P2 ↑ ω(M 1 ) = {r,

Related Work

The work of [START_REF] Kriener | Proofs You Can Believe In. Proving Equivalences Between Prolog Semantics in Coq[END_REF] provides a Coq formalization of the correctness and equivalence of forward and backward, top-down and bottom-up semantics, based on a higher-order abstract syntax for Prolog. Related to our work, as it provides formal soundness proofs regarding the fixpoint semantics, it nonetheless differs in perspective and methodology. Also, while we do not support function symbols and other evaluation heuristics, we do support negation and manage to establish correctness and completeness for the underlying algorithms of bottom-up inference. The work in [START_REF] Detreville | Binder, a Logic-Based Security Language[END_REF] gives a Coq mechanization of standard Datalog in the context of expressing distributed security policies 24 . The development contains the encoding of the language, of bottom-up evaluation and decidability proofs. In our corresponding formalizations, we did not need to explicitly prove the latter, as we set up our types as finite. While we did not take into account modelling security policies, the scope of our established results is wider. 23 i.e, str ≤ stratifies pstr ≤ and str> stratifies pstr > 24 http://www.cs.nott.ac.uk/types06/slides/NathanWhitehead.pdf

Conclusion, Lessons and Perspectives

The exercise of formalizing database aspects has been an edifying experience. It helped clarify both the fundamentals underlying theoretical results and the proof-engineering implications of making these machine readable and user reusable.

On the database side, it quickly became apparent that, while foundational theorems appeared intuitively clear, if not obvious, understanding their rigorous justification required deeper reasoning. Resorting to standard references (even comprehensive ones, such as [START_REF] Abiteboul | Foundations of Databases[END_REF]), led at times to the realization that low-level details were either glanced over or left to the reader. For instance, to the best of our knowledge, no scrupulous proofs exist for the results we established. Indeed, as these are theoretically uncontroversial, their proofs are largely taken for granted and, understandably so, as they ultimately target database practitioners. Hence, these are mostly assumed in textbook presentations or when discussing further language extensions. It was only by mechanizing these proofs "from the ground up", in a proof assistant, that the relevance of various properties (e.g, safety and finiteness), the motivation behind certain definitions (e.g, predicate intensionality/extensionality, strata restrictions, logical consequence, stratified evaluation), or the precise meaning of ad-hoc notions/notations (e.g, "substitution compatibility", B(P ), model restrictions) became apparent.

As it is well known, database theory is based on solid mathematical foundations, from model theory to algebra. This suggests that, when compared to off-the-shelf program verification, verification in the database context requires that proof systems have good support for mathematics. It was an interesting to discover, in practice, the extent to which database theory proofs could be recast into mathematical ones. To exemplify, by expressing forward chain as an elegant set construct, we transferred proofs about Datalog inference engines into set-theory ones, which are more natural to manipulate. Conversely, when formalizing the stratified semantics of Datalog with negation, we were compelled to resort to some ad-hoc solutions to handle the lack of native library support for lattice theory. Indeed, textbooks largely omit explainations as to why and how it is necessary to reason about such structures when proving properties of stratified evaluation. To this end, we were led to introduce specialized notions, such as interpretation complementation. Also, we had to explicitly establish that, at each evaluation step, the Herbrand Base of the program's restriction w.r.t the set of already processed strata symbols was a well-complemented lattice.

On the theorem proving side, a crucial lesson is the importance of relying on infrastructure that is well-tailored to the nature of the development. This emerged as essential while working on the formalization of standard Datalog. The triggering realization was that, as we could, without loss of generality, restrict ourselves to the active domain, models could be reduced to the finite setting and atoms could be framed as finite types. Therefore, the Mathematical Components library, prominently used in carrying out finite model theory proofs, stood out as best suited for our purposes. Indeed, since we could heavily rely on the convenient properties of finite types and on already established set theory properties, proofs were rendered much easier and more compact.

Apart from having good library support, making adequate type encoding choices proved essential. Having experimented with many alternatives, we noticed first-hand the dramatic effect this could have on the size and complexity of proofs. For example, while having too many primitives is undesirable in programming language design, it turned out to be beneficial to opt for greater base granularity. Separating the type of ground and non-ground constructs helped both at a conceptual level, in understanding the relevance of standard range restrictions, and at a practical one, in facilitating proof advancement. Another example concerns the mechanization of substitutions. Having the option to representing them as finitely supported functions, together with all the useful properties this type has, was instrumental to finding a suitable phrasing for the soundness and completeness of the matching algorithm. Indeed, as the algorithm incrementally constructs groundings, it seemed natural to define an ordering on substitutions leading up to these. Being able to have a type encoding allowing to regard substitutions both as functions and as lists was essential for this purpose. A final example regards the formalization of models. As previously mentioned, setting up the type of ground atoms as finite payed off in that we could use many results and properties from the fintype library, when reasoning about modelswhich was often the case. In particular, we took advantage of the inherent lattice structure of such types and did not need to explicitly construct B(P ).

Finally, relying on characteristic properties (the SSReflect P-lemmas), many of which are conveniently stated as reflection lemmas, led to leaner proofs by compositionality. In cases in which induction would have been the default approach, these provided a shorter alternative (also, see [START_REF] Gonthier | Point-Free, Set-Free Concrete Linear Algebra[END_REF], which gives a comprehensive fomalization of linear algebra without induction).

  Clauses C ::= A ← L1, . . . , Lm Literals L ::= A | ¬A Definition 4 (Predicate Definitions). Let P be a program. The definition def (p) of program predicate p ∈ P is {C ∈ P | sym(head(C)) = p}. Definition 5 (Program Stratification and Slicing). Let P be a program with clauses C of the form H ← L 1 , . . . , L k , ¬L k+1 , . . . , ¬L l , where body +

  Inductive term : Type := Var of 'I_n | Val of constant.

  Inductive rgatom := RawGAtom of symtype & seq constant. Definition wf_rgatom rga := size (arg rga) == arity (sym rga). Structure gatom := GAtom {rga :> rgatom; _ : wf_rgatom rga}. (Ground) clauses pack a distinguished (ground) atom and a (ground) atom list. Programs are clause lists. The safety condition formalization mirrors Definition 1.

  Notation interp := {set gatom}. Definition gcl_true gcl i := (* i satisfies gcl *) all (mem i) (body_gcl gcl) =⇒ (head_gcl gcl ∈ i). Definition prog_true p i := (* i is a model of p *) ∀ ν : gr, all (fun cl ⇒ gcl_true (gr_cl ν cl) i) p.

  Definition match_raw_atom rga ra σ : option sub := match ra, rga with RawAtom s1 arg1, RawGAtom s2 arg2 ⇒ if (s1 == s2) && (size arg1 == size arg2) then foldl (fun acc p ⇒ obind (match_term p.1 p.2) acc) (Some σ) (zip arg2 arg1) else None end. Definition match_atom σ a ga := match_raw_atom σ a ga.

  Definition emptysub : sub := [ffun _ ⇒ None]. Definition cons_clause def cl i := [set gr_atom_def def σ (head cl) | σ ∈ match_body i (body cl) [set emptysub]].

  s, t}, the computed model M P = {r, s, t} differs from the minimal model M min P = {p}.

  If ci.1 is a model of p and all p symbols are in ss, then (c2p ci) is a model of p . If (c2p ci) is a model of pp and all pp body symbols are in ss, then ci.1 is a model of pp . Intuitively, this is captured by the relations in the informal diagram below:22 If pp is safe, its pengine_step evaluation w.r.t ci is sound, bound by its Herbrand Base, increasing and stable.Theorem 11 (Symbol Stratifiability). The atoms outputted by pengine_step are either in ci or have symbols appearing in the head of pp clauses.Theorem 12 (Positivity). The "negative" component of ci, i.e, ci.2, is not modified by pengine_step, i.e, (pengine_step pdef pp ci).2 = ci.2. If pp1 and pp2 are extensionally equal, their corresponding pengine_step evaluations w.r.t ci are equal.Theorem 14 (Modularity). If pp1 is safe and does not contain head symbols in pp2 and pi is a model of pp1, then evaluating the concatenation of pp1 and pp2 w.r.t pi equals the union of their respective evaluations w.r.t pi.Theorem 15 (Incrementality). Let p be a stratifiable program; (ci, str ≤ ), a cumulative interpretation of p str ≤ , and ss, a stratum. Assume that: 1) p str ≤ symbols are not head symbols in p ss , 2) p str ≤ symbols are in str ≤ , 3) ci is well-complemented w.r.t str ≤ , and 4) ci.1 is a model of p str ≤ . The pengine_step evaluation of p str ≤ ∪ ss increments ci.1 with facts having symbols in ss.22 The dashed encodep arrow marks the partiality of the cancelation lemma.Stratified Evaluation Invariant Let p be a stratifiable program and (ci, str ≤ ), a cumulative interpretation of p str ≤ . The invariant of stratified evaluation si_invariant states: 1) ci.1 is a model of p str ≤ , 2) p str ≤ symbols are in str ≤ , 3) ci is well-complemented with respect to str ≤ , and 4) ci symbols are in str ≤ .Theorem 16 (Stratified Evaluation Soundness and Completeness). Let p be a program, str, a strata -consisting of lower and upper strata, str ≤ and str > 23 -and ci, a complemented interpretation. If the input cumulative interpretation (ci, str ≤ ) satisfies the above invariant conditions, then the output interpretation of the one-step evaluation of p str> also satisfies them.Proof by induction on str > .As a corollary of Theorem 16, the encoded evaluation engine computes a model for a stratifiable program p. A more subtle discussion concerns its minimality: Example 4. Let P

	uncodep	
	pp : pprogram	p : program
	encodep	
	|=	|=
	p2c	
	pi : pinterp	(ci.1, ci.2) : cinterp
	c2p	
	Theorem 10 (Preservation Properties). Theorem 13 (Injectivity).

Arithmetic predicates and skolem function destroy this guarantee.

http://math-comp.github.io/math-comp/

Term sequences t1, . . . , tn are abbreviated as t and | t| = n denotes their length.

We call language constructs that are variable-free, ground and, otherwise, open.

The set of program constants is also called its active domain, denoted adom(P ).

Also called clause instantiation.

denotes the pairwise disjoint set union.

A program can have multiple stratifications.

As proven by Apt[START_REF] Apt | Foundations of Deductive Databases and Logic Programming[END_REF], Mn is independent from the choice of stratification.

Groundings can be coerced to substitutions and substitutions can be lifted to groundings, by padding with a default element def.

[START_REF] Gonthier | A Machine-Checked Proof of the Odd Order Theorem[END_REF] We establish corresponding reflexivity, antisymmetry and transitivity

properties.[START_REF] Gonthier | A Small Scale Reflection Extension for the Coq system[END_REF] We cand use the boolean quantifier, as the ordinal type of variables is finite.

gr_atom_def lifts substitutions to groundings, by padding with the def constant.

Thanks to using the bigcup operator from the SSReflect bigop library.

We state this as the fwd_chainP reflection lemma.

"Positive" interpretations are sets of ground atoms with a true flag.

This corresponds to the set of all "positive" ground atoms.

This is the top element of interp cf. Section 3.1

At an intermediate step, having already processed str < , we encode the p_curr program slice up to the current stratum ss. We feed it, together with the previous complemented interpretation ci, to the positive engine pengine_step. Since this operates on positive interpretations 19 , we have to relate the two. As such, we define the c2p_bij bijection between them, i.e, mutually inverse functions c2p and p2c, and apply it to obtain the needed types. The positive engine iterates the forward chain operator, as many times as there are elements in the program bound bp 20 . It adds the facts inferable from the current stratum and outputs a positive intepretation. It does not add the implicitly true negated ground atoms. The resulting m_cmpl is thus well-complemented. As encoded by ci_wc, the property states that, for any ci of cinterp type and any symbol set ss, the ci components partition the slicing of setT with ss, i.e, the set of all ground atoms with symbols in ss. The next strata, i.e, str > , are processed by the recursive call. Example 3. Revisiting Example 2, the slice encodings, marked by • , are:

( , q)(X) ← ( , s)(X), (⊥, t)(X).

The positive engine computes the minimal model of P 1 :