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A THEORY OF THIN LAYERS IN ELECTRICAL ENGINEERING; 
APPLICATION TO EDDY-CURRENT CALCULATION INSIDE A 

SHELL USING THE BIE SOFTWARE PHI3D. 

Dr. Dipl.-Ing. L. Kriihenbiihl 
Laboratoire d'Eiectrotechnique de Lyon - URA CNRS W829 

Ecole Centrale de Lyon- BP 163- 69131 Ecully Cedex (France) 

Abstract: During last years, several! numerical formulations have been developped by us to modelize 
physical problems like: conducting film effects over the surface of insulators (pollution) [1], high frequency 
eddy-currents [2], earth field effect on the hull of a ship [3]. 
The physical effects being at stake are completly different, but in each of these examples, they originate from 
a region thin in regard with the other geometrical dimensions. An efficient numerical approach consists on 
using a surfacic representation with special boundary conditions expressing the solution inside the thin 
region. 
From the synthesis of these models proposed in past times, we built a theory of thin shells which may be used 
to solve novel field problems. 
As an example, we apply that theory to get the boundary conditions for eddy currents flowing inside a shell 
of thickness e (roughly: e = 0.1 delta to 10 delta). The practical applications may concern the optimisation 
of the induction heating of pans (french art cu/inaire) or the computation of losses into the carcase of an 
electrical engine. 

Equation or continuity Cor a shell. 
Introduction [4] 
The fondamental property we will use here is the continuity of vector B, mathematically expressed by the 
equation of continuity, which is valid for each non-divergent quantity: 

divB = 0 (1) 

This equation expresses the concept of tubes of induction wich cannot converge upon a point without again 
diverging therefrom. 
Note that, on the contrary, some meaning vector quantities are divergent. The typical example is the electric 
induction D: 

divD = q (2) 

div D is not everywhere equal to zero and it represents the distribution of electric load: in other words, the 
righ-hand-term of the equation of continuity symbolises the source of the flux of the considered vectorial 
quantity. 

Particular expression for a shell (fig. 1) 

In a first time, let us consider that B is everywhere tangent to 
the surface of the shell. Then, the normal flux is zero, and 
the tangential induction is non-divergent: 

divsB = 0 (3) 

In fact, we have to take into account the depth e of the shell, 
and the equation of continuity is only valid for the equivalent 
shell flux density F defmed by the integral value: 

divs[ J Btg·dz] = 0 
e 

F 

(4) 
Fig.1 

What happens in a second time if we add normal flux densities B n and B2n on the surfaces s1 and s2? 
These distributions are increasing or decreasing the internal flux F; Gy the fact, they are the actual sources of 
F, like q is the source of the electrical induction D. 
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Then F becomes div;:.er::.:go::e::n::t:~--------, 

(5) 

This is the expression we were looking for. We will now apply this particular form of the equation of 
continuity to three magnetic or electromagnetic confignrations. 

Thin ferromagnetic shell. static. 

We considere here the effect of a static magnetic field on a thin ferromagnetic shell, for example the carcase 
of an electrical engine. 
An hypothesis has to be done to evaluate the shell flux density F as a function of B on S: it seems adequat to 
assign a constant value to the tangential component of B through the depth. 
Then: F = e. Bs,tg = e.mur . Hs,tg and (withe constant): (6) 

(5) = > 

with: mur: relative permeability of the shell. 

(7) 

(8) 

Note that, if e leads to zero, the left-hand-term in (7) is zero and we fmd again the classical interface 
condition between two ferromagnetic materials. If e is not a constant, a term Hs.gradse has to be introduced 
in (7). 

To use this equation as interface condition in a BEM program, it remains to express it in terms of scalar 
potential, using for example the reduced scalar magnetic potential V: 

H = H
0

-gradV 
H

0 
: source field. dn = n.grad 

(9) 

(5) = > (10) 

The boundary condition (10) is not trivial because of the Laplacian operator. 1n fact, it is a surfacic 
differencial equation, to be solved together with the volumic Boundary Integral Equation using for example 
the FEM. Both are discretized and solved using usual numerical procedures. 

Eddy currents. high frrequency [2] 

1n that case, the object is not geometrically a shell, but a massive conducting body in a high frequency source 
field. For a sufficiently high frequency, the field refuses to penetrate deep into the conducting material. 
This penetration is characterized by the skin depth delta. If delta is little in comparison with the geometrical 
dimensions of the conductor, the following well known analytical solution for the penetration of B is valid: 

Btg(z) = Bs.exp[-(l+j).z/delta] (11) 

We can use it to calculate the equivalent flux density F as a function of Bon S: 

F = ~Btg(z).dz = (1-il/2. delta. Bs,tg (12) 

This expression is completly similar to (6), but the complex factor. The related expressions of the equation 
of continuity are following (compare to (7) and (10)): 

(5) = > (1-j)/2. delta.mur. divsHs = Hn (13) 

or: (1-j)/2. delta.mur. (divsH
0

-laps V) = (H
0
n-dn V) (14) 

We fmd again by a different way the result of a previous paper [2]. Note the limit case at very high 
frequency, when delta - and Bn - lead to zero: equation (14) becomes the simple boundary condition 
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(Neuman, homogenous) of the infinit frequency formulation: 

(5) = > 

That means that the eddy currents constitute a perfect magnetic screen. 

Svnthesis 

A common proceeding was used for both previous examples: 
1- Choice of a non-divergent vector quantity (B). 
2- Choice of a particular distribution of this vector through the shell (constant, exponential, ... ). 

(15) 

3- Related particular expression of the equivalent flux density F (eq. 6 and U) and of the eq. of 
continuity ( eq. 7 and 13). 
4- The same, but in term of scalar potential (eq.10 and 14). 

The strong point is that two completly different shell problems have been solved using exactly the same 
proceeding, ouly the distribution of Btg through the shell was changed. 
We will now use this procedure once more to get a general formulation for the magnetic field in a 
ferromagnetic and conducting shell, valid for any frequency, including previous static, high frequency and 
infinit frequency models. 

Magnetic field into a shell: the general analytical model 

In that general case, we have to considere the values of B on both sides (index 1 and 2) of the shell, 
described using 4 complexe surfacic distributions: reduced potentials V 1, V 2; normal derivatives dn V 1 and 
dn V 2. The volumic equation or BIE gives us two relations, the analytical model of the shell has to give two 
more. 

First relation: divergence of the equivalent flux density. 
The Maxwell's equations lead to the following variation of B through the shell: 

B(z) = b .exp(-J!.z) + b'.exp(+J!.z) with J! = (1+j)/delta (16) 

The vector-coefficients b and b' depend on the surfacic values B1 and B2. The expresssion of F is obtained 
after some calculations: .. 

F = (1-j)/2. delta.mur.th(J!.e/2) . (Hltg + Hztg) then: 

(5) = > (1-j)/2. delta.mur. divs(H1 +Hz) = (Hln-H2n) I th(J!.e/2) 

Second relation: Lenz's law. 

(17) 

(18) 

The second relation is not obtained exactly by the same procedure; the general way is preserved, but starting 
with: 

curl E = -dB/dt 
The integration of E through the depth gives: 

(19) = > 

sigma.JEtg·dz = n x (HrHz) 
a 

= > sigmaJcurl E.dz = n.divs(H1-H2) then: 
e 

(19) 

(20) 

(21) 

Relations (18) and (21) are similar, ouly signs have been changed and the th(J!.e/2) factor jumps from 
numerator to denominator. The first relation lies the surfacic variations of the mean-value of Htg into the 
shell (ie the flux) to its source, which is the resultant normal flux density. The second relation lies the 
surfacic variation of the resultant surface current density [2] to the mean-value of the normal flux density 
through the shell. 

LK-HP
Rectangle 

LK-HP
Rectangle 

LK-HP
Rectangle 

LK-HP
Rectangle 



- 104 -

Limit cases: quasi-static and high frequency. 
If the frequency leads to zero, the term th(l!.e/2) leads to (l!.e/2 then: 

(17) = > F --> e.mur. [(Hl,tg + H2,tgl/2) (22) 

which is to compare to (6). For the high frequencies, th(l!.e/2) leads to 1, then: 

(17) = > F --> (1-j)/2. delta.mur. (Hl,tg + H2,tgl (23) 

which is to compare to (13). 
By the fact, it becomes patent that the model of the shell presented here is very general; in particular, it 
includes both static and high frequency models. 

The price to pay. 
The following table showes the price to pay to use this more general formulation: for example, it needs 8 
times more real unknowns as the infmit frequency formulation (for the same mesh): it has to be used with 
discrimination! 

Formulation E .# Number of unknowns 
Static SF 7 2 
General GF 18+21 8 ( 4, complex) 
High-Frequency HFF 14 4 (2, complex) 
Infmit-Frequency IFF 15 1 

These four shell formulations have been implemented in the research version of the industrial software 
PID30 [5]. They will now be tested and compared. 

Example 

The example is a hollow sphere in a constant alternative source field (fig. 2). This is a simple configuration, 
but both ferromagnetic and eddy-currents effects are clearly shown (fig. 3): it has been solved successively 
using the Static Formulation (SF, eq.lO), the High Frequency Form. (HFF, eq.l4) and the General Form. 
(GF, eq.18 and 21}, coupled with the Boundary Integral Equation Method for the infmit external region. 

With given geometrical dimensions and physical properties, we can see that (fig. 5a-b): 
-SF and GF give the same result for f< 1Hz. With the choosen mesh (27 nodes, fig. 4}, the error with the 

analytical value is less than 1%, that is the extent of the discretization error. 
- GF and HFF are equivalent for f> 250Hz, ie delta< e/2. 
- GF allows the exact computation of the passage from static to high frequency. 

t H, 
I source field 

I 
,I_;< 

I 

Test-paint P 

air (I) 

[S/m] 

Fig. 2: definition of the test-problem: 
the hollow ferromagnetic and conducting sphere 

in a constant field 
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1.5 ( infinit freq. asymptote -----:---------

Field values: 
Hl = exterior 
H2 = interior 

Fonnulations: 
SF = static-
HFF = high frequency 
GF = general 

static limi~ 

I 
lk !Ok f[Hz 

Fig_. 5-a: the hollow sphere: 
field modulus on P, with 3 
different shell fonmulations. 

O.OlL_ ___ .L ___ _L __ _I._j_ ___ _j_ ___ ___j 

arg(Hl) [•] 

20. 

0. 

10 

Fig. 5-b: the hollow sphere 
field argument on P, with the 
High Frequency (HFF) and 
General (GF) shell Formula­
tions. 

delta = e/2 

Hl (HFF) 
= Hl(GF) 

100 lk !Ok lOOk f[Hz) 
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high frequency 

Fig. 3: Flux lines plot (schematic) 

Fig. 4: Mesh of the 1/4 sphere. 

Conclusion 

The general formulation for the electromagnetic shell 
problems presented in this paper is well adapted to be 
coupled with the BIEM. The research works on, to take into 
account the saturation of the shell; to do that, we have to 
replace the analytical exponential solutions (11) and (16) by 
numerical, !-dimensional non-linear solutions. 
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