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coupling phenomenon of electromagnetic and seismic waves

Eric BONNETIER* Faouzi TRIKI†, and Qi XUE ‡

March 27, 2018

Abstract

The electroseismic model describes the coupling phenomenon of the electromagnetic waves
and seismic waves in fluid immersed porous rock. Electric parameters have better contrast than
elastic parameters while seismic waves provide better resolution because of the short wavelength.
The combination of theses two different waves is prominent in oil exploration. Under some as-
sumptions on the physical parameters, we derived a Hölder stability estimate to the inverse prob-
lem of recovery of the electric parameters and the coupling coefficient from the knowledge of the
fields in a small open domain near the boundary. The proof is based on a Carleman estimate of
the electroseismic model.
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1 Introduction

The traveling of seismic waves underground generates electromagnetic (EM) waves and vice versa.
This phenomena, electro-kinetic coupling, is explained by the electro-kinetic theory, which considers
that the sediment layers of the earth are porous media saturated with fluid electrolyte. The solid
grains of porous media carry extra electric charges (usually negative) on their surfaces as a result of
the chemical reactions between the ions in the fluid and the crystals that compose the solid. These
charges are balanced by ions of opposite sign in the fluid, forming thus an electrical double layer.
When seismic waves propagate through porous media, the relative solid-fluid motion induces an
electrical current which is a source of EM waves. Conversely, when EM waves pass through such
porous media, ions in the fluid are set in motion and drag the fluid as well, because of viscous traction.

Electro-kinetic coupling has been observed by geophysicist, see e.g., [21, 9, 11]. This effect rose inter-
est in the physics community, as the coupling of EM and seismic waves may provide an efficient tool
for imaging the subsoil in view of oil prospection. Such an imaging technique, and the associated
inverse problem of reconstructing the constitutive parameters of the subsoil, fall into the category
of multi-physics inverse problems, where a medium is probed using two types of waves (see for ex-
ample [1, 15] and references therein for medical imaging). One type of waves is very sensitive to the
contrast in the parameters that describe the properties of the medium (electric permittivity, mag-
netic permeability and conductivity in our case) however, these waves are usually very diffusive and
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Electro-kinetic

D electric flux B magnetic flux
u solid displacement w relative fluid displacement
τ bulk stress tensor p pore pressure
σ electric conductivity ε electric permittivity
µ magnetic permeability L electro-kinetic parameter
κ fluid flow permeability η fluid viscosity

λ,G Lamé elastic parameters C , M Biot moduli parameters
ρ bulk density ρ f fluid density
ρe equivalent density

Table 1.1: Physical meanings of variables and parameters

only scattered information arrives to the medium boundary, where the data are collected. The other
type, on the contrary, is not very sensitive to changes in the medium properties, but is able to carry
information through the medium with little distortion (seismic waves in our case).

In 1994, Pride [16] derived a macroscopic model in the frequency domain that models the coupling of
EM and seismic waves in fluid-saturated porous media by averaging microscopic properties, see also
[18, 17]. The associated system of equations is composed of the Maxwell equations, which govern
the propagation of EM waves, and of the Biot equations [4], which govern the propagation of seismic
waves in porous media.

Because the electro-kinetic coupling is very weak in practice, one usually neglects multi-conversion,
i.e., one neglects the coupling terms in either the Maxwell or the Biot equations, and thus only con-
siders transformations from either EM to seismic waves (electroseismic) or from seismic to EM waves
(seismoelectric). At low frequency, one can expand all the parameters of the model with respect to fre-
quency, and neglecting high order terms results in a time domain model. This is done for example in
[10] for the seismoelectric model. In our paper, we are interested in the electroseismic model, which
takes the form

∂t D−curl(αB)+γD = 0, (1.1)

∂t B+curl(βD) = 0, (1.2)

ρ∂2
t u+ρ f ∂

2
t w−divτ = 0, (1.3)

ρ f ∂
2
t u+ρe∂

2
t w+∇p + η

κ∂t w−ξD = 0, (1.4)

(λdivu+C divw)I+G(∇u+∇uT ) = τ, (1.5)

C divu+M divw = −p, (1.6)

where
α= 1

µ , β= 1
ε , γ= σ

ε , ξ= Lη
κε .

The physical meaning of all the variables and parameters is given in Table 1. All the parameters are
real and positive. Throughout the text, we denote by ∂t and ∂ j the partial derivatives of a function
with respect to t and x j respectively, and by ∇ (resp. ∇x,t ) the gradients with respect to the variables x
(resp. x and t). By gradient of a vector-valued function, we mean the transpose of the Jacobian matrix.

To close the Maxwell system (1.1)-(1.2), we assume that the media do not contain any free charge, i.e.,

divD = divB = 0. (1.7)

We consider the system of equations (1.1)-(1.7) in Q =Ω× (−T,T ) whereΩ ∈R3 is a bounded domain
with C∞ boundary ∂Ω. The boundary conditions are

n×D = 0, n ·B = 0, n ·τ= 0, p = 0, on ∂Ω, (1.8)
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Electro-kinetic

where n is the outer normal vector on ∂Ω. As we are interested in the electroseismic model, we con-
sider 0 initial values for the solid displacement u and for the relative fluid displacement w associated
to the Biot equations

u(x,0) = 0, w(x,0) = 0, ∂t u(x,0) = 0, ∂t w(x,0) = 0, (1.9)

while we impose electric and magnetic fluxes inΩ

D(x,0) = D0(x), B(x,0) = B0(x). (1.10)

In accordance with the accepted physical properties of underground media, we assume that the ma-
trices (

ρ ρ f

ρ f ρe

)
and

(
λ C
C M

)
(1.11)

are symmetric positive definite and that ρe > ρ f ,ρ > ρ f . We also assume that all the parameters of
the Biot equations (1.3)-(1.6) are known, except the coupling coefficient ξ. The main object of this pa-
per is to analyse the well-posedness of the inverse problem of determining the parameters (α,β,γ,ξ)
from measurements of (D,B,u,w) in Qω, where Qω = ω× (−T,T ) and ω ⊂Ω is a fixed neighborhood
of the boundary. To the best of our knowledge, [6] and its following work [5] are the only papers
considering the inverse electroseismic problem. In those papers, the authors considered the second
inversion step in frequency domain, assuming that LE is known everywhere in Ω, they focus on the
identification of (L,σ). Their method is based on the CGO solutions of frequency domain Maxwell
equations [7, 20]. Different from their work, our method treats the global inversion and is based on a
Carleman estimate to the electroseismic model [3, 14, 13]. Under some assumptions on the physical
parameters we derive a Hölder stability estimate to the inverse problem of identification of the elec-
tric parameters and the coupling coefficient with only measurements near the boundary. The main
stability result is provided in Theorem (4.1).

The paper is organized as follows: Section 2 is devoted to the existence and uniqueness of solutions
to the forward problem. In Section 3, we derive a Carleman estimate for the whole electroseismic sys-
tem, from which we infer, in section 4, the Hölder stability of the inverse problem with measurements
of (D,B,u,w) near the boundary.

2 Existence and uniqueness for Biot’s system

As stated before, in the electroseismic system the Maxwell equations are totally independent of the
Biot equations. Therefore, the question of existence and uniqueness of solutions to the electroseis-
mic system reduces to showing existence and uniqueness of solutions to the Biot equations. To the
author’s best knowledge, existence and uniqueness for the Biot equations in two dimension was first
proved in [19]. In [3], the 3D case is studied, but with different boundary conditions than those con-
sidered here. Although the general arguments are similar, we prove the existence and uniqueness of
solutions to our version of the Biot equations for the sake of completeness.

We first introduce some notations. For two matrices E = (Ei j ),F = (Fi j ) of the same size, we define

E : F =∑
i , j

Ei j Fi j .

For a given Hilbert space H, (u, v)H denotes the inner product of u, v ∈ H and ‖u‖H the corresponding
norm. The dual space of H is denoted by H ′ and 〈u, f 〉 represents the duality pairing of u ∈ H , f ∈ H ′.
We use [H ]m to denote the space of vector-valued functions u = (u1, . . . ,um) such that u j ∈ H , 1 ≤ j ≤
m. The inner product on this space is defined by (u,v)H =∑

i (ui , vi )H . We use similar definitions for

3



Electro-kinetic

spaces of matrix-valued functions. When we consider the space L2(Ω) or [L2(Ω)]m , we usually omit
all subscripts. The Sobolev space H(div,Ω) is defined by{

u ∈ [L2(Ω)]3 : divu ∈ L2(Ω)
}

and is equipped with the inner product

(u,v)H(div) = (u,v)+ (divu,divv).

We use Lp (−T,T ; H) to denote the space of functions f : (−T,T ) → H satisfying

‖ f ‖Lp (−T,T ;H) :=
(∫ T

−T
‖ f ‖p

H d t

)1/p

<∞

for 1 ≤ p <∞, and define
‖ f ‖L∞(−T,T ;H) := ess sup

t∈(−T,T )
‖ f ‖H <∞.

Denoting V = [H 1(Ω)]3 ×H(div,Ω),v1 = u,v2 = w,

v =
(

v1

v2

)
, F =

(
0
ξD

)
,

A =
(
ρI3 ρ f I3

ρ f I3 ρe I3

)
, B =

(
0 0
0 η

κ I3

)
, L v =

( −divτ
∇p

)
,

the Biot equations can be compactly written in the form
A∂2

t v+B∂t v+L v = F, inΩ× (−T,T ),
v(x,0) = 0, inΩ,
∂t v(x,0) = 0, inΩ,

n ·τ= 0, p = 0, on ∂Ω× (−T,T ).

(2.1)

Integration by parts and using the boundary conditions, we have

(L v,v′) =
∫
Ω

(−divτ ·v′1 +∇p ·v′2
)

=
∫
Ω

(
τ : ∇v′1 −p divv′2

)
= (

divv1,λdivv′1 +C divv′2
)+ (

divv2,C divv′1 +M divv′2
)+ (

2Ge(v1),e(v′1)
)
,

where e(v1) = 1
2 (∇v1 +∇vT

1 ).

Define

B(v,v′) = (
divv1,λdivv′1 +C divv′2

)+ (
divv2,C divv′1 +M divv′2

)+ (
2Ge(v1),e(v′1)

)
.

It’s obvious that B is a symmetric bounded bilinear form. We recall the Korn inequality(
e(v1),e(v1)

)≥C0‖v1‖2
H 1 −‖v1‖2,

where C0 is a strictly positive constant. From now on, we use C0 to denote a general positive constant
which may take different values at different places. From the Korn inequality, we obtain

B(v,v) ≥
∫
Ω

(divv1 divv2)

(
λ C
C M

)(
divv1

divv2

)
dx+2min{G}

(
e(v1),e(v1)

)
≥ λ∗‖divv1‖2 +λ∗‖divv2‖2 +2C0 min{G}‖v1‖2

H 1 −2min{G}‖v1‖2

≥ C0‖v‖2
V −θ‖v‖2,
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Electro-kinetic

where θ is a positive constant independent of v and λ∗ is the smallest eigenvalue of the matrix(
λ C
C M

)
.

We define Bθ(v,v′) = B(v,v′)+θ(v,v′). The bilinear form Bθ is symmetric, bounded, and it satisfies
the following ellipticity condition Bθ(v,v) ≥C0‖v‖2

V .

Definition 2.1. Let F ∈ H 1(−T,T ; [L2(Ω)]6). We call r ∈ L∞(−T,T ;V ) a generalized solution to (2.1) if
it satisfies

(A∂2
t r(t ),v)+ (B∂t r(t ),v)+B(r(t ),v) = (F(t ),v) a.e. t ∈ (−T,T ) (2.2)

for any v ∈V .

Note that the scalar products in this definition only involve the x variable. We can now state the
existence and uniqueness theorem for the Biot equations.

Theorem 2.1. Let F ∈ H 1(−T,T ; [L2(Ω)]6). Then the system (2.1) has a unique weak solution r(x, t )
such that

r, ∂t r ∈ L∞(−T,T ;V (Ω)), and ∂2
t r ∈ L∞(−T,T ; [L2(Ω)]6).

Proof. Since V is separable, there exists a sequence of linearly independent functions {v(n)}n≥1 which
form a basis of V . Let us define

Sm = span
{

v(1),v(2), . . . ,v(m)} ,

and choose

r(m)(t ) =
m∑

j=1
g j m(t )v( j )

such that r(m)(0) → 0, ∂t r(m)(0) → 0. The functions g j m(t ) are determined by the system of ordinary
differential equations (

A∂2
t r(m),v

)+ (
B∂t r(m),v

)+B
(
r(m),v

)= (F,v), v ∈ Sm . (2.3)

Next we prove two a priori estimates of r(m)(t ). By choosing v = ∂t r(m), we obtain(
A∂2

t r(m),∂t r(m))+ (
B∂t r(m),∂t r(m))+B

(
r(m),∂t r(m))= (

F,∂t r(m)). (2.4)

LetΛ(t ) = ‖A1/2∂t r(m)(t )‖2 +Bθ

(
r(m)(t ),r(m)(t )

)
. Since Bθ is elliptic,Λ(t ) can be lower bounded by

Λ(t ) ≥C0
(‖r(m)(t )‖2

V +‖∂t r(m)(t )‖2)
and from (2.4)

d

d t
Λ(t ) ≤C0

(‖F(t )‖2 +‖r(m)(t )‖2
V +‖∂t r(m)(t )‖2).

Integrating from 0 to t yields

Λ(t ) ≤C0

∫ T

−T
‖F(τ)‖2dτ+Λ(0)+C0

∫ t

0

(‖r(m)(τ)‖2
V +‖∂τr(m)(τ)‖2)dτ.

Since Λ(0) = ‖A1/2∂t r(m)(0)‖2 +Bθ

(
r(m)(0),r(m)(0)

)
and r(m)(0),∂t r(m)(0) → 0, Λ(0) is bounded by a

constant C0 independent of m. We conclude that

‖r(m)(t )‖2
V +‖∂t r(m)(t )‖2 ≤C0 +C0

∫ t

0

(‖r(m)(τ)‖2 +‖∂τr(m)(τ)‖2) (2.5)

and by the Gronwall inequality
‖r(m)(t )‖2

V +‖∂t r(m)(t )‖2 ≤C0 (2.6)
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Electro-kinetic

where C0 is independent of t and m. Taking the time derivative of (2.3) and choosing v = ∂2
t r(m), we

have (
A∂3

t r(m),∂2
t r(m))+ (

B∂2
t r(m),∂2

t r(m))+B
(
∂t r(m),∂2

t r(m))= (
∂t F,∂2

t r(m)). (2.7)

Following the same process that leads to (2.6), we obtain

‖∂t r(m)(t )‖2
V +‖∂2

t r(m)(t )‖2 ≤C0. (2.8)

Therefore
r(m), ∂t r(m) ∈ L∞(−T,T ;V ), ∂2

t r(m) ∈ L∞(−T,T ; [L2(Ω)]6)

are bounded. It follows that we can extract a subsequence of {r(m)}, still denoted by {r(m)}, such that

r(m) → r, ∂t r(m) → ∂t r weak-* in L∞(−T,T ;V )

and
∂2

t r(m) → ∂2
t r weak-* in L∞(−T,T ; [L2(Ω)]6).

Since {v(m)} is dense in V , we have, for any v ∈V ,(
A∂2

t r(m),v
)→ (

A∂2
t r,v

)
weak-* in L∞(−T,T ),(

B∂t r(m),v
)→ (

B∂t r,v
)

weak-* in L∞(−T,T ),

B
(
r(m),v

)→B
(
r(m),v

)
weak-* in L∞(−T,T ).

The existence is completed by letting m →∞ in (2.3). The uniqueness is obvious from (2.6) and (2.8)
by choosing F = 0. �

3 A Carleman estimate for the electroseismic model

To derive a Carleman estimate for a system of equations, the usual process consists in diagonalizing
the system and then in applying a Carleman estimate for each scalar equation that composes the
diagonalized system [12]. We first recall a known Carleman estimate for the scalar wave equation
[13, 12].

Lemma 3.1. Assume that there exists a point x∗ ∈ R3 \Ω and a strictly positive function c(x) ∈ C 1(Ω)
which satisfies

∇c · (x−x∗)

2c
< 1− c0, for all x ∈Ω, (3.1)

where c0 ∈ (0,1) is a fixed constant. Then, there exist constants ς,θ,C0 > 0, such that the function
ϕ= eθψ given by ψ= |x−x∗|2 −ς|t |2 satisfies ϕ(x,T ) =ϕ(x,−T ) < 1,ϕ(x,0) ≥ 1 and∫

Q
e2τϕ(

τ3|u|2 +τ|∇x,t u|2)≤C0

∫
Q

e2τϕ| f |2,

for all τ large than a positive constant τ0 and for any u ∈C 2
0 (Q) that solves

∂2
t u − c(x)∆u = f .

The notation | · |2 means the sum of the square of all the components of vectors or matrices.

Remark 1. For any ε> 0 sufficiently small, there exists a constant δ such that ϕ(x, t ) > 1−ε for |t | < δ
and ϕ(x, t ) < 1−2ε for t > T −δ or t <−T +δ. We denote

ϕ0(x) =ϕ(x,0), Φ= max
(x,t )∈Q

ϕ.
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Electro-kinetic

For the Maxwell equations with σ= 0, Carleman estimates can be found, for example, in [12, 2]. The
arguments in these references easily generalize to the case σ 6= 0.

Lemma 3.2. Assume that α,β ∈ C 2(Ω) and γ ∈ C 1(Ω), such that α,β > α0 > 0 and γ ≥ 0. Assume
additionally that the wave speed c :=αβ satisfies (3.1). Then there exists a constant C0 such that∫

Q
e2τϕ

(
τ3(|D|2 +|B|2)+τ(|∇x,t D|2 +|∇x,t B|2))≤C0

∫
Q

e2τϕ(|J1|2 +|J2|2 +|∇x,t J1|2 +|∇x,t J2|2
)
,

for all τ larger than a positive constant τ0 and for any D,B ∈C 2
0 (Q) that solve

∂t D−curl(αB)+γD = J1,
∂t B+curl(βD) = J2,
divD = divB = 0.

(3.2)

Proof. By substitution, the system can be transformed into the following two equations

∂2
t D−αβ∆D = ∂t J1 +curl(αJ2)−R1,

∂2
t B−αβ∆B = ∂t J2 −curl(βJ1)−R2,

where

R1 = ∇(αβ)×curlD+curl(α∇β×D)+γ∂t D,

R2 = ∇(αβ)×curlB+curl(β∇α×B)−curl(βγD).

Applying Lemma 3.1 to each component of the equations, we have∫
Q

e2τϕ
(
τ3|D|2 +τ|∇x,t D|2

)
≤C0

∫
Q

e2τϕ(
F +|D|2 +|∇x,t D|2),

∫
Q

e2τϕ
(
τ3|B|2 +τ|∇x,t B|2

)
≤C0

∫
Q

e2τϕ(
F +|D|2 +|∇x,t D|2 +|B|2 +|∇x,t B|2),

where F = |J1|2+|J2|2+|∇x,t J1|2+|∇x,t J2|2. Adding these two inequalities and taking τ large enough to
absorb the right hand side terms completes the proof. �

Before deriving a Carleman estimate for the Biot equations, we study the property of the associated
matrix of material coefficients. Define

ρ0 = ρρe −ρ2
f , a =

(
a11 a12

a21 a22

)
=

(
ρ0

ρe
ρ f

0 ρe

)−1 (
λ+G − ρ f

ρe
C C

C − ρ f

ρe
M M

)
, c = ρe

ρ0
G . (3.3)

From the positive definite of the matrices (1.11), we have ρ0 > 0. Let us denote

ã =
(

c +a11 a12

a21 a22

)
(3.4)

which can be expanded into

ã =
 ρe

ρ0
(λ+2G)−2

ρ f

ρ0
C + ρ2

f

ρ0ρe
M ρe

ρ0
C − ρ f

ρ0
M

1
ρe

C − ρ f

ρ2
e

M 1
ρe

M

 .

The two eigenvalues of ã are

(c +a11 +a22)±
√

(c +a11 −a22)2 +4a12a21

2
.
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Electro-kinetic

Since
a12a21 = 1

ρ0

(
C − ρ f

ρe
M

)2 ≥ 0,

ã has two real eigenvalues. The determinant of ã is

det ã = 1
ρ0

(
(λ+2G)+ ρ2

f

ρ2
e

M −2
ρ f

ρe
C

)
M − 1

ρ0

(
C − ρ f

ρe
M

)2 = 1
ρ0

(
λM −C 2 +2GM

)> 0,

and its trace is
tr ã = 1

ρ0

(
ρe (λ+2G)+ρM −2ρ f C

)≥ ρ f

ρ0

(
λ+2G +M −2C

)
.

From the positive definite of the matrices (1.11), we have (λ+M)2 ≥ 4λM > 4C 2 and hence tr ã > 0.
Therefore ã is similar to a diagonal matrix and it has two positive eigenvalues.

In the following, we will derive a Carleman estimate for the Biot system (1.3)-(1.6). The idea is similar
as with the Maxwell or the elastic system. We emphasize that the results from [3] do not apply directly
to our Biot system, which is different from the one treated in that reference due to the presence of the
term ∂t w. We will explain in detail the difference in the proof of the following lemma.

Lemma 3.3. Assume that all the parameters in the Biot equations are in C 3(Ω). Assume that c = ρe

ρ0
G

and two eigenvalues of the matrix ã given by (3.4) satisfy the condition (3.1). Then there exists a constant
C0 such that ∫

Q
e2τϕ

(
τ3(|u|2 +|divu|2 +|divw|2 +|curlu|2)

+τ(|∇x,t u|2 +|∇x,t (divu)|2 +|∇x,t (divw)|2 +|∇x,t (curlu)|2))
≤ C0

∫
Q

e2τϕ(|F1|2 +|F2|2 +|D|2 +|∇F1|2 +|∇F2|2 +|∇D|2),

for all τ larger than a positive constant τ0 and for any u,w ∈C 3
0 (Q) that solve

ρ∂2
t u+ρ f ∂

2
t w−divτ = F1,

ρ f ∂
2
t u+ρe∂

2
t w+∇p + η

κ∂t w−ξD = F2,
(λdivu+C divw)I+G(∇u+∇uT ) = τ,
C divu+M divw = −p.

(3.5)

Proof. Let v = w+ ρ f

ρe
u and replace w by u,v in the above system, to obtain

ρ0

ρe
∂2

t u+ρ f ∂
2
t v−divτ = F1,

ρe∂
2
t v+∇p + η

κ

(
∂t v− ρ f

ρe
∂t u

)
−ξD = F2,((

λ−C
ρ f

ρe

)
divu+C divv−C u ·∇ρ f

ρe

)
I+G(∇u+∇uT ) = τ,(

C −M
ρ f

ρe

)
divu+M divv−Mu ·∇ρ f

ρe
= −p,

where I is the identity matrix of order 3. After substitution of τ and p, we have

ρ0

ρe
∂2

t u+ρ f ∂
2
t v−G∆u−

(
λ+G − ρ f

ρe
C

)
∇divu−C∇divv = F1 +P1, (3.6)

ρe∂
2
t v+ η

κ∂t v−
(
C − ρ f

ρe
M

)
∇divu−M∇divv = F2 +P2, (3.7)

where

P1 = (divu)∇
(
λ− ρ f

ρe
M

)
+ (divv)∇C + (∇u+∇uT ) ·∇G −∇

(
C u ·∇ρ f

ρe

)
,

P2 = (divu)∇
(
C − ρ f

ρe
M

)
+ (divv)∇M −∇

(
Mu ·∇ρ f

ρe

)
+ ρ f η

ρeκ
∂t u+ξD.

8
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Set r = divu, s = divv,m = curlu,n = curlv and

K =
(

ρ0

ρe
I ρ f I

0 ρe I

)−1

.

We multiply the equation system (3.6)-(3.7) by K to obtain

∂2
t u− c∆u− ρ f η

ρeκ
∂t v−a11∇divu−a12∇divv = G1 +P3, (3.8)

∂2
t v+ η

ρeκ
∂t v−a21∇divu−a22∇divv = G2 +P4, (3.9)

where

c = ρe

ρ0
G ,

(
G1

G2

)
= K

(
F1

F2

)
,

(
P3

P4

)
= K

(
P1

P2

)
and a is given by (3.3). Note that P3 and P4 are composed of r, s,u,∇x,t u,D. The equations (3.8) and
(3.9) can be rewritten as

∂2
t u− c∆u = G1 +Q1, (3.10)

∂2
t v+ η

ρeκ
∂t v = G2 +Q2, (3.11)

where Q1 and Q2 are fist order differential operators that involve r, s,u,D. The operator Q1 also con-
tains ∂t v. Taking the divergence on both sides of the equations (3.8) and (3.9) and with the help of the
equality ∆u =∇r −curlm, we have

∂2
t r − (c +a11)∆r −a12∆s = divG1 +S1, (3.12)

∂2
t s −a21∆r −a22∆s = divG2 +S2, (3.13)

where S1 and S2 are first order differential operators of r, s,D,u,m. Besides, they also contain ∂t v.
Taking the curl on both sides of the equations (3.8) and (3.9) gives

∂2
t m− c∆m = curlG1 +T1, (3.14)

∂2
t n+ η

ρeκ
∂t n = curlG2 +T2, (3.15)

where T1 and T2 are first order differential operators of r, s,D,u,m. The expression of T1 also involves
the terms ∂t v,∂t n and T2 also contains ∂t v.

We emphasize that the presence of the terms ∂t v and ∂t n in the right-hand sides Q1 and T1 prevents
us from using the Carleman estimate in [3] directly. The control of Q1 and T1 requires an estimation
of ∂t v and ∂t n. This is actually why we change the variables from w to v. Applying Lemma 3.1 to (3.10)
and (3.14) yield ∫

Q
e2τϕ

(
τ3|u|2 +τ|∇x,t u|2

)
≤ C0

∫
Q

e2τϕ(|G1|2 +|D|2 +|r |2 +|∇x,t r |2 +|s|2 +|∇x,t s|2 +|∂t v|2), (3.16)∫
Q

e2τϕ
(
τ3|m|2 +τ|∇x,t m|2

)
≤ C0

∫
Q

e2τϕ(|curlG1|2 +|D|2 +|∇D|2 +|u|2 +|∇x,t u|2

+|r |2 +|∇x,t r |2 +|s|2 +|∇x,t s|2 +|∂t v|2 +|∂t n|2). (3.17)

9
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Further, applying Lemma 2.1 from [3] to (3.12) and (3.13), we have∫
Q

e2τϕ
(
τ3(|r |2 +|s|2)+τ(|∇x,t r |2 +|∇x,t s|2))

≤ C0

∫
Q

e2τϕ(|divG1|2 +|divG2|2 +|D|2 +|∇D|2

+|u|2 +|∇x,t u|2 +|m|2 +|∇x,t m|2 +|∂t v|2). (3.18)

Combining (3.16)-(3.18) shows that∫
Q

e2τϕ
(
τ3(|r |2 +|s|2 +|u|2 +|m|2)+τ(|∇x,t r |2 +|∇x,t s|2 +|∇x,t u|2 +|∇x,t m|2))

≤ C0

∫
Q

e2τϕ(|G1|2 +|∇G1|2 +|G2|2 +|∇G2|2 +|D|2 +|∇D|2 +|∂t v|2 +|∂t n|2). (3.19)

Next, we estimate ∂t v and ∂t n. Since the differential operator involved in (3.11) acts only on the
variable t , we are able to derive the explicit expression of ∂t v, and obtain

∂t v =
(∫ t

0
e

∫ s
0

η
ρeκ (G2 +Q2)d s

)
e
−∫ t

0

η
ρeκ .

Multiplying both sides by eτϕ, and using the fact that eτϕ(·,t ) ≤ eτϕ(·,s) for all |s| ≤ |t |, we get

|∂t v|eτϕ ≤
(∫ |t |

0
eτϕe

∫ s
0

η
ρeκ |G2 +Q2|d s

)
e
−∫ t

0

η
ρeκ .

Taking the square of the previous relation, integrating over Q, and using the Hölder inequality, we
finally find

∫
Q

e2τϕ|∂t v|2 ≤C0

∫
Q

e2τϕ (|G2|2 +|Q2|2
)

. (3.20)

Proceeding similarly for ∂t n, shows that

∫
Q

e2τϕ|∂t n|2 ≤C0

∫
Q

e2τϕ(|curlG2|2 +|T2|2
)

(3.21)

Therefore ∂t v and ∂t n are bounded by r, s,D,u,m and their first order derivatives. In fact, multiplying
by the weight e2τϕ and integrating over Q, deteriorates the stability in determining ∂t v and ∂t n from
r, s,D,u,m and their first order derivatives.

Considering now the obtained inequalities (3.20) and (3.21), the estimate (3.19) becomes∫
Q

e2τϕ
(
τ3(|r |2 +|s|2 +|u|2 +|m|2)+τ(|∇x,t r |2 +|∇x,t s|2 +|∇x,t u|2 +|∇x,t m|2))

≤ C0

∫
Q

e2τϕ(|G1|2 +|∇G1|2 +|G2|2 +|∇G2|2 +|D|2 +|∇D|2

+|r |2 +|s|2 +|u|2 +|m|2 +|∇x,t r |2 +|∇x,t s|2 +|∇x,t u|2 +|∇x,t m|2). (3.22)

The lemma is completed by taking τ large enough to control the zero and first order terms of r, s,u,m
on the right hand side of (3.22) and the relations between w,G1,G2 and u,v,F1,F2. �

Combining Lemma 3.2 and 3.3, yields a Carleman estimate for the electroseismic system.
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Theorem 3.1. Assume that all the parameters in the electroseismic system satisfy the hypotheses of
Lemma 3.2 and satisfy (3.3). Then, there exists a constant C0 such that∫

Q
e2τϕ

(
τ3(|D|2 +|B|2 +|u|2 +|divu|2 +|divw|2 +|curlu|2)

+τ(|∇x,t D|2 +|∇x,t B|2 +|∇x,t u|2 +|∇x,t (divu)|2 +|∇x,t (divw)|2 +|∇x,t (curlu)|2))
≤ C0

∫
Q

e2τϕ(|F1|2 +|F2|2 +|J1|2 +|J2|2 +|∇F1|2 +|∇F2|2 +|∇x,t J1|2 +|∇x,t J2|2
)
,

for all τ larger than a positive constant τ0 and for any D,B ∈ C 2
0 (Q), u,w ∈ C 3

0 (Q) that solve (3.2) and
(3.5).

4 The inverse problem

We now state our main result: a stability theorem for the inverse problem.

Theorem 4.1. Let (α1,β1,γ1,ξ1) and (α2,β2,γ2,ξ2) denote two sets of parameters, which satisfy the
hypotheses of Theorem 3.1. Assume that these two sets of parameters coincide in a set ω where ω ⊂Ω
is a neighborhood of ∂Ω. Let (D(1)

0 ,B(1)
0 ) and (D(2)

0 ,B(2)
0 ) denote two sets of initial values, such that the

matrix M(x) defined by

M(x) =


e1 ×B(1)

0 e2 ×B(1)
0 e3 ×B(1)

0 −D(1)
0 0 0 0

0 0 0 0 −e1 ×D(1)
0 −e2 ×D(1)

0 −e3 ×D(1)
0

e1 ×B(2)
0 e2 ×B(2)

0 e3 ×B(2)
0 −D(2)

0 0 0 0
0 0 0 0 −e1 ×D(2)

0 −e2 ×D(2)
0 −e3 ×D(2)

0


has a nonzero 7×7 minor onΩ. Here

e1 =
(

1 0 0
)

, e2 =
(

0 1 0
)

, e3 =
(

0 0 1
)

.

Assuming the following regularity

D( j )
k ,B( j )

k ∈C 5(Q), u( j )
k ,w( j )

k ∈C 6(Q) j = 1,2,

of the solutions to the system (1.1)-(1.7), where v( j )
k represents the field v corresponding to the parameters

(αk ,βk ,γk ,ξk ) and the j -th initial values. Then, there exist constants C0 and c0 ∈ (0,1) such that∫
Ω
Λ≤C0

(
O(1) +O(2))c0

where

Λ = Λ̃+|ξ|2 +|∇ξ|2,

Λ̃ = |α|2 +|β|2 +|γ|2 +|∇α|2 +|∇β|2 +|∇γ|2 +|∇∇α|2 +|∇∇β|2,

O( j ) = ‖D( j )‖2
H 4(Qω) +‖B( j )‖2

H 4(Qω) +‖u( j )‖2
H 5(Qω) +‖w( j )‖2

H 5(Qω),

and
α=α2 −α1, β=β2 −β1, γ= γ2 −γ1, ξ= ξ2 −ξ1,

D = D2 −D1, B = B2 −B1, u = u2 −u1, w = w2 −w1.

Remark 2. If we choose B(1)
0 = e1, D(1)

0 = e2, B(2)
0 = D(2)

0 = e3, the matrix M(x) formed by rows (2,3,4,5,8,9,10)
and by all the columns of M(x) is nonsingular. The assumption on the regularity of the solutions is
required to apply the Carleman estimate to the electroseismic system.

Remark 3. From the structure of M(x), the existence of a nonzero 7× 7 minor indicates that there
exists a positive constant c∗ such that |B(1)

0 |2 +|B(2)
0 |2 > c∗ and |D(1)

0 |2 +|D(2)
0 |2 > c∗.

We prove Theorem 4.1 in 3 steps in the following subsections.
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4.1 A modified Carleman estimate

Since our Carleman estimate is applicable for functions compactly supported in Q, in the first step
we cut off the functions. The near boundary part corresponds to the measurements and the inner
part can be bounded by the Carleman estimate. The fields (D,B,u,w) satisfy the following system of
equations in Q

∂t D−curl(α2B)+γ2D = curl(αB1)−γD1, (4.1)

∂t B+curl(β2D) = −curl(βD1), (4.2)

ρ∂2
t u+ρ f ∂

2
t w−divτ = 0, (4.3)

ρ f ∂
2
t u+ρe∂

2
t w+∇p + η

κ∂t w−ξ2D = ξD1, (4.4)

with zero initial conditions. Define χ(x, t ) =χ1(x)χ2(t ) with χ1 ∈C∞
0 (Ω), χ2 ∈C∞

0 (−T,T ), 0 ≤χ1,χ2 ≤ 1
and

χ1 = 1 inΩ0, χ2 = 1 in [−T +δ,T −δ],

where δ is chosen as in Remark 1 andΩ0 =Ω\ω. Denote D̃ =χD, B̃ =χB, ũ =χu,w̃ =χw, then

∂t D̃−curl(α2B̃)+γ2D̃ = χ
(

curl(αB1)−γD1
)+P1, (4.5)

∂t B̃+curl(β2D̃) = −χcurl(βD1)+P2, (4.6)

ρ∂2
t ũ+ρ f ∂

2
t w̃−div τ̃ = P3, (4.7)

ρ f ∂
2
t ũ+ρe∂

2
t w̃+∇p̃ + η

κ∂t w̃−ξ2D̃ = χξD1 +P4, (4.8)

where
P1 = (∂tχ)D−∇χ× (α2B), P2 = (∂tχ)B+∇χ× (β2D),

P3,P4 first order differential operators in u,w. Let us note that P1,P2,P3,P4 vanish in Q0(δ) =
Ω0 × (−T +δ,T −δ). Applying Theorem 3.1 to (4.5)-(4.8), we have∫

Q
e2τϕ

(
τ3(|D̃|2 +|B̃|2 +|ũ|2)+τ(|∇x,t D̃|2 +|∇x,t B̃|2 +|∇x,t ũ|2))

≤ C0

∫
Q

e2τϕΛ+C0

∫
Qω

e2τϕΠ+C0

∫
Ω×(−T,−T+δ)

e2τϕΠ+C0

∫
Ω×(T−δ,T )

e2τϕΠ, (4.9)

where

Π = |D|2 +|B|2 +|u|2 +|w|2 +|∇x,t D|2 +|∇x,t B|2 +|∇x,t u|2 +|∇x,t w|2 +|∇∇x,t u|2 +|∇∇x,t w|2.

Then from (4.9) and Remark 1, we have∫
Q0(δ)

e2τϕ
(
τ3(|D|2 +|B|2 +|u|2)+τ(|∇x,t D|2 +|∇x,t B|2 +|∇x,t u|2))

≤ C0

∫
Q

e2τϕΛ+C0e2τΦO+C0e2τ(1−2ε). (4.10)

Similarly, taking the derivative with respect to t on both sides of (4.1)-(4.4) yields the following in-
equalities ∫

Q0(δ)
e2τϕ

(
τ3(|∂ j

t D|2 +|∂ j
t B|2 +|∂ j

t u|2)+τ(|∇x,t∂
j
t D|2 +|∇x,t∂

j
t B|2 +|∇x,t∂

j
t u|2))

≤ C0

∫
Q

e2τϕΛ+C0e2τΦO+C0e2τ(1−2ε), (4.11)

for j = 1,2,3.
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4.2 Bounding parameters by initial values

Letting t goes to 0 in (4.1)-(4.4) shows that

∂t D(x,0) = curl(αB0)−γD0, (4.12)

∂t B(x,0) = −curl(βD0), (4.13)

ρ∂2
t u(x,0)+ρ f ∂

2
t w(x,0) = 0, (4.14)

ρ f ∂
2
t u(x,0)+ρe∂

2
t w(x,0) = ξD0. (4.15)

Expanding the curl in (4.12) and (4.13) yields

∇α×B0 +αcurlB0 −γD0 = ∂t D(x,0),

−∇β×D0 −βcurlD0 = ∂t B(x,0).

Substituting (4.14) into (4.15) to eliminate w gives

D0ξ=−ρ1∂
2
t u(x,0),

where ρ1 = ρ0

ρ f
. Considering the two sets of initial values, we have

M(x)

 ∇α
γ

∇β

= N(x)

(
α

β

)
+b(x), (4.16)

D( j )
0 ξ=−ρ1∂

2
t u( j )(x,0), (4.17)

where

N(x) =


−curlB(1)

0 0
0 curlD(1)

0
−curlB(2)

0 0
0 curlD(2)

0

 , b(x) =


∂t D(1)(x,0)
∂t B(1)(x,0)
∂t D(2)(x,0)
∂t B(2)(x,0)

 .

Since M(x) has a 7×7 nonzero minor, we have

|∇α|2 +|∇β|2 +|γ|2 ≤C0(|α|2 +|β|2 +|b|2), (4.18)

|ξ|2 ≤C0
(|∂2

t u(1)(x,0)|2 +|∂2
t u(2)(x,0)|2). (4.19)

Taking the derivative with respect to the variable xk on both sides of (4.17), shows that

D( j )
0 ∂kξ=−(

∂kρ0
)
∂2

t u( j )(x,0)−ρ0∂k∂
2
t u( j )(x,0)− (

∂k D( j )
0

)
ξ,

and hence

|∇ξ|2 ≤C0

2∑
j=1

(|∂2
t u( j )(x,0)|2 +|∇∂2

t u( j )(x,0)|2). (4.20)

Therefore ∫
Ω

e2τϕ0
(|ξ|2 +|∇ξ|2)≤C0

∫
Ω0

e2τϕ0

( 2∑
j=1

(|∂2
t u( j )(x,0)|2 +|∇∂2

t u( j )(x,0)|2)). (4.21)

In addition, taking the derivative with respect to the variable xk on both sides of (4.16), we obtain

M(x)

 ∇∂kα

∂kγ

∇∂kβ

= ∂k N(x)

(
α

β

)
+N(x)

(
∂kα

∂kβ

)
+∂k b(x)−∂k M(x)

 ∇α
γ

∇β

 ,
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and hence
|∇∇α|2 +|∇∇β|2 +|∇γ|2 ≤C0(|α|2 +|β|2 +|b|2 +|∇b|2). (4.22)

Therefore ∫
Ω

e2τϕ0
(|∇∇α|2 +|∇∇β|2 +|∇γ|2)

≤ C0

∫
Ω

e2τϕ0
(|α|2 +|β|2)+C0

∫
Ω0

e2τϕ0
(|b|2 +|∇b|2),

≤ C0

∫
Ω

e2τϕ0
(|∇α|2 +|∇β|2)+C0

∫
Ω0

e2τϕ0
(|b|2 +|∇b|2), (4.23)

because α,β are supported inΩ0. We recall one lemma from [8].

Lemma 4.1. There exists constant τ0 > 0 and C0 > 0 such that, for all τ> τ0 and v ∈ H 1
0 (Ω),

τ

∫
Ω

e2τϕ0 |v|2 ≤C0

∫
Ω

e2τϕ0
(|curlv|2 +|divv|2).

Applying Lemma 4.1 with v =∇α, we have

τ

∫
Ω

e2τϕ0 |∇α|2 ≤C0

∫
Ω

e2τϕ0 |∆α|2 ≤C0

∫
Ω

e2τϕ0 |∇∇α|2,

and hence

τ

∫
Ω

e2τϕ0
(|∇α|2 +|∇β|2)≤C0

∫
Ω

e2τϕ0
(|∇∇α|2 +|∇∇β|2).

Combining with (4.18) and (4.23), we finally obtain the bound∫
Ω

e2τϕ0Λ̃≤C0

∫
Ω0

e2τϕ0
(|b|2 +|∇b|2) (4.24)

for τ large enough.

4.3 End of the proof of Theorem 4.1

We recall the following lemma from [3].

Lemma 4.2. There exist constants τ0 > 0 and C0 > 0 such that, for all τ> τ0 and v ∈C 1(Q0(δ)),∫
Ω0

|v(x,0)|2 ≤C0τ

∫
Q0(δ)

|v(x, t )|2 +C0τ
−1

∫
Q0(δ)

|∂t v(x, t )|2.

We recall thatΩ0 =Ω\ω and Q0(δ) =Ω0 × (−T +δ,T −δ).

By taking v = eτϕ0∂t D( j )(x,0) in the above estimate and invoking (4.10) to control the derivatives of
D( j )(x,0), we see that∫

Ω0

e2τϕ0 |∂t D( j )(x,0)|2 ≤ C0τ

∫
Q0(δ)

e2τϕ|∂t D( j )|2 +C0τ
−1

∫
Q0(δ)

e2τϕ|∂2
t D( j )|2

≤ C0τ
−2E( j ),

from (4.11), where

E( j ) =
∫

Q
e2τϕΛ+e2τΦO( j ) +e2τ(1−2ε).
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We proceed similarly with the higher-order derivatives of D( j )(x,0) and with the other fields, to obtain∫
Ω0

e2τϕ0 |∂k∂t D( j )(x,0)|2 ≤ C0τ

∫
Q0(δ)

e2τϕ|∂k∂t D( j )|2 +C0τ
−1

∫
Q0(δ)

e2τϕ|∂k∂
2
t D( j )|2

≤ C0E
( j ),∫

Ω0

e2τϕ0 |∂t B( j )(x,0)|2 ≤ C0τ

∫
Q0(δ)

e2τϕ|∂t B( j )|2 +C0τ
−1

∫
Q0(δ)

e2τϕ|∂2
t B( j )|2

≤ C0τ
−2E( j ),∫

Ω0

e2τϕ0 |∂k∂t B( j )(x,0)|2 ≤ C0τ

∫
Q0(δ)

e2τϕ|∂k∂t B( j )|2 +C0τ
−1

∫
Q0(δ)

e2τϕ|∂k∂
2
t B( j )|2

≤ C0E
( j ),∫

Ω0

e2τϕ0 |∂2
t u( j )(x,0)|2 ≤ C0τ

∫
Q0(δ)

e2τϕ|∂2
t u( j )|2 +C0τ

−1
∫

Q0(δ)
e2τϕ|∂3

t u( j )|2

≤ C0τ
−2E( j ),∫

Ω0

e2τϕ0 |∂k∂
2
t u( j )(x,0)|2 ≤ C0τ

∫
Q0(δ)

e2τϕ|∂k∂
2
t u( j )|2 +C0τ

−1
∫

Q0(δ)
e2τϕ|∂k∂

3
t u( j )|2

≤ C0E
( j ).

It follows that ∫
Ω0

e2τϕ0
(|b|2 +|∇b|2)≤C0

(
E(1) +E(2)), (4.25)

∫
Ω0

e2τϕ0

( 2∑
j=1

(|∂2
t u( j )(x,0)|2 +|∇∂2

t u( j )(x,0)|2))≤C0
(
E(1) +E(2)). (4.26)

From (4.21) and (4.24), we infer that∫
Ω

e2τϕ0Λ−C0

∫
Q

e2τϕΛ≤C0e2τΦ(O(1) +O(2))+C0e2τ(1−2ε). (4.27)

Sinceϕ−ϕ0 < 0 for |t | > 0, by choosing τ0 large enough we can make
∫ T
−T e2τ(ϕ−ϕ0) so small that for all

τ> τ0, ∫
Q

e2τϕΛ=
∫
Ω

e2τϕ0Λ

∫ T

−T
e2τ(ϕ−ϕ0) ¿

∫
Ω

e2τϕ0Λ.

Combining this estimate with (4.27) and using the fact that ϕ0 ≥ 1−ε, it follows that∫
Ω
Λ≤ e−2τ(1−ε)

∫
Ω

e2τϕ0Λ≤C0e2τΦ(O(1) +O(2))+C0e−2τε

for all τ> τ0. Taking

τ−τ0 =
− ln

(
O(1) +O(2)

)
2(Φ+ε)

.

we finally obtain

C0e2τΦ(O(1) +O(2))+C0e−2τε

≤ C0e2τ0Φe2(τ−τ0)Φ(O(1) +O(2))+C0e−2τ0εe−2(τ−τ0)ε

= C0(O(1) +O(2))
ε

ε+Φ ,

which completes the proof.
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5 Conclusion

We presented a complete electroseismic model that describes the coupling phenomenon of the elec-
tromagnetic waves and seismic waves in fluid immersed porous rock. Under some assumptions on
the physical parameters, we derived a Hölder stability estimate to the inverse problem of recovery of
the electric parameters and the coupling coefficient from interior measurements near the boundary.
How to relax the constraints on the physical parameters will be the objective of future works.
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