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An improved instrumental variable method for industrial robot model identification

Introduction

Robots are mechanical systems that have a double integrator behaviour and they must be identified, therefore, while operating in closed-loop. Their direct and inverse dynamic models are formulated in continuous time and are calculated from Newton's laws or the Lagrange equations [START_REF] Khalil | Modeling, identification and control of robots[END_REF]. The method based on the inverse dynamic identification model (IDIM) and least squares estimation (LS) is the standard procedure to identify the dynamic parameters of robots. This approach, termed IDIM-LS, has been successfully applied to identify the dynamic parameters of several prototypes and industrial robots (see [START_REF] Khosla | Parameter identification of robot dynamics[END_REF], [START_REF] Raucent | Identification of the barycentric parameters of robot manipulators from external measurements[END_REF], [START_REF] Swevers | Optimal robot excitation and identification[END_REF], [START_REF] Olsen | Maximum likelihood identification of a dynamic robot model: Implementation issues[END_REF], [START_REF] Wu | Identification of dynamic parameter of a 3dof parallel manipulator with actuation redundancy[END_REF], [START_REF] Calanca | Mimo closed loop identification of an industrial robot[END_REF], [START_REF] Briot | Global identification of joint drive gains and dynamic parameters of parallel robots[END_REF], among others). Good results can be obtained provided that an appropriate derivative bandpass filtering of the joint positions is used in order to calculate the joint velocities and accelerations. However, even with the guidelines for tuning the bandpass filtering given in [START_REF] Gautier | Dynamic identification of robots with power model[END_REF], the user can doubt whether the IDIM-LS estimates are consistent or not because robots are identified while they are operating in closed loop while it is known that the LS estimates are biased in this case ( [START_REF] Van Den Hof | Closed-loop issues in system identification[END_REF].

Other identification methods have been evaluated: the Total Least Squares method [START_REF] Xi | Effect of non-geometric errors on manipulator inertial calibration[END_REF] and [START_REF] Hollerbach | Total least squares in robot calibration[END_REF]; the Extended Kalman Filter [START_REF] Gautier | Extended kalman filtering and weighted least squares dynamic identification of robot[END_REF] and [START_REF] Kostic | Modeling and identification for high-performance robot control: An rrr-robotic arm case study[END_REF]; the Set Membership Uncertainty [START_REF] Ramdani | Robust dynamic experimental identification of robots with set membership uncertainty[END_REF]; an algorithm based on LMI tools in [START_REF] Calafiore | Identification of a robot dynamic model: experiment design and parameter estimation[END_REF]; a ML approach [START_REF] Olsen | Maximum likelihood identification of a dynamic robot model: Implementation issues[END_REF], [START_REF] Dolinskỳ | Application of the method of maximum likelihood to identification of bipedal walking robots[END_REF]; the closed-loop output error ( Östring et al., 2003) and (Gautier et al., 2013a); a Bayesian approach [START_REF] Ting | A bayesian approach to nonlinear parameter identification for rigid body dynamics[END_REF]; a method which estimates the nonlinear effects in the frequency domain [START_REF] Wernholt | Estimation of nonlinear effects in frequency domain identification of industrial robots[END_REF]; the Unscented Kalman Filter [START_REF] Dellon | Modeling and system identification of a lifesize brake-actuated manipulator[END_REF]; an algorithm based on neural network [START_REF] Soewandito | Neuro-adaptive motion control with velocity observer in operational space formulation[END_REF]. In [START_REF] Calanca | Mimo closed loop identification of an industrial robot[END_REF], the authors suggest to complete the IDIM-LS method with deeper statistical analyses; while in [START_REF] Miranda-Colorado | An efficient on-line parameter identification algorithm for nonlinear servomechanisms with an algebraic technique for state estimation[END_REF], the authors propose an improvement to the standard approach by using an algebraic technique for state estimation and a procedure based on the Semi-Definite Programming [START_REF] Wensing | Linear matrix inequalities for physically consistent inertial parameter identification: A statistical perspective on the mass distribution[END_REF]). An overview of some of these methods is given by [START_REF] Wu | An overview of dynamic parameter identification of robots[END_REF]. Al-though all these techniques are of great interest, they do not really improve the IDIM-LS method, even when combined with the derivative bandpass filtering, because the LS estimates are still asymptotically biased. Also, the robustness against data filtering has not been studied; and some of these approaches have not been validated on a 6 DOF industrial robot. Except for the approach presented in (Gautier et al., 2013a), only the direct or inverse dynamic model is validated and the condition that the columns of the observation matrix are not correlated with the error terms is not addressed,, even though it is a critical condition to obtain consistent estimates, see e.g. [START_REF] Young | Recursive estimation and time-series analysis: an introduction for the student and practitioner[END_REF].

An approach able to provide consistent estimates while the system is identified in closed loop is the instrumental variables (IV) technique introduced by Reiersøl [START_REF] Reiersøl | Confluence analysis by means of lag moments and other methods of confluence analysis[END_REF]). In the system identification community, IV methods have been studied extensively; see e.g. [START_REF] Young | An instrumental variable method for real-time identification of a noisy process[END_REF][START_REF] Young | Parameter estimation for continuous-time models: a survey[END_REF][START_REF] Young | Recursive estimation and time-series analysis: an introduction for the student and practitioner[END_REF] for continuous time systems; and [START_REF] Wong | Identification of linear discrete time systems using the instrumental variable method[END_REF]; [START_REF] Rowe | A bootstrap method for the statistical estimation of model parameters[END_REF]; Jakeman and [START_REF] Jakeman | Refined instrumental variable methods of time-series analysis: Part II, multivariable systems[END_REF]; [START_REF] Söderström | Instrumental variable methods for system identification[END_REF]; [START_REF] Young | Some observations on instrumental variable methods of time-series analysis[END_REF][START_REF] Young | Recursive estimation and time-series analysis: an introduction for the student and practitioner[END_REF] for discrete time systems. One interesting feature of the optimal Refined IV approach to both continuous (RIVC) and discrete-time (RIV) model identification [START_REF] Young | Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model[END_REF] is the use of an optimal prefiltering process which takes into account the noise model and so provides statistically efficient estimates (i.e. with minimum variance). Furthermore, for systems identified in closedloop, specific techniques are able to deal with an unknown controller: see e.g. [START_REF] Gilson | Optimal instrumental variable method for closed-loop identification[END_REF]; [START_REF] Young | Recursive estimation and time-series analysis: an introduction for the student and practitioner[END_REF]. Although these methods are appealing, they were developed primarily for Linear Time Invariant (LTI) systems and so cannot be applied straightforwardly to complex, nonlinear robot systems. This may explain why there are few applications in robotics (see e.g. [START_REF] Puthenpura | Identification of continuous-time systems using instrumental variables with application to an industrial robot[END_REF], [START_REF] Yoshida | Experimental study of the identification methods for the industrial robot manipulator[END_REF] and [START_REF] Xi | Effect of non-geometric errors on manipulator inertial calibration[END_REF]). A first attempt to bridge the gap between robotics and automatic control was made in (Janot et al., 2014a) where a generic IV approach relevant for the identification of rigid industrial robots was proposed. The set of instruments is the IDM constructed from simulated data calculated from the simulation of the DDM. The simulation of the direct dynamic model assumes the same reference trajectories and the same control structure for both the actual and the simulated robots and is based on the previous IV estimates. This algorithm, termed the IDIM-IV method, validates the inverse and direct dynamic models simultaneously, improves the noise immunity of estimates with respect to corrupted data in the observation matrix and has a rapid convergence. Despite the good results obtained, the statistical efficiency of the IDIM-IV estimates is not addressed, the relationships that exist between the IDIM-IV approach and the approaches in automatic control are not emphasized and the controller is assumed to be known to the user.

The aim of this paper is twofold. First, we show how a prefiltering process inspired by RIVC identification can be introduced into the IDIM-IV identification algorithm for robot system identification, so establishing links between the robotic and the automatic control approaches to identification. The resulting IDIM-PIV method extends the work undertaken in [START_REF] Brunot | A pragmatic and systematic statistical analysis for identification of industrial robots[END_REF], where the IDIM-IV residuals are statistically analysed, and in [START_REF] Janot | Identification and control of electro-mechanical systems using state-dependent parameter estimation[END_REF], where the joint velocities and accelerations are estimated with a state space estimation technique. Secondly, the issue of identifying the IDIM model in the presence of an unknown controller is addressed by a parametric identification. Practical validation of this new algorithm is carried by experiments conducted on a six Degrees-Of-Freedom (DOF) industrial robot arm, Stäubli TX40.

The paper is organised as follows. The next section provides the background to robot system architecture, including the models, control laws and sensors used in the analysis and control of robot systems, as well as the notation used in such analysis. Section 3 summarizes the standard techniques for robot identification and the use of prefilters in IV algorithms. In the fourth section, the proposed prefiltering process and the method of controller identification are described. The results of experiments are summarized in Section 5; and finally, the concluding remarks are provided in Section 6.

Robot System Architecture

Robot Dynamic Models

The Inverse Dynamic Model (IDM) of a rigid robot with n moving links is the expression of the (n × 1) torque vector, τ idm , as a function of the joint positions and their derivatives [START_REF] Khalil | Modeling, identification and control of robots[END_REF]. The following relationship is derived by application of Newton's law or the Lagrangian equations:

τ idm (t) = M (q nf (t)) qnf (t) + N (q nf (t), qnf (t)) (1)
where M is the (n × n) inertia matrix; N is the (n × 1) vector of centrifugal, Coriolis, gravitational, and friction torques; and q nf , qnf , qnf are, respectively, the (n × 1) noise-free vectors of joint positions, velocities and accelerations. According to [START_REF] Gautier | Identification of robots dynamics[END_REF], a joint j of an industrial robot has 14 standard parameters:

χ j = [XX j XY j XZ j Y Y j Y Z j ZZ j (2) M X j M Y j M Z j M j Ia j F v j F c j τ of f j ] T
where XX j , XY j , XZ j , Y Y j , Y Z j and ZZ j are the six components of the inertia matrix at the origin of frame j; M X j , M Y j , M Z j are the three components of the first moments; M j is the mass of link j; Ia j is the total inertia moment for rotor and gears of the actuator; F v j and F c j are, respectively, the viscous and Coulomb friction coefficients; τ of f j is an offset parameter containing the asymmetry of the Coulomb friction with respect to the sign of the velocity and the current amplifier offset which supplies the motor. Since some of these parameters have no effect on the dynamic model, while others are regrouped with linear relations, we obtain a (b × 1) vector of base dynamic parameters: θ; see [START_REF] Gautier | Numerical calculation of the base inertial parameters of robots[END_REF]. In addition, the IDM is linear with respect to the base parameters and so we obtain the following linear relation

τ idm (t) = φ (q nf (t), qnf (t), qnf (t)) θ = φ nf (t)θ, ( 3 
)
where φ is the (n × b) matrix of basis functions (from hereon referred to as the 'observation matrix'). It is worth noting that base parameters are simply referred to as model parameters in [START_REF] Marconato | Study of the effective number of parameters in nonlinear identification benchmarks[END_REF]. Each element of φ is a basis function of the body dynamics. These basis functions can be nonlinear relationships involving the positions, velocities and accelerations and the nature of these nonlinearities can be estimated, if this is required, using the approach suggested in [START_REF] Janot | Identification and control of electro-mechanical systems using state-dependent parameter estimation[END_REF].

As a result of inevitable measurement noise and modelling errors, the actual torque τ differs from τ idm by an error v, so that the usual definition of the Inverse Dynamic Identification Model (IDIM) is given by

τ (t) = τ idm (t) + v(t) = φ (q nf (t), qnf (t), qnf (t)) θ + v(t).
(4)

The associated DDM relates the joint accelerations to a nonlinear function of the states (positions and velocities) and the parameters: e.g.,

qnf (t) = M (q nf (t)) -1 (τ idm (t) -N (q nf (t), qnf (t))) .
(5)

Control Laws

As pointed out previously, robots need to operate within a closed-loop control system due to their double integrator behaviour. In particular, the joint positions are controlled within two nested loops: an inner-loop for the current control and an outer-loop for the position control. Most often the control laws are simple Proportional Derivative (PD), Proportional Integral Derivative (PID), or computed torque and passive control (see Chapter 14 in [START_REF] Khalil | Modeling, identification and control of robots[END_REF], for details on this topic). In the present paper, it is assumed that the controller is linear; that each link is controlled separately from the others; and that there is one position sensor (i.e. an encoder or a resolver) for each link. This is a typical configuration for an industrial robot, as explained in [START_REF] Khalil | Modeling, identification and control of robots[END_REF]. According to the same reference, the integral action is usually weak, or even deactivated when the position error is too small, in order to avoid oscillations due to the Coulomb friction.

Considering the link j, the controller C j is defined by

ν τ j (t) = C j (p)(q r j (t) -q m j (t)), (6) 
where C j denotes the controller (normally a PD or PID in practice), p = d/dt is the differential operator, ν τ j is the control signal, q r j is the reference trajectory and q m j is the measured position. For convenience, the controller is modelled as a continuous-time system although, in practice, it is implemented in Discrete Time (DT) on the micro-controllers that are used to perform the control actions. The control signal, ν τ j , serves as a reference to the inner current loop of the amplifiers that supply the motors. Assuming that the current closed-loop has a bandwidth greater than 500 Hz, its transfer function is modelled as a static gain, g τ j that applies in the frequency range of the rigid robot dynamics ω dyn (usually less than 10 Hz). The actual torque of the link τ j is then calculated by τ j (t) = g τ j ν τ j (t). ( 7)

Position Sensor

The (n × 1) vector of measured joint positions can be expressed as

q m (t) = q(t) + ξ(t), ( 8 
)
where q is the (n × 1) vector of joint positions and ξ is a (n × 1) vector of continuous-time noises source. In order to avoid problems associated with continuous-time white noise inputs, the noise filters are considered as discrete-time systems (see e.g. [START_REF] Gilson | Instrumental variable methods for closed-loop continuous-time model identification[END_REF][START_REF] Young | Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model[END_REF], and the prior references therein). Consequently, the output noise is given by

q m (t i ) = q(t i ) + ξ(t i ) = q(t i ) + H(z -1 )e(t i ), i = 1, • • • n m ( 9 
)
where H is the (n×n) output noise transfer function matrix in the backward shift (delay) operator z -1 , i.e. z -1 e(t) = e(t -∆t), where ∆t is the sampling interval; e is a (n × 1) vector of zero mean value, white noise inputs with (n×n) covariance matrix Λ; and n m is the number of recorded measurements. By including the modelling elements, Figure 1 illustrates the closed-loop structure of the robot considered in this study. Since there is one independent sensor per link, H is set diagonal and composed of filters H j (z -1 ), j = 1, 2, . . . , n. Furthermore, the white noise elements in the (n × 1) vector e are assumed to be uncorrelated and so the covariance matrix Λ is also diagonal, with a covariance λ j for the link j. Following from this, the equation for each link j takes the form

q m j (t i ) = q j (t i ) + H j (z -1 )e j (t i ). ( 10 
)
According to [START_REF] Bélanger | Estimation of angular velocity and acceleration from shaft-encoder measurements[END_REF], a shaft encoder has a white, zero mean and uniformly distributed noise with a variance equal to 1 3 ∆ 2 , where ∆ is the encoder resolution. [START_REF] Swevers | Dynamic model identification for industrial robots[END_REF] have pointed out that, in a factory environment, the position sensors can be influenced by other machines like welding apparatus and other electromagnetic disturbances. For this reason, we consider a more general case where the noise is not necessary white, especially at high frequency. A covariance proportional to ∆ 2 seems reasonable in the operating range of system, i.e. below ω dyn .

According to [START_REF] Marcassus | Minimal resolution needed for an accurate parametric identification-application to an industrial robot arm[END_REF], the resolution of the Stäubli TX40 robot is 2 × 10 -4 degree per count. Such a resolution is common for an industrial robot that needs to respect the standard [START_REF] Iso | Manipulating industrial robots-Performance criteria and related test methods[END_REF], with criteria on position accuracy and repeatability, amongst others (see e.g. [START_REF] Khalil | Modeling, identification and control of robots[END_REF]. This order of magnitude shows that the spectral density of the noise is really low below ω dyn . Consequently, the measurement noise H j (z -1 )e j (t i ), of link j, is assumed to have a spectral density located in high frequencies and that this spectral density can vary.

Closed-loop Relations

In order to highlight the role of the filters used for the standard IDIM-LS and IDIM-IV methods, as summarized later in Section 3, we now need to consider the closed-loop system in more detail by examining the situation at joint j. The linear part of the DDM, G j (p), is defined by

G j (p) = 1 p(J j p + F v j ) , (11) 
namely a free integrator in series with a first order system, where F v j the viscous friction coefficient and J j given by

J j = max q nf (M jj (q nf )). ( 12 
)
J j is the maximum value, with respect to q nf , of the inertia moment and this defines the smallest stability margin of the position closed-loop as q nf varies. The joint j can be modelled as shown in Figure 2, where d j is the nonlinear disturbance regrouping the Coulomb friction, the centrifugal, Coriolis, gravitational torques and the coupling effects, such as

d j (t) = -N j (q nf (t), qnf (t)) + F v j qnf j (t) - n k=1,k =j M jk (q nf (t))q nf k (t) (13)
with N j , the j th element of N defined by (1). The whole system is modelled as a hybrid one: the dynamic system and the controller models are continuous time, whereas the noise filter is discrete time. Although the robot system operates in closed-loop, the identification concerns the open-loop dynamic model from the input command signal ν τ j and output position signal q m j .

From Figure 2, the following closed-loop relationships can be derived,

q m j (t) = T j (p)q r j (t) + S j (p)ξ j (t) + S j (p)G j (p)d j (t) T j (p) = g τ j C j (p)G j (p) 1 + g τ j C j (p)G j (p) , S j (p) = 1 1 + g τ j C j (p)G j (p) (14)
where S j is the sensitivity function and T j is the complementary sensitivity function: see e.g. [START_REF] Aström | Feedback systems: an introduction for scientists and engineers[END_REF]. As explained in the previous section, a discrete time model is more suitable for the noise filter representation. Therefore, the closed-loop relation can re-written informally in hybrid terms

q m j (t i ) = T j (p)q r j (t i ) + S j (p)H j (z -1 )e j (t i ) + S j (p)G j (p)d j (t i ). ( 15 
)
Since for each p, T j (p) + S j (p) = 1, both functions cannot be made small simultaneously. In order to have a good tracking at low frequencies, the controller is tuned to insure T j (p) ≈ 1 and, consequently, S j (p) ≈ 0. As T j is a low-pass filter, we have the opposite configuration at high frequencies.

Noting that the relevant information comes from the reference signal, the closed-loop transfer function T j provides an ideal frequency range for the filtering process. In this range, we have T j (p) ≈ 1, S j (p) ≈ 0 and the component from the noise becomes negligible. For these reasons, it is sensible to filter the measured position close to the closed-loop dynamics in order to retrieve a low noise position signal. Note that this is consistent with Chapter 14 in [START_REF] Khalil | Modeling, identification and control of robots[END_REF], which suggests that PID control laws provide good tracking if there are high position gains and the integral action is weak. Finally, the closed-loop transfer function of the position, q j , is given by

q j (t i ) = T j (p)q r j (t i ) -T j (p)H j (z -1 )e j (t i ) + S j (p)G j (p)d j (t i ), (16) 
while the torque closed-loop transfer function is defined by

τ j (t i ) = g τ j C j (p)S j (p) q r j (t i ) -H j (z -1 )e j (t i ) -T j (p)d j (t i ). ( 17 
)

Closed-loop System Identification

The purpose of the identification process is here to provide a reliable model for the design of control laws. In the robotic context, continuous-time design is the norm. Therefore, the identified model is continuous-time; i.e. the parameters are not a function of the sampling interval. In practice, this model can be digitised to any appropriate sampling interval for digital control implementation.

The IDIM-LS Method

The LS regression method is the most straightforward method for IDIM model parameter estimation because the IDIM is linear with respect to the parameters. However, for this to be applied without introducing asymptotic bias on the estimates, the IDIM model formulation requires the regressors in the measurement vector to be adequately filtered in order to deal with any noise on the measured robot data.

The Bandpass Filtering Process

In most applications, the available information is the (n×1) measurement vector of the joint positions, q m . The joint velocities and accelerations have to be retrieved from this information in order to build the observation matrix φ, as described in [START_REF] Gautier | Dynamic identification of robots with power model[END_REF]. First, q m is filtered to obtain an estimate q and then, if this filtering is adequate, the derivatives can be calculated using centralized finite differencing, while limiting noise amplification. In order to achieve this objective, the filter type and the cut-off frequency, ω fq , are selected such that q, q, q ≈ (q nf , qnf , qnf ) in the range [0, ω fq ]. The filter, which is usually of the Butterworth two-pass or 'smoothing' variety (filtfilt routine in Matlab TM ), where it is applied in both forward and reverse directions to eliminate the phase lag that is inherent in the forward-pass filtering operation. The signals are obtained in this manner because they are then used to construct the nonlinear basis functions, operations that do not tolerate the presence of any phase distortion in the component signals. The rule of thumb for the cut-off frequency is ω fq ≥ 5ω dyn , which is consistent with the observations made in relation to equation ( 15). The combination of the two-pass Butterworth filter and central differencing is referred to as the BandPass (BP) filtering process. Figure 3 depicts the tuning of this BP filtering for a system with a Nyquist frequency of 1 kHz and a robot bandwidth of 10 Hz. Consequently the Butterworth filter cut-off frequency is tuned to 50 Hz. As expected, the bandpass filter behaves like the continuoustime differentiation in the robot's bandwidth and rejects the high frequency components.

In practice, the torque is perturbed by high-frequency ripples: unmodelled friction and flexibility effects, which are rejected by the controller. These ripples are removed prior to the identification with a parallel lowpass filtering of each basis function at the cut-off frequency ω Fp ≥ 2ω dyn . As shown in equation ( 17) of Section 2.4, the choice of ω Fp may be invoked to retain enough information, while attenuating the high frequency noise. Since there is no more useful information beyond the cut-off frequency, the parallel lowpass filtering is used as part of a 'decimation' procedure: i.e. resampling to keep one sample over n d = ω nyq /ω F p . After data acquisition and decimation, we obtain

τ Fp (t i ) = F p (z -1 )τ (t i ) = φ Fp q(t i ), q(t i ), q(t i ) θ + v Fp (t i ), ( 18 
)
with F p the parallel filter applied to each element of the observation matrix φ Fp q(t i ), q(t i ), q(t i ) = F p (z -1 )φ q(t i ), q(t i ), q(t i ) , as well as the error

vector v Fp (t i ) = F p (z -1 )v(t i ).

Least-Squares

If n m measurements are recorded during the experiment, after the resampling we have N = n m /n d available sets of data. From ( 18), there is an overdetermined linear system which can be solved using standard LS regression analysis: i.e.,

θ LS (N ) = 1 N N i=1 φ T Fp (t (i) )φ Fp (t (i) ) -1 1 N N i=1 φ T Fp (t (i) )τ Fp (t (i) ) , (19) 
with t (i) = t i.n d = t 0 + i.n d /f m , where t 0 and f m are, respectively, the initial time and the recording frequency. Without modelling errors, the LS estimator is statistically consistent and efficient under the two conditions:

-Ē φ T Fp (t)φ Fp (t) is full column rank; -Ē φ T Fp (t)v Fp (t) = 0.
where Ē[f (t)] = lim

N →∞ 1 N N i=1 E[f (t i )]
, with E the mathematical expectation (see e.g. [START_REF] Ljung | System identification: theory for the user[END_REF]. It is well known that, for closed-loop systems, the assumption that the observation matrix is not correlated with the error is not valid due to the feedback (see e.g. [START_REF] Van Den Hof | Closed-loop issues in system identification[END_REF]. This is clearly emphasized by comparing ( 15) and ( 17) where both q m j and τ j are corrupted by e j . In practice, however, thanks to the appropriate filtering, the IDIM-LS estimates remain statistically consistent, provided that ω fq and ω Fp are tuned accordingly to ∆ and ω dyn .

Refined Instrumental Variable Identification

Another well-known technique for linear dynamic system estimation is the Instrumental Variable (IV) method, which is suitable for system identification in open or closed-loop situations. The standard IV approach is useful but can suffer from low statistical efficiency (high variance estimation). There is an approach to improving IV estimation in this regard: the one used in the present paper that exploits the notion of 'prefiltering' the data and is developed in the context of Maximum Likelihood (ML) estimation (see [START_REF] Young | Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model[END_REF], and the prior references therein).

The Refined IV (RIV) estimation algorithm is an iterative method that jointly estimates the system and noise parameters of a Box-Jenkins model. [START_REF] Young | Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model[END_REF] shows how the RIV iterative algorithms are based on the ML formulation and can be considered either as a special Gauss-Newton procedure, or as a simple application of Pseudo-Linear Regression (PLR) (see [START_REF] Solo | Some aspects of recursive parameter estimation[END_REF]. The RIV estimate is given by

θ RIV (N ) = 1 N N i=1 ζ T (t i )L(z -1 )φ(t i ) -1 1 N N i=1 ζ T (t i )L(z -1 )τ (t i ) .
(20) Here ζ is the (n×b) instrumental matrix and L is a (n×n) matrix of optimal prefilters. If there are no modelling errors, the RIV estimate is consistent under the two conditions required for IV estimation, namely:

-Ē ζ T (t)φ L (t) is full column rank; -Ē ζ T (t)v L (t) = 0.
The first condition means that the instrumental matrix must be well correlated with the observations (termed instrument relevance by [START_REF] Wooldridge | Introductory econometrics: A modern approach[END_REF]. The second condition expresses the fact that the instrumental matrix must be uncorrelated with the noise on the observations and is sometimes referred to as the instrument exogeneity.

In the present context, assuming no modelling error, the observational noise vector v in (4) is assumed to be modelled as follows

v(t i ) = H τ (z -1 )e(t i ), ( 21 
)
where e is a (n×1) white noise vector, with zero mean and (n×n) covariance matrix Λ; and H τ is a (n × n) discrete-time transfer function matrix, the elements of which are assumed to be asymptotically stable and invertible. Section 4.1 provides further information about this noise model.

RIV theory shows that the optimal variance is reached with

L(z -1 ) = Λ -1 H -1 τ (z -1 ) ζ(t i ) = L(z -1 )φ nf (t i ). ( 22 
)
while the optimal covariance matrix (i.e. the lower bound) is given by

P opt = Ē H -1 τ (z -1 )φ nf (t i ) T Λ -1 H -1 τ (z -1 )φ nf (t i ) -1 . ( 23 
)
The main question raised by this general formulation of the problem is the choice of the instruments to estimate φ nf . This has received a lot of attention in automatic control, (see e.g. [START_REF] Söderström | Instrumental variable methods for system identification[END_REF], and the references given previously in the introduction) and section 4 below considers the prefiltered IV method we propose for use in robot identification.

The IDIM-IV Method

In the context of robot model identification, Janot et al. (2014b) have shown that the simulation of the DDM provides a very convenient way to obtain the instruments. This simulation model contains the whole closedloop and, following previous IV terminology, is referred to as the 'auxiliary model' [START_REF] Levadi | Parameter estimation of linear systems in the presence of noise[END_REF]. From the simulation of this auxiliary model, noise-free simulated signals are retrieved and used to construct the instrumental matrix. These signals are noise-free since the only input is the reference trajectory which is perfectly known. By noting the simulated signals with a subscript s, the instrumental matrix is defined as ζ(t i ) = F p (z -1 )φ (q s (t i ), qs (t i ), qs (t i )), which can be viewed as an estimation of the noise-free part of the observation matrix.

The IDIM-IV method (Janot et al., 2014b) includes the parallel filter and the downsampling process, i.e. L(z -1 ) ← F p (z -1 )I n , with I n the (n × n) identity matrix. This has the advantage of being more robust to inappropriate filtering than the IDIM-LS method, as shown in Janot et al. (2014b); and since it is a valid IV estimator, the IDIM-IV estimates are statistically consistent, so that

τ (t) = τ (t) -Φ q(t), q(t), q(t) θ, (24) 
is also a consistent estimation of v(t) [START_REF] White | A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity[END_REF]Janot et al., 2014b).

The main limitation of the IDIM-IV method is that it does not take into account the noise model H τ (z -1 ) in ( 21). The first objective in this paper is, therefore, to remove this limitation and so generate estimates with reduced variance and improved statistical efficiency arising for the introduction of special prefilters. This yields the IDIM-Prefiltered IV (IDIM-PIV) algorithm, which is developed in the next section 4.

Prefiltered Instrumental Variable Identification for Robot Systems

Many IV techniques have been suggested in the automatic control and systems literature to identify common model structures, such as AutoRegressive Moving Average with eXogenous inputs (ARMAX) or Box-Jenkins (BJ) models (see e.g. [START_REF] Gilson | Optimal instrumental variable method for closed-loop identification[END_REF]. The IDIM-PIV method is inspired by the Refined IV (RIV) family of methods for estimating the parameters in discrete or continuous-time LTI transfer function models.

The special nature of the RIVC algorithm lies in the nature of the prefilter, which is hybrid in form and optimal in the sense that the algorithm yields maximum likelihood parameter estimates for LTI models that have minimum variance, i.e. the estimates achieve the Cramer-Rao lower variance bound (see section 3.2). In the following sub-section 4.1, we consider a related prefilter, inspired by the RIVC prefilter, that can be used within a closed loop setting for robot identification. However, because of the nonlinear nature of the dynamic system and the functions involved in the observation matrix, neither the prefilter nor the estimates can be considered necessarily as fully optimal in this sense although, as we shall see, they do lead to estimates that have smaller variance than those of the standard IDIM-IV.

Input Noise Model

The model of the closed loop feedback system for link j of the robot system, as depicted by Figure 2, has similarities with the closed loop systems considered in [START_REF] Gilson | Instrumental variable methods for closed-loop continuous-time model identification[END_REF] and chapter 9 of [START_REF] Young | Recursive estimation and time-series analysis: an introduction for the student and practitioner[END_REF]. However, the two methods described in these references cannot be applied in a straightforward way in the present robotic context. This is because the robot identification variable is the input torque, τ j , and not the output position; and the disturbance, d j , is function of the states (position and velocity) and the user has no influence on this.

In order to highlight the torque noise, it is best to consider the controller equation for link j which, from ( 6), ( 7) and ( 9), takes the form:

τ j (t i ) = g τ j C j (p)(q r j (t i ) -q m j (t i )) (25) = g τ j C j (p)(q r j (t i ) -q j (t i )) -g τ j C j (p)H j (z -1 )e j (t i ) = φ j (q(t i ), q(t i ), q(t i )) θ -g τ j C j (p)H j (z -1 )e j (t i ) = φ j (q(t i ), q(t i ), q(t i )) θ + H τ j (z -1 )e j (t i ),
where φ j is the j th row of the observation matrix φ and the signals q r j , q m j and q j are defined in Figure 2. Combining continuous and discrete-time operators informally, in order to illustrate the hybrid nature of the problem, we see that,

H τ j (z -1 ) = -g τ j C j (p)H j (z -1 ) ( 26 
)
The objective is then to use H τ j as a prefilter for the PIV method.

The Integrated Random Walk Smoother

The standard BP method for estimating the joint velocities and accelerations is suboptimal and requires a priori knowledge of the system bandwidth. An optimal and fully automatic alternative method that does not require such knowledge is based on a combination of the Kalman Filter and Fixed Interval Smoother (KF-FIS). This is described in chapter 4 of [START_REF] Young | Recursive estimation and time-series analysis: an introduction for the student and practitioner[END_REF], which provides a full description of the general approach applied to a variety of different state-space model forms. This approach was first suggested for off-line differentiation of signals in the identification of continuous-time linear and nonlinear systems by [START_REF] Young | A direct approach to the identification and estimation of continuous-time systems from discrete-time data based on fixed interval smoothing[END_REF]; and was later applied to continuous-time nonlinear engineering systems by [START_REF] Coca | A direct approach to identification of nonlinear differential models from discrete data[END_REF]. This same approach can be used in the present robot identification context by modelling the joint position j as a simple Integrated Random Walk (IRW) process described by a simple state equation of the form,

q j (t i ) qj (t i ) = 1 ∆t 0 1 q j (t i-1 ) qj (t i-1 ) + 0 1 j (t i-1 ), ( 27 
)
q m j (t i ) = q j (t i ) + ξ j (t i ),
where j and ξ j are, respectively, the process and measurement noise inputs; q j and qj are the states to be estimated; ∆t is the fixed sampling period and a single hyper-parameter, in the form of the Noise Variance Ratio (NVR) associated with the stochastic input j (t i ), is optimised by maximum likelihood based on 'prediction error decomposition' (see e.g [START_REF] Harvey | Estimation procedures for structural time series models[END_REF]. The resulting KF-FIS algorithm yields the estimates q j and qj that are required to construct the observation matrix. This Integrated Random Walk SMoothing (IRWSM) algorithm is coded as the routine irwsm in the CAP-TAIN Toolbox1 for Matlab TM and, by applying this simple routine twice, the joint acceleration estimate can be retrieved. It should be stressed that, thanks to the maximum likelihood optimisation, the practitioner does not have to provide any priori knowledge. Recently, [START_REF] Janot | Identification and control of electro-mechanical systems using state-dependent parameter estimation[END_REF] have introduced this as an alternative to the conventional bandpass filtering process.

Finally, note that it is important not to confuse this KF-FIS filtering procedure, nor the standard BP filtering operations that it replaces, with the prefiltering used in the IDIM-PIV algorithm, since these fulfill quite different filtering objectives. The term 'prefiltering' is restricted to the iteratively updated prefiltering used in the IDIM-PIV algorithm described in the next section 4.3,.

Main IDIM-PIV Identification Algorithm

In the IDIM-PIV algorithm, we introduce the (l j × 1) vector of noise parameters η j for link j. The (l ×1) noise vector η then regroups all these noise parameters, with l = n j=1 l j and η T = [η T 1 . . . η T n ]. Finally, the complete set of parameters required for IDIM-PIV estimation are stacked in the (b + l × 1) vector ρ T = [θ T η T ]. With n m sample points, the algorithm is then defined by the following iterative process: 1. Initialisation. For the initial physical parameters, θ 0 , use the Computer-Aided Design (CAD) values for the inertia, with the other physical parameters are set to zero. For each link, the initial noise filter is set as follows: H j (z -1 , η j 0 ) = 1 with λ 0 j = 1. If the controller is known then move to step 2. If the controller is unknown, it must be identified first using the approach described in Section 4.5. The observation matrix is constructed using the IRWSM algorithm.

Iteration: repeat the following steps until convergence is achieved,

where k indicates the k th iteration:

(a) Simulate the auxiliary model (i.e. the DDM), using the previous estimated parameter vector θ k-1 , in order to retrieve the noise-free signals for the instruments.

(b) Compute the IDIM-PIV estimate of the physical parameters using the following IV solution, where the prefiltering is accomplished using the noise model from the previous iteration:

θ k =   nm i=1 n j=1 ζ T j (t i , ρ k-1 )φ Lj (t i , ρ k-1 )   -1   nm i=1 n j=1 ζ T j (t i , ρ k-1 )τ Lj (t i , ρ k-1 )   (28) with φ Lj (t i , ρ k-1 ) = L j (z -1 , η k-1 j )φ j q(t i ), q(t i ), q(t i ) , ζ j (t i , ρ k-1 ) = L j (z -1 , η k-1 j )φ j q s (t i , θ k-1 ), qs (t i , θ k-1 ), qs (t i , θ k-1 ) , τ Lj (t i , ρ k-1 ) = L j (z -1 , η k-1 j )τ j (t i ), L j (z -1 , η k-1 j ) = λ k-1 j -1 H -1 τj (z -1 , η k-1 j
).

(c) For each link j, obtain an estimate of the noise parameters, η k j , and an estimate of the noise covariance, λ k j . The output noise filter H j can be identified based on

-g -1 τ j C -1 j (p) τ j (t i ) = H j (z -1 , η j )e j (t i ), (29) 
with

τ j (t) = τ j (t) -φ j q(t), q(t), q(t) θ k . (30) 
The noise model, H τ j , is then reconstructed with (26).

3. Estimated covariance. After convergence, an approximate estimate of the parametric error covariance matrix, based on (23), is computed by the following relation

P ( θ) =    Ē   n j=1 H -1 τj (z -1 , η j )φ j t, θ T λ -1 j H -1 τj (z -1 , η j )φ j t, θ      -1 . (31) 

Noise Filter Identification

In general terms, an AutoRegressive, Moving Average (ARMA) model is used to represent the noise process H τ j in the IDIM-PIV algorithm, under the assumption that the noise has rational spectral density; and this model can be estimated by any available ARMA noise model identification method (e.g. the routine ivarma in CAPTAIN). However, an easier alternative, as used here, is to employ the simpler AutoRegressive (AR) model, with its order identified by the Akaike Information Criterion (AIC); as implemented by the aic routine in CAPTAIN. This simple method of noise model identification, combined with the irwsm approach to signal differentiation, means that IDIM-PIV algorithm does not require any access to prior information and so it is easier to apply in practice.

Controller Identification

When the controller is unknown, one solution is to use the IDIM-LS method, which does not require any knowledge on the controller. However, as shown in Janot et al. (2014b), it is more interesting to consider the IDIM-IV method if the system bandwidth is not certain. This is most likely to be the situation when first identifying a particular robotic system. The drawback of this approach is, of course, that the IDIM-IV method requires the controller knowledge for the simulation of the DDM, so it is necessary to use an alternative strategy.

If the controller structure is known to the practitioner, a parametric identification method provides a straightforward solution. If the structure is unknown, the control law (model and parameters) can be identified using standard techniques, such as RIV or Prediction Error Minimisation (PEM: see [START_REF] Ljung | System identification: theory for the user[END_REF]. In the robotic context, the controller inputs q r , q, q and q, as well as its output: ν τ are available. This poses a Multiple Input Single Output (MISO) problem of system identification, which can be identified by the method that best suits the practitioner (see e.g. [START_REF] Pascu | Developments towards formalizing a benchmark for continuous-time model identification[END_REF]).

Finally, as [START_REF] Khalil | Modeling, identification and control of robots[END_REF] explain, a predictive/feed-forward action can be employed in robotic systems in order to reduce the tracking error. In this situation, therefore, it may well be relevant to take into account qr and qr as additional inputs for the control law identification. Furthermore, since many industrial robots also have a velocity loop, the velocity q can be a valuable input for the controller identification.

Experimental Results

Experimental Setup

The experimental evaluation of the proposed IDIM-PIV identification method has been carried out using the industrial Stäubli TX40 robot, which is a serial manipulator composed of six rotational joints; see Figure 1. There is a coupling between the joints 5 and 6 that adds two parameters: f v m6 and f c m6 , which are, respectively, the viscous and dry friction coefficient of the motor 6. The SYMORO+ software is used to automatically calculate the customized symbolic expressions of models (see [START_REF] Khalil | Modeling, identification and control of robots[END_REF]. The robot has 60 base dynamic parameters and, from these 60 base parameters, only 28 are well identified with good relative standard deviations. These 28 parameters define a set of essential parameters that are sufficient to describe the dynamic behaviour of the robot. This set was validated with a F-statistic, as shown in Janot et al. (2014a) and only the estimation of these parameters is considered here.

The reference trajectories are trapezoidal velocities (also called smoothed bang-bang accelerations) that lead to the signals shown in Figure A.9. With cond(φ Fp ) = 200, these reference trajectories provide sufficient excitation for the estimation of the base parameters according to [START_REF] Gautier | Exciting trajectories for the identification of base inertial parameters of robots[END_REF] 2 . The joint positions and control signals are stored with a measurement frequency f m = 5 kHz. For the IDIM-LS method, the filter cut-off frequencies are tuned according to Gautier et al. (2013a): i.e. ω fq = 5ω dyn = 50 Hz and ω Fp = 2ω dyn = 20 Hz for the Butterworth and the decimation filters, respectively. The maximum bandwidth for joint 6 is ω dyn = 10 Hz. Concerning the control law, a simple controller has been designed to perform tests in the laboratory. This controller is composed of one PID per axis and is referred to as the 'actual controller'.

The identification is conducted using rather noisy data in order to test the performance of the methods in this regard. For this purpose, the resolution of the encoders is downgraded to 3600 points per revolution in an equivalent manner to [START_REF] Marcassus | Minimal resolution needed for an accurate parametric identification-application to an industrial robot arm[END_REF]. The order of the AR noise model is selected using the aic routine in CAPTAIN, which makes the procedure automatic but identifies very high order models in this case. This suggests that the noise is complex, which probably arises from artifacts introduced in the decimation and filtering operations required in the preparation of the data for model identification. However, the resulting prefilter is able to purge the colour satisfactorily from the noise on data and, as we shall see, produces a worthwhile improvement in the residual autocorrelations and reduction in the estimation error variance.

Known Controller

Three identification methods are considered in this case: the proposed IDIM-PIV; the standard IDIM-LS; and the IDIM-IV without prefilters. For the IDIM-IV and IDIM-PIV methods, the controller used for the simulation is the actual controller of the robot. The observation matrix for the IDIM-PIV method is constructed automatically using the CAPTAIN irwsm implementation of the IRWSM algorithm; while the usual bandpass filter design approach is used for the other methods.

For continuous-time modelling purposes, the Coulomb friction is modelled with a arctangent function instead of a sign function (see Gautier et al., 2013b). The function 2 π atan(γ qj (t)) tends to sign( qj (t)) when γ tends to infinity but, in the present situation a γ = 150 appeared to be satisfactory and avoided any numerical integration problems. It is worth noting here that the prior assumption of known relationships for nonlinearities such as this is not essential because they can be estimated using the State-Dependent Parameter (SDP) approach discussed in [START_REF] Janot | Identification and control of electro-mechanical systems using state-dependent parameter estimation[END_REF].

Table 1 summarizes the estimated values and their relative standard deviations. The estimated parameters of the IDIM-LS method are not satisfactory due to large mismatches in the estimated inertias zz 1r and zz 3r : this is the result of estimation bias induced by the noise correlation arising from closed-loop operation. The IDIM-IV and IDIM-PIV methods converged in 3 and 5 iterations, respectively, and the resulting estimated parameters were checked using cross-validation tests in an equivalent manner to Janot et al. (2014a). In practice, the experimental dataset was divided in two: the first part for the identification and the second one for the cross-validation. Figures 4 and A.7 show a comparison between actual joint torques (blue) and reconstructed joint torques (dashed red). The reconstructed torques, based on the IDIM-PIV estimates, fit the actual ones as well as the reconstructed ones based on the standard IDIM-IV method.

With regard to the relative standard deviations, except for two parameters (f v 2 and zz 3r ), the values are less than those of the IDIM-IV method, and sometimes significantly so, even though the filters of the latter are correctly tuned. The reason why there is no improvement in these two parameters is unclear but it may be because of the small remaining modeling error that affects the estimated noise signal and the estimation of the H(z -1 ) which, as we note in section 5, require very high order AR models. Furthermore, the estimated covariances of the IDIM-PIV method seem more reliable, as we see clearly from Figures 5 andA.8 which show the autocorrelation functions of the model residuals obtained in each case. For the IDIM-PIV method, the effect of the prefilter is clear, with the estimated autocorrelation coefficients included well within the confidence intervals indicated by the blue lines; whereas they are larger for the IDIM-IV method and exceed the confidence intervals, so revealing significant serial autocorrelation. Note that the differences between the confidence interval bounds are due to the number of samples considered for each methods: the IDIM-PIV method uses n m = 34500 sampling points for the estimation, while the others use only N = n m /n d = 276 sampling points, due to the need for the decimation filter.

Based on the above results, we can conclude that, when the controller is known, the IDIM-PIV method is able to estimate the robot parameters very well. Although the standard IDIM-IV method yields reasonable results, it is more sensitive to the noise contained in the signals, showing that the addition of the prefiltering in IDIM-PIV method is advantageous and provides a worthwhile improvement. Finally, the IDIM-LS method fails in this situation and has to be considered unsatisfactory in this regard.

Unknown Controller

When the controller is unknown, a parametric approach has been considered. This is used in the case in the IDIM-PIV algorithm, with the Simplified Refined IV (SRIV) option in the CAPTAIN rivcbj routine employed to identify a parametric model for the controller. The identified controller model is composed of six PID elements and is indicated by C. For link j, the input and the output of the corresponding PID controller are, respectively, the tracking error (q r j -q m j ) and the control signal ν τ j . In addition, the velocity and acceleration of the reference, qr j and qr j respectively, as well as the estimated velocity, q j , were taken into account, so providing more flexibility to identify the control law. The user has to provide the routine with these signals, as well as the orders of the numerator and denominator of the transfer for the given link. In order to identify these orders, maximum orders are selected at first; then, a linear search is performed to select the orders that give the best explanation of the data. Figure 6 shows the identified controller of link 4 as an example. As described in [START_REF] Young | Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model[END_REF], the SRIV option of the rivcbj routine estimates the continuous-time transfer function using an iterative RIV method under the assumption of white additive noise. In this case, the observation matrix for the IDIM-PIV method is again constructed using the CAPTAIN irwsm technique.

The IDIM-PIV method converged well in 5 iterations. Based on the identification results shown in the last column of Table 1, the IDIM-PIV method clearly shows that parametric identification of the controller provides an effective approach when the controller is unknown. Once again, the relative standard deviations of the IDIM-PIV estimates are slightly lower than those of the IDIM-IV method, demonstrating again the advantages of prefiltering.

Conclusions

Inspired by the optimal hybrid Refined Instrumental Variable algorithm for continuous time linear systems (RIVC), the existing IDIM-IV algorithm for nonlinear robotic system identification has been modified to a new IDIM-PIV form that includes iteratively updated prefilters to improve its statistical efficiency. The instrumental variables and prefilters are derived from the closed-loop model of the robot which is identified systematically, without a priori knowledge of the system or, if necessary, the associated control system. If the controller is unknown, the paper shows how it can be identified using a parametric method based on the RIVC algorithm.

Experimental validation of the proposed methodology has been carried out on a 6 DOF industrial robot and it is concluded that:

-The IDIM-PIV is suitable for the systematic identification of an industrial robot without access to the prior knowledge normally required for such identification;

-The observation matrix required by the IDIM-PIV algorithm can be automatically constructed using the Integrated Random Walk Smoothing (IRWSM) technique;

-If the control system is unknown a priori, then a suitable model for the controller can be identified using the existing RIVC parametric method;

-The controller identification strategies can be used with standard IDIM-IV technique, freeing it also from any prior knowledge in this regard.

-The RIVC and IRWSM algorithms required for implementation of the IDIM-PIV algorithm are available as the rivcbj and irwsm routines in the CAPTAIN Toolbox for Matlab TM

Research and development studies are continuing on the IDIM-PIV approach, concentrating on its application to more flexible robots and/or parallel robots. In this regard, [START_REF] Vivas | Experimental dynamic identification of a fully parallel robot[END_REF], [START_REF] Guegan | Identification of the dynamic parameters of the orthoglide[END_REF], [START_REF] Briot | Global identification of joint drive gains and dynamic parameters of parallel robots[END_REF]) [START_REF] Wu | An overview of dynamic parameter identification of robots[END_REF] have applied the standard IDIM-LS method to parallel robots; while in [START_REF] Wu | Identification of dynamic parameter of a 3dof parallel manipulator with actuation redundancy[END_REF], the authors have applied a standard LS procedure that is equivalent to the IDIM-LS approach. These successful studies suggest that the IDIM-IV and the IDIM-PIV methods should be suitable also for parallel robot applications.

Appendix A. Supplementary figures

This appendix includes supplementary figures for the axes 4 to 6 as well as a plot of the excitation trajectories used for this study. 

Figure 1 :

 1 Figure 1: Closed-loop diagram of Stäubli TX40 robot

Figure 2 :

 2 Figure 2: Robot model of link j

Figure 3 :

 3 Figure 3: Bode diagram of filters involved in the bandpass filtering

Figure 4 :

 4 Figure 4: Cross-validation torques (Nm): measurement (blue), estimation (dashed red) and error (dotted black) -IDIM-IV (left) and IDIM-PIV (right) -Controller known -Axes 1 to 3

Figure 5 :

 5 Figure 5: IDIM-IV (left) and IDIM-PIV (right) residuals autocorrelations (red dots) and 2σ confidence intervals (blue lines) -Controller known -Axes 1 to 3

Figure 6 :

 6 Figure 6: Example of the identification of the controller -Axis 4

  Figure A.7: Cross-validation torques (Nm): measurement (blue), estimation (dashed red) and error (dotted black) -IDIM-IV (left) and IDIM-PIV (right) -Controller known -Axes 4 to 6

Table 1 :

 1 Estimated parameters and relative standard deviations

	Param.	IDIM-LS	IDIM-IV	IDIM-PIV	IDIM-PIV ( C)
	zz 1r	1.12 (2.43%) 1.24 (2.64%) 1.25 (1.20%)	1.25 (1.17%)
	f v 1	8.06 (1.23%) 7.61 (1.45%) 7.61 (1.12%)	7.61 (1.09%)
	f c 1	6.94 (3.95%) 8.34 (3.74%) 8.33 (2.89%)	8.32 (2.82%)
	xx 2r	-0.43 (5.45%) -0.46 (6.30%) -0.46 (4.34%) -0.46 (4.25%)
	xz 2r	-0.15 (7.87%) -0.16 (10.6%) -0.16 (8.71%) -0.16 (8.52%)
	zz 2r	0.97 (1.94%) 1.13 (2.05%) 1.13 (1.70%)	1.14 (1.64%)
	mx 2r	2.44 (3.72%) 2.25 (5.84%) 2.16 (1.66%)	2.16 (1.62%)
	f v 2	5.59 (1.93%) 5.11 (2.38%) 5.19 (2.48%)	5.20 (2.41%)
	f c 2	7.94 (3.09%) 9.23 (3.00%) 8.99 (3.22%)	8.97 (3.13%)
	xx 3r	0.16 (13.8%) 0.14 (18.2%) 0.12 (16.2%)	0.12 (15.8%)
	zz 3r	-0.01 (265%) 0.11 (18.2%) 0.14 (10.9%)	0.14 (10.3%)
	my 3r	-0.61 (4.20%) -0.61 (4.77%) -0.56 (4.50%) -0.56 (4.39%)
	ia 3	0.16 (8.68%) 0.09 (18.5%) 0.09 (11.2%)	0.09 (11.0%)
	f v 3	2.06 (3.59%) 1.77 (4.62%) 1.71 (4.12%)	1.72 (3.98%)
	f c 3	5.88 (4.21%) 7.23 (3.83%) 7.60 (3.07%)	7.59 (2.98%)
	mx 4	0.00 (272%) -0.03 (50.2%) -0.07 (16.5%) -0.07 (15.2%)
	ia 4	0.02 (39.6%) 0.03 (28.8%) 0.03 (18.0%)	0.03 (16.8%)
	f v 4	1.20 (6.21%) 0.97 (8.37%) 0.85 (4.26%)	0.85 (4.18%)
	f c 4	2.13 (12.6%) 3.13 (9.49%) 3.55 (3.68%)	3.53 (3.61%)
	my 5r	-0.05 (19.6%) -0.04 (30.4%) -0.03 (24.0%) -0.02 (25.1%)
	ia 5	0.05 (16.7%) 0.05 (24.5%) 0.05 (16.0%)	0.05 (14.7%)
	f v 5	1.97 (4.80%) 1.55 (6.68%) 1.60 (4.13%)	1.60 (3.73%)
	f c 5	2.43 (10.1%) 3.82 (7.16%) 3.71 (4.66%)	3.75 (4.14%)
	ia 6	0.01 (40.7%) 0.01 (64.5%) 0.01 (20.5%)	0.01 (21.1%)
	f v 6	0.68 (6.79%) 0.59 (8.84%) 0.59 (3.96%)	0.60 (3.53%)
	f c 6	0.14 (146%) 0.19 (68.1%) 0.26 (59.3%)	0.26 (59.1%)
	f v m6	0.62 (5.91%) 0.53 (7.57%) 0.56 (3.99%)	0.56 (3.51%)
	f c m6	1.91 (11.0%) 2.35 (9.98%) 2.61 (4.97%)	2.46 (4.76%)

This Toolbox is available free and can be downloaded via http://captaintoolbox.co.uk.

Given the IV nature of the estimation, cond(ζ T φ Fp ) should also be checked as this will ensure that the instrumental variables are well generated and the IV solution is well defined.