Generic Object Recognition based on Feature Fusion in Robot Perception - Archive ouverte HAL
Article Dans Une Revue International Journal of Robotics and Automation Année : 2016

Generic Object Recognition based on Feature Fusion in Robot Perception

Xinde Li
  • Fonction : Auteur
  • PersonId : 842262
Jean Dezert

Résumé

A new generic object recognition (GOR) method for robot perception is proposed in this paper, based on multi-feature fusion of two-dimensional (2D) and 3D scale invariant feature transform descriptors drawn from 2D images and 3D point clouds. The trained support vector machine is utilized to construct multi-category classifiers that recognize the objects. According to our results, this new GOR approach achieves higher recognition rates than classical methods tested, even when one has large intra-class variations, or high inter-class similarities of the objects. Simulation results demonstrate the effectiveness and efficiency of the proposed GOR approach.
Fichier non déposé

Dates et versions

hal-01745448 , version 1 (28-03-2018)

Identifiants

Citer

Xinde Li, Chaomin Luo, Jean Dezert, Yingzi Tan. Generic Object Recognition based on Feature Fusion in Robot Perception. International Journal of Robotics and Automation, 2016, 31 (5), page 1-7. ⟨10.2316/Journal.206.2016.5.206-4706⟩. ⟨hal-01745448⟩
62 Consultations
0 Téléchargements

Altmetric

Partager

More