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Balanced representations, the asymptotic Plancherel formula, and Lusztig's conjectures for C2

We prove Lusztig's conjectures P1-P15 for the affine Weyl group of type C2 for all choices of positive weight function. Our approach to computing Lusztig's a-function is based on the notion of a "balanced system of cell representations". Once this system is established roughly half of the conjectures P1-P15 follow. Next we establish an "asymptotic Plancherel Theorem" for type C2, from which the remaining conjectures follow. Combined with existing results in the literature this completes the proof of Lusztig's conjectures for all rank 1 and 2 affine Weyl groups for all choices of parameters.

1 Kazhdan-Lusztig theory and balanced cell representations 2 balanced representations and so most of our work is concerned with the infinite cells. In type C2 there are either 3 or 4 such two-sided cells depending on the choice of parameters. To each of these two-sided cells we associate a natural finite dimensional representation admitting an elegant combinatorial description in terms of alcove paths. Using this description we are able to give a combinatorial proof of the balancedness of these representations. In fact we study these representations as representations of the "generic" affine Hecke algebra of type C2, thereby effectively analysing all possible choices of parameters simultaneously. Once a balanced system of cell representations is established for each choice or parameters we are able to compute Lusztig's a-function for type C2, and combined with the explicit partition of W into cells the conjectures P4, P8, P9, P10, P11, P12, and P14 readily follow.

Introduction

The theory of Kazhdan-Lusztig cells plays a fundamental role in the representation theory of Coxeter groups and Hecke algebras. In their celebrated paper [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF] Kazhdan and Lusztig introduced the theory in the equal parameter case, and in [START_REF] Lusztig | Left cells in Weyl groups[END_REF] Lusztig generalised the construction to the case of arbitrary parameters. A very specific feature in the equal parameter case is the geometric interpretation of Kazhdan-Lusztig theory, which implies certain "positivity properties" (such as the positivity of the structure constants with respect to the Kazhdan-Lusztig basis). This was proved in the finite and affine cases by Kazhdan and Lusztig in [START_REF] Kazhdan | Schubert varieties and Poincaré duality[END_REF], and the case of arbitrary Coxeter groups was settled only very recently by Elias and Williamson in [START_REF] Elias | The Hodge theory of Soergel bimodules[END_REF]. However, simple examples show that these positivity properties no longer hold for unequal parameters, hence the need to develop new methods to deal with the general case.

A major step in this direction was achieved by Lusztig in his book on Hecke algebras with unequal parameters [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Chapter 14] where he introduced 15 conjectures P1-P15 which capture essential properties of cells for all choices of parameters. In the case of equal parameters these conjectures can be proved for finite and affine types using the above mentioned geometric interpretation (see [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]). For arbitrary parameters the existing state of knowledge is much less complete.

Recently in [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF] we developed an approach to proving P1-P15 and applied it to the case G2 with arbitrary parameters. This provided the first infinite Coxeter group, apart from the infinite dihedral group, where Lusztig's conjectures have been established for arbitrary parameters. Indeed outside of the equal parameter case P1-P15 are only known to hold in the following very limited number of cases:

• the quasisplit case where a geometric interpretation is available [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Chapter 16];

• finite dihedral type [START_REF] Geck | On Iwahori-Hecke algebras with unequal parameters and Lusztig's isomorphism theorem[END_REF] and infinite dihedral type [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Chapter 17] for arbitrary parameters;

• finite type Bn in the "asymptotic" parameter case [START_REF] Bonnafé | Left cells in type Bn with unequal parameters[END_REF][START_REF] Geck | On Iwahori-Hecke algebras with unequal parameters and Lusztig's isomorphism theorem[END_REF];

• finite type F4 for arbitrary parameters [START_REF] Geck | On Iwahori-Hecke algebras with unequal parameters and Lusztig's isomorphism theorem[END_REF];

• affine type G2 for arbitrary parameters [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]. Our approach in [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF] hinges on two main ideas: (a) the notion of a balanced system of cell representations for the Hecke algebra, and (b) the asymptotic Plancherel formula. In the present paper we develop these ideas in type C2. This three parameter case turns out to be considerably more complicated than the two parameter G2 case, and this additional complexity requires us to take a somewhat more conceptual approach here.

We now briefly describe the ideas (a) and (b) above. Let (W, S) be a Coxeter system with weight function L : W → N>0 and associated multi-parameter Hecke algebra H defined over Z[q, q -1 ]. Let Λ be the set of two-sided cells of W with respect to L, and recall that there is a natural partial order ≤LR on the set Λ. Let (Cw)w∈W denote the Kazhdan-Lusztig basis of H.

One of the main challenges in proving Lusztig's conjectures is to compute Lusztig's a-function since, in principle, it requires us to have information on all the structure constants with respect to the Kazhdan-Lusztig basis. In [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF] we showed that the existence of a balanced system of cell representations is sufficient to compute the a-function. Such a system is a family (πΓ) Γ∈Λ of representations of H, each equipped with a distinguished basis, satisfying various axioms including (1) πΓ(Cw) = 0 for all w ∈ Γ ′ with Γ ′ ≥LR Γ, (2) the maximal degree of the coefficients that appear in the matrix πΓ(Cw) is bounded by a constant aπ Γ , (3) this bound is attained if and only if w ∈ Γ. This concept is inspired by the work of Geck [START_REF] Geck | On Iwahori-Hecke algebras with unequal parameters and Lusztig's isomorphism theorem[END_REF] in the finite dimensional case.

Thus a main part of the present paper is devoted to establishing a balanced system of cell representations in type C2 for each choice of parameters. For this purpose we use the explicit partition of W into Kazhdan-Lusztig cells that was obtained by the first author in [START_REF] Guilhot | Kazhdan-Lusztig cells in affine Weyl groups of rank 2[END_REF]. It turns out that the representations associated to finite cells naturally give rise to

The second main part of this paper is establishing an "asymptotic" Plancherel formula for type C2, with our starting point being the explicit formulation of the Plancherel Theorem in type C2 obtained by the second author in [START_REF] Parkinson | On calibrated representations and the Plancherel Theorem for affine Hecke algebras[END_REF] (this is in turn a very special case of Opdam's general Plancherel Theorem [START_REF] Opdam | On the spectral decomposition of affine Hecke algebras[END_REF]). In particular we show that in type C2 there is a natural correspondence, in each parameter range, between two-sided cells appearing in the cell decomposition and the representations appearing in the Plancherel Theorem (these are the tempered representations of H). Moreover we define a q-valuation on the Plancherel measure, and show that in type C2 the q-valuation of the mass of a tempered representation is twice the value of Lusztig's a-function on the associated cell. This observation allows us to introduce an asymptotic Plancherel measure, giving a descent of the Plancherel formula to Lusztig's asymptotic algebra J . In particular we obtain an inner product on J , giving a satisfying conceptual proof of P1 and P7. Moreover we are able to determine the set D of Duflo involutions, and conjectures P2, P3, P5, P6, and P13 follow naturally.

The remaining conjecture P15 is of a slightly different flavour. In [START_REF] Xie | A decomposition formula for the Kazhdan-Lusztig basis of affine Hecke algebras of rank 2[END_REF] Xie has proved this conjecture under an assumption on Lusztig's a-function. We are able to verify this assumption using our calculation of the a-function and the asymptotic Plancherel formula, hence proving P15 and completing the proof of all conjectures P1-P15.

We conclude this introduction with an outline of the structure of the paper. In Section 1 we recall the basics of Kazhdan-Lusztig theory, and we recall the axioms of a balanced system of cell representations from [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]. Section 2 provides background on affine Weyl groups, root systems, the affine Hecke algebra, and the combinatorics of alcove paths. In Section 3 we recall the partition of C2 into cells for all choices of parameters from [START_REF] Guilhot | Kazhdan-Lusztig cells in affine Weyl groups of rank 2[END_REF], and introduce some notions such as the generating set of a two-sided cell, cell factorisation and the ã-function. In Section 4 we define various representations of the affine Hecke algebra in preparation for the important Sections 5 and 6 where we establish the existence of the a balanced system of cell representations for each choice of parameters. The main work here is in Section 6, where we conduct a detailed combinatorial analysis of certain representations associated to the infinite two-sided cells. In Section 7 we establish connections between the Plancherel Theorem and the decomposition into cells, hence establishing the asymptotic Plancherel Theorem for type C2. The proofs of P1-P15 are given progressively throughout the paper (see Corollaries 3.1, 6.2, 6.23, 7.9, 7.11, and Theorems 7.7 and 7.13).

Kazhdan-Lusztig theory and balanced cell representations

In this section we recall the definition of the generic Hecke algebra and the setup of Kazhdan-Lusztig theory, including the Kazhdan-Lusztig basis, Kazhdan-Lusztig cells, and the Lusztig's conjectures P1-P15. In this section (W, S) denotes an arbitrary Coxeter system (with |S| < ∞) with length function ℓ : W → N. For I ⊆ S let WI be the standard parabolic subgroup generated by I.

Generic Hecke algebras and their specialisations

Let (qs)s∈S be a family of commuting invertible indeterminants with the property that qs = q s ′ whenever s and s ′ are conjugate in W . Let Rg = Z[(q ±1 s )s∈S]. The generic Hecke algebra of type (W, S) is the Rg-algebra Hg with basis {Tw | w ∈ W } and multiplication given by (for w ∈ W and s ∈ S) TwTs = Tws if ℓ(ws) = ℓ(w) + 1 Tws + (qsq -1 s )Tw if ℓ(ws) = ℓ(w) -1.

(1.1)

We set qw := qs 1 • • • qs n where w = s1 . . . sn ∈ W is a reduced expression of w. This can easily be seen to be independent of the choice of reduced expression (using Tits' solution to the Word Problem).

Let L : W → N be a positive weight function on W . Thus L : W -→ N satisfies L(ww ′ ) = L(w) + L(w ′ ) whenever ℓ(ww ′ ) = ℓ(w) + ℓ(w ′ ). Let q be an invertible indeterminate and let R = Z[q, q -1 ] be the ring of Laurent polynomials in q. The Hecke algebra of type (W, S, L) is the R-algebra H = HL with basis {Tw | w ∈ W } and multiplication given by (for w ∈ W and s ∈ S) TwTs = Tws if ℓ(ws) = ℓ(w) + 1 Tws + (q L(s)q -L(s) )Tw if ℓ(ws) = ℓ(w) -1.

(1.2)

We refer to (Tw)w∈W as the "standard basis" of H. Of course H is obtained from Hg via the specialisation qs → q L(s) , with the multiplicative property of weight functions ensuring that this specialisation compatible with the fact that qs = q s ′ whenever s and s ′ are conjugate in W . For a given weight function L, we denote the above specialisation by ΘL : Hg → H.

While Kazhdan-Lusztig theory is setup in terms of the specialised algebra H = HL, we will also need the generic algebra Hg at times in this paper (particularly in Section 6). We sometimes write Qs = qsq -1 s , or Qs = q L(s)q -L(s) depending on context (particularly in matrices for typesetting purposes). If S = {s0, . . . , sn} we will also often write, for example, 0121 as shorthand for s0s1s2s1, and thus in the Hecke algebra T0121 = Ts 0 s 1 s 2 s 1 . In particular, note that 1 is shorthand for s1, and therefore to avoid confusion we denote the identity of W by e.

The Kazhdan-Lusztig basis

Let L be a positive weight function and let H = HL. The involution ¯on R which sends q to q -1 can be extended to an involution on H by setting

w∈W awTw = w∈W aw T -1 w -1 .
In [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF], Kazhdan and Lusztig proved that there exists a unique basis {Cw | w ∈ W } of H such that, for all w ∈ W , Cw = Cw and Cw = Tw + y<w Py,wTy where Py,w ∈ q

-1 Z[q -1 ].
This basis is called the Kazhdan-Lusztig basis (KL basis for short) of H. The polynomials Py,w are called the Kazhdan-Lusztig polynomials, and to complete the definition we set Py,w = 0 whenever y < w (here ≤ denotes Bruhat order on W ) and Pw,w = 1 for all w ∈ W . We note that the Kazhdan-Lusztig polynomials, and hence the elements Cw, depend on the the weight function L (see the following example).

Example 1.1. Let (W, S, L) be a Coxeter group and let J ⊆ S be such that the group WJ generated by J is finite.

Let wJ be the longest element of WJ . The Kazhdan-Lusztig element Cw J is equal to w∈W J q L(w)-L(w J ) Tw. Indeed, this element has the required triangularity with respect to the standard basis and it is stable under the bar involution. Further, if we set Cw J := w∈W qwq -1 w J Tw ∈ Hg then we have ΘL(Cw J ) = Cw J for all positive weight functions L on W . Now assume that S contains two elements s1, s2 such that (s1s2) 4 = e. If we set a = L(s1) and b = L(s2) then we have

C212 =      T212 + q -b (T12 + T21) + q -b-a -q -b+a T2 + q -2b T1 + q -2b-a -q -2b+a Te if b > a, T212 + q -a (T21 + T12) + q -2a (T1 + T2) + q -3a Te if a = b, T212 + q -b (T12 + T21) + q -a-b -q -a+b T2 + q -2b T1 + q -a -q -a-2b Te if b < a.
Indeed, the expressions on the right-hand side are stable under the bar involution and since they have the required triangularity property, they have to be the Kazhdan-Lusztig element associated to 212. Unlike the case where w = wJ , there is no generic element in Hg that specialises to C212 ∈ H(W, S, L) for all positive weight functions L. We also note that when b > a we have P2,212 = q -b-aq -b+a , showing that the Kazhdan-Lusztig polynomials can have negative coefficients in the unequal parameter case.

Let x, y ∈ W . We denote by hx,y,z ∈ R the structure constants associated to the Kazhdan-Lusztig basis: [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Chapter 13]). The Lusztig a-function is the function a : W → N defined by

CxCy = z∈W hx,y,zCz. Definition 1.2 ([
a(z) := min{n ∈ N | q -n hx,y,z ∈ Z[q -1 ] for all x, y ∈ W }.
When W is infinite it is, in general, unknown whether the a-function is well-defined. However in the case of affine Weyl groups it is known that a is well-defined, and that a(z) ≤ L(w0) where w0 is the longest element of an underlying finite Weyl group W0 (see [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]). The a-function is a very important tool in the representation theory of Hecke algebras, and plays a crucial role in the work of Lusztig on the unipotent characters of reductive groups.

Definition 1.3. For x, y, z ∈ W let γ x,y,z -1 denote the constant term of q -a(z) hx,y,z.

The coefficients γ x,y,z -1 are the structure constants of the asymptotic algebra J introduced by Lusztig in [15, Chapter 18].

Kazhdan-Lusztig cells and associated representations

Define preorders ≤L, ≤R, ≤LR on W extending the following by transitivity:

x ≤L y ⇐⇒ there exists h ∈ H such that Cx appears in the decomposition in the KL basis of hCy,

x ≤R y ⇐⇒ there exists h ∈ H such that Cx appears in the decomposition in the KL basis of Cyh,

x ≤LR y ⇐⇒ there exists h, h ′ ∈ H such that Cx appears in the decomposition in the KL basis of hCyh ′ .

We associate to these preorders equivalence relations ∼L, ∼R, and ∼LR by setting (for * ∈ {L, R, LR})

x ∼ * y if and only if x ≤ * y and y ≤ * x.

The equivalence classes of ∼L, ∼R, and ∼LR are called left cells, right cells, and two-sided cells.

Example 1.4. For y, w ∈ W we write y w if and only if there exists x, z ∈ W such that w = xyz and ℓ(w) = ℓ(x) + ℓ(y) + ℓ(y). In this case it is not hard to see, using the unitriangularity of the change of basis matrix from the standard basis to the Kazhdan-Lusztig basis, that TxCyTz ∈ Cw + z<w azCz and therefore w ≤LR y.

We denote by Λ the set of all two-sided cells (note that of course Λ depends on the choice of weight function). Given any cell Γ (left, right, or two-sided) we set Γ ≤ * := {w ∈ W | there exists x ∈ Γ such that w ≤ * x} and we define Γ ≥ * , Γ> * and Γ< * similarly.

To each right cell Υ of W there is a natural right H-module HΥ constructed as follows. The R-modules

H ≤ R Υ := Cx | x ∈ Υ ≤ R and H< R Υ := Cx | x ∈ Υ< R
are right H-modules by definition and therefore the quotient

HΥ := H ≤ R Υ /H< R Υ
is a right H-module with basis {Cw | w ∈ Υ} where Cw is the class of Cw in HΥ. Given a left cell (respectively a two-sided cell) we can follow a similar construction to produce left H-modules (respectively H-bimodules).

Lusztig conjectures

Define ∆ : W → N and nz ∈ R\{0} by the relation Pe,z = nzq -∆(z) + strictly smaller powers of q.

This is well defined because Px,y ∈ q -1 Z[q -1 ] for all x, y ∈ W . Let

D = {w ∈ W | ∆(w) = a(w)}.
The elements of D are called Duflo elements (or, somewhat prematurely, Duflo involutions; see P6 below).

In [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Chapter 13], Lusztig has formulated the following 15 conjectures, now known as P1-P15.

P1. For any z ∈ W we have a(z) ≤ ∆(z). P7. For any x, y, z ∈ W , we have γx,y,z = γy,z,x.

P8. Let x, y, z ∈ W be such that γx,y,z = 0. Then x -1 ∼R y, y -1 ∼R z, and z -1 ∼R x.

P9. If z ′ ≤L z and a(z ′ ) = a(z), then z ′ ∼L z. P10. If z ′ ≤R z and a(z ′ ) = a(z), then z ′ ∼R z. P11. If z ′ ≤LR z and a(z ′ ) = a(z), then z ′ ∼LR z.
P12. If I ⊆ S then the a-function of WI is the restriction to WI of the a-function of W .

P13. Each right cell Υ of W contains a unique element d ∈ D, and we have γ x,x -1 ,d = 0 for all x ∈ Υ.

P14. For each z ∈ W we have z ∼LR z -1 . P15. If x, x ′ , y, w ∈ W are such that a(w) = a(y) then y ′ ∈W h w,x ′ ,y ′ ⊗ h x,y ′ ,y = y ′ ∈W h y ′ ,x ′ ,y ⊗ h x,w,y ′ in R ⊗ Z R.

Balanced system of cell representations

In [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF] we introduced the notion of a balanced system of cell representations, inspired by the work of Geck [START_REF] Geck | Constructible characters, leading coefficients and left cells for finite Coxeter groups with unequal parameters[END_REF][START_REF] Geck | On Iwahori-Hecke algebras with unequal parameters and Lusztig's isomorphism theorem[END_REF] in the finite case. We recall this theory here. If (π, M) is a (right) representation of H, and if B is a basis of M, we write (for h ∈ H and u, v ∈ B) π(h; B) and [π(h; B)]u,v for the matrix of π(h) with respect to the basis B, and the (u, v) th entry of π(h; B).

We define the degree of a Laurent polynomial f (q) ∈ R[q, q -1 ] to be the greatest integer n ∈ Z such that q n appears in f (q) with nonzero coefficient (with deg(0) = -∞). For example deg(3q -1 + q -2 ) = -1 and deg(3q

-1 + q 2 ) = 2.
Definition 1.5. We say that H admits a balanced system of cell representations if for each two-sided cell Γ ∈ Λ there exists a representation (πΓ, MΓ) defined over an R-polynomial ring RΓ (where we could have RΓ = R) and a basis BΓ of MΓ such that the following 6 properties hold:

B1. If w / ∈ Γ ≥ LR then πΓ(Cw) = 0.
B2. There exist bounds aπ Γ ∈ N such that deg[πΓ(Cw; BΓ)]u,v ≤ aπ Γ for all w ∈ W and all u, v ∈ BΓ.

B3. We have max{deg[πΓ(Cw; BΓ)]u,v | u, v ∈ BΓ} = aπ Γ if and only w ∈ Γ. We define the leading matrices by

cπ Γ (w; BΓ) = sp | q -1 =0 q -aπ Γ [πΓ(Cw; BΓ)] .
B4. The leading matrices cπ Γ (w; BΓ), w ∈ Γ, are free over Z.

B5. Let Γ ∈ Λ. For each z ∈ Γ, there exists (x, y) ∈ Γ 2 such that γx,y,z -1 = 0, where γx,y,z -1 ∈ Z is defined by the equation cπ Γ (x; BΓ)cπ Γ (y; BΓ) = z∈Γ γx,y,z -1 cπ Γ (z; BΓ) for x, y ∈ Γ (see Remark 1.6 below).

B6. If Γ ′ ≤LR Γ then aπ Γ ′ ≥ aπ Γ .
Remark 1.6. We make the following remarks:

1) We note that B1 does not depend on the basis BΓ. A representation with property B1 is called a cell representation for the two-sided cell Γ. It is clear that the representations associated to cells that we introduced in Section 1.3 are cell representations (see [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Section 2.1]).

2) If the basis BΓ of MΓ is clear from context we will sometimes write cπ Γ (w) in place of cπ Γ (w; BΓ).

3) By [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Corollary 2.4] the axioms B1-B4 and B6 alone imply that the Z-span JΓ of the matrices {cπ Γ (w; BΓ) | w ∈ Γ} is a Z-algebra. Hence the definition of γx,y,z -1 in B5 is not itself a separate axiom; these integers are the structure constants of the algebra JΓ.

4)

We note that in B2 and B3 it is equivalent to replace Cw by Tw, because Cw = Tw + v<w pv,wTv with pv,w ∈ q -1 Z[q -1 ]. However in B1 one cannot replace Cw by Tw.

5) Finally we note that we have slightly changed the numbering from [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF], where B5 was denoted B4 ′ , and B6 was denoted B5.

In [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF] we showed that the existence of a balanced system of cell representations is sufficient to compute Lusztig's a-function. In particular, we have:

Theorem 1.7 ([11, Theorem 2.5 and Corollary 2.6]). Suppose that H admits a balanced system of cell representations. Then a(w) = aπ Γ for all w ∈ Γ. Moreover, for each Γ ∈ Λ the Z-algebra JΓ spanned by the matrices {cπ Γ (w; BΓ) | w ∈ Γ} is isomorphic to Lusztig's asymptotic algebra associated to Γ, and γx,y,z = γx,y,z.

Note that the first part of this theorem implies that the bounds aπ Γ are in Definition 1.5 are in fact unique. That is, if there exist two balanced systems of cell representations then their bounds coincide.

2 Affine Weyl groups, affine Hecke algebras, and alcove paths

We begin this section with some basic facts about root systems and Weyl groups. We then recall the combinatorial language of alcove paths from [START_REF] Ram | Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux[END_REF], and the concept of alcove paths confined to strips from [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]. We also discuss the combinatorics of the affine Hecke algebra (and extended affine Hecke algebra) of type C2.

Root systems and Weyl groups

Let Φ be the non-reduced root system of type BC2 in the vector space R 2 . Thus Φ consists of vectors

Φ = Φ + ∪ (-Φ + )
, where Φ + = {α1, α2, α1 + α2, α1 + 2α2, 2α2, 2(α1 + α2)}, with α1 = √ 2, α2 = 1, and α1, α2 = -1. Let Φ0 and Φ1 be the subsystems Φ0 = ±{α1, α2, α1 + α2, α1 + 2α2} and Φ1 = ±{α1, 2α2, α1 + 2α2, 2α1 + 2α2} of types B2 and C2, respectively.

Let α ∨ = 2α/ α, α . The dual root system is

Φ ∨ = ±{α ∨ 1 , α ∨ 2 /2, α ∨ 1 + α ∨ 2 /2, α ∨ 1 + α ∨ 2 , α ∨ 2 , 2α ∨ 1 + α ∨ 2 }.
The corrot lattice is the Z-lattice Q spanned by Φ ∨ . Thus

Q = {mα ∨ 1 + nα ∨ 2 /2 | m, n ∈ Z}.
The fundamental coweights ω1 and ω2 are defined by ωi, αj = δi,j , and thus

ω1 = α ∨ 1 + α ∨ 2 /2 and ω2 = α ∨ 1 + α ∨ 2 .
In particular, note that ω1, ω2 ∈ Q. Let Q + be the cone Z ≥0 ω1 + Z ≥0 ω2 (note that this notation is non-standard).

For each α ∈ Φ let sα be the orthogonal reflection in the hyperplane Hα = {x ∈ R 2 | x, α = 0} orthogonal to α, and for i ∈ {1, 2} let si = sα i . The Weyl group of Φ is the subgroup W0 of GL(V ) generated by the reflections s1 and s2 (this is a Coxeter group of type B2 = C2). The Weyl group W0 acts on Q and the affine Weyl group is W = Q ⋊ W0 where we identify λ ∈ Q with the translation t λ (x) = x + λ. The affine Weyl group is a Coxeter group with generating set S = {s0, s1, s2}, where s0 = t ϕ ∨ sϕ, with ϕ = 2α1 + 2α2 the highest root of Φ.

For each α ∈ Φ and k ∈ Z let H α,k = {x ∈ R 2 | x, α = k}, and let s α,k be the orthogonal reflection in the affine hyperplane H α,k . Explicitly, s α,k (x) = x -( x, αk)α ∨ . Each affine hyperplane H α,k with α ∈ Φ + and k ∈ Z divides R 2 into two half spaces, denoted

H + α,k = {x ∈ R 2 | x, α ≥ k} and H - α,k = {x ∈ R 2 | x, α ≤ k}.
This "orientation" of the hyperplanes is called the periodic orientation (see Figure 1).

If w ∈ W we define the final direction θ(w) ∈ W0 and the translation weight wt(w) ∈ Q by the equation

w = t wt(w) θ(w).
Let F denote the union of the hyperplanes H α,k with α ∈ Φ and k ∈ Z. The closures of the open connected components of R 2 \F are called alcoves (these are the closed triangles in Figure 1). The fundamental alcove is given by

A0 = {x ∈ R 2 | 0 ≤ x, α ≤ 1 for all α ∈ Φ + }.
The hyperplanes bounding A0 are called the walls of A0. Explicitly these walls are Hα i ,0 with i = 1, 2 and Hϕ,1. We say that a face of A0 (that is, a codimension 1 facet) has type si for i = 1, 2 if it lies on the wall Hα i ,0 and of type s0 if it lies on the wall Hϕ,1.

The affine Weyl group W acts simply transitively on the set of alcoves, and we use this action to identify the set of alcoves with W via w ↔ wA0. Moreover, we use the action of W to transfer the notions of walls, faces, and types of faces to arbitrary alcoves. Alcoves A and A ′ are called s-adjacent, written A ∼s A ′ , if A = A ′ and A and A ′ share a common type s face. Thus under the identification of alcoves with elements of W , the alcoves w and ws are s-adjacent.

α1 = α ∨ 1 ω2 α ∨ 2 /2 2α2 ω1 • • • • • • • • • • • • • s1 s2 s0 + - + - + - -+ -+ -+ + - + - + - - + - + - + e s1 s2 s0
Fig. 1: Root system of type BC 2 , periodic orientation, and adjacency types (dotted, dashed, solid = 0,1,2)

Alcove paths

For any sequence w = (si 1 , si 2 , . . . , si ℓ ) of elements of S we have

e ∼s i 1 si 1 ∼s i 2 si 1 si 2 ∼s i 3 • • • ∼s i ℓ si 1 si 2 • • • si ℓ .
In this way, sequences w of elements of S determine alcove paths (also called alcove walks) of type w starting at the fundamental alcove e = A0. We will typically abuse notation and refer to alcove paths of type w = si 1 si 2 • • • si ℓ rather than w = (si 1 , si 2 , . . . , si ℓ ). Thus "the alcove path of type w = si 1 si 2 • • • si ℓ " is the sequence (v0, v1, . . . , v ℓ ) of alcoves, where v0 = e and v k = si 1 • • • si k for k = 1, . . . , ℓ.

Let w = si 1 si 2 • • • si ℓ be an expression for w ∈ W , and let v ∈ W . A positively folded alcove path of type w starting at v is a sequence p = (v0, v1, . . . , v ℓ ) with v0, . . . , v ℓ ∈ W such that

1) v0 = v, 2) v k ∈ {v k-1 , v k-1 si k } for each k = 1, . . . , ℓ, and 
3) if v k-1 = v k then v k-1 is on the positive side of the hyperplane separating v k-1 and v k-1 si k .
The end of p is end(p) = v ℓ . Let P( w, v) = {all positively folded alcove paths of type w starting at v}.

Less formally, a positively folded alcove path of type w starting at v is a sequence of steps from alcove to alcove in W , starting at v, and made up of the symbols (where the kth step has s = si k for k = 1, . . . , ℓ):

- x xs + (positive s-crossing) - xs x + (positive s-fold) + x xs - (negative s-crossing)
If p has no folds we say that p is straight. Note that, by definition, there are no "negative" folds.

If p is a positively folded alcove path we define, for each sj ∈ S, fj(p) = #(positive sj-folds in p).

Alcove paths confined to strips

Let α ′ 1 = α1 and α ′ 2 = 2α2 (these are the simple roots of Φ1).

For i ∈ {1, 2} let Ui = {x ∈ R 2 | 0 ≤ x, α ′ i ≤ 1}
be the region between the hyperplanes H α ′ i ,0 and

H α ′ i ,1 . It is also convenient to define U3 = U2. Let w = si 1 • • • si ℓ be an expression for w ∈ W . Let i ∈ {1, 2, 3}. An i-folded alcove path of type w starting at v ∈ Ui is a sequence p = (v0, v1, . . . , v ℓ ) with v0, . . . , v ℓ ∈ Ui such that 1) v0 = v, and v k ∈ {v k-1 , v k-1 si k } for each k = 1, . . . , ℓ, and 
2) if v k-1 = v k then either: (a) v k-1 si k / ∈ Ui, or (b) v k-1
is on the positive side of the hyperplane separating v k-1 and v k-1 si k .

We note that condition 2)(a) can only occur if v k-1 and v k-1 si k are separated by either H α ′ i ,0 or H α ′ i ,1 . The end of the i-folded alcove path p = (v0, . . . , v ℓ ) is end(p) = v ℓ . Let Pi( w, v) = {all i-folded alcove paths of type w starting at v}. Less formally, i-folded alcove paths are made up of the following symbols, where x ∈ Ui and s ∈ S: We refer to the two symbols in (b) as "s-bounces" rather than folds, since they play a different role in the theory. It turns out that there is no need to distinguish between "positive" and "negative" s-bounces. We note that bounces only occur on the hyperplanes H α ′ i ,0 and H α ′ i ,1 . Moreover, note that there are no folds or crossings on the walls H α ′ i ,0 and H α ′ i ,1 -the only interactions with these walls are bounces. In the case i = 1 every bounce has type 1. In the case i = 2, 3 the bounces on H α ′ 2 ,0 have type 2, and those on H α ′ 2 ,1 have type 0 (see Figures 1 and3). Let p be an i-folded alcove path. For each j ∈ {0, 1, 2} let fj (p) = #(sj -folds in p) and gj(p) = #(sj-bounces in p). where ψi : W0 → W i 0 is the natural projection map taking u ∈ W0 to the minimal length representative of Wiu, and ω1, ω2 are as defined in Section 2.1. For later use, we also set

θ 3 = θ 2 and wt 3 = wt 2 . Thus if wt(p) = mα ∨ 1 + nα ∨ 2 /2 then wt 1 (p) = m and wt 2 (p) = wt 3 (p) = n. Let τ1 = tω 1 s1 = s0s1s2 and τ2 = tω 1 = s0s1s2s1,
and let τ3 = τ2. Observe that τi preserves Ui. It is not hard to see that for each p ∈ Pi( w, u) the path τi(p) obtained by applying τi to each part of p is again a valid i-folded alcove path starting at τiu (the main point here is that in the case i = 1 the reflection part of τ1 is in the simple root direction α1, and thus sends Φ + \{α1} to itself; in the cases i = 2, 3 the element τ2 = τ3 is a pure translation, and so the result is obvious). Moreover θ i (p) is preserved under the application of τi, and a direct calculation shows that wt i (τ k i (p)) = k + wt i (p). Note that W i 0 is a fundamental domain for the action of τi on Ui. Let B be any other fundamental domain for this action. For w ∈ Ui we define wt i B (w) ∈ Z and θ i B (w) ∈ B by the equation

w = τ wt i B (w) i θ i B (w),
and for i-folded alcove paths p we define

wt i B (p) = wt i B (end(p)) and θ i B (p) = θ i B (end(p)).
It is easy to see that in the case B = W i 0 these definitions agree with those for wt i (p) and θ i (p) made above.

Example 2.1. Figure 3 shows three examples of i-folded alcove paths, with i = 1 in the first two cases, and i = 2 or i = 3 in the third case. In each case the identity alcove is shaded in dark green. The first and second paths have type w = 210121012120 and start at u = e, and the third path has type w = 121021210120120 and starts at u = 12.

Fig. 3: i-folded alcove paths

The first and second figures illustrate two choices of fundamental domain B for the action of τ1 on U1 (indicated by green and red shading). In the first example B = W 1 0 , and we have wt 

(p) = wt 3 B (p) = 1 and θ 2 B (p) = θ 3 B (p) = 0.

The affine Hecke algebra of type C2

Let (W, S) be the C2 Coxeter system and let Hg be the associated generic affine Hecke algebra, as in (1.1). The algebra Hg is generated by T0 = Ts 0 , T1 = Ts 1 and T2 = Ts 2 subject to the relations (for i = 0, 1, 2)

T 2 i = 1 + QiTi, T0T1T0T1 = T1T0T1T0, T1T2T1T2 = T2T1T2T1, and T0T2 = T2T0,
where qi = qs i and Qi = qiq -1 i . Let v ∈ W and choose any expression v = si 1 • • • si ℓ (not necessarily reduced). Consider the associated straight alcove path (v0, v1 . . . , v ℓ ), where v0 = e and v k = si 1 • • • si k . Let ε1, . . . , ε ℓ be defined using the periodic orientation on hyperplanes as follows:

ε k = +1 if v k-1 -| + v k (that is, a positive crossing) -1 if v k -| + v k-1 (that is, a negative crossing).
It is easy to check (using Tits' solution to the Word Problem) that the element

Xv = T ε 1 s i 1 . . . T ε ℓ s i ℓ ∈ Hg
does not depend on the particular expression v = si 1 • • • si ℓ we have chosen (see [START_REF] Görtz | Alcove walks and nearby cycles on affine flag manifolds[END_REF]). If λ ∈ Q we write

X λ = Xt λ ,
and it follows from the above definitions that

Xv = X t wt(v) θ(v) = X wt(p) X θ(v) = X wt(v) T -1 θ(v) -1 (2.1)
(the second equality follows since t wt(v) is on the positive side of every hyperplane through wt(v), and the third equality follows since Xu = T -1 u -1 for all u ∈ W0). Moreover since Xv = Tv + (lower terms) the set {Xv | v ∈ W } is a basis of Hg, called the Bernstein-Lusztig basis.

Let Rg[Q] be the free Rg-module with basis {X λ | λ ∈ Q}. We have a natural action of W0 on Rg[Q] given by wX λ = X wλ . We set

Rg[Q] W 0 = {p ∈ Rg[Q] | w • p = p for all w ∈ W0}.
It is a well-known result that the centre of Hg is

Z(Hg) = Rg[Q] W 0 .
The combinatorics of positively folded alcove paths encode the change of basis from the standard basis (Tw)w∈W of Hg to the Bernstein-Lusztig basis (Xv)v∈W . This is seen by taking u = e in the following proposition (see [START_REF] Ram | Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux[END_REF]Theorem 3.3],

or [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Proposition 3.2]).

Proposition 2.2. (c.f. [20, Theorem 3.3]) Let w, u ∈ W , and let w be any reduced expression for w. Then

XuTw = p∈P( w,u) Q(p)X end(p) where Q(p) = 2 j=0 (qj -q -1 j ) f j (p) . Let X1 = X α ∨ 1 and X2 = X α ∨ 2 /2 .
We have

X1 = T -1 2 T0T1T -1 0 T2T1 and X2 = T -1 1 T0T1T2. Note that X ω 1 = X1X2 and X ω 2 = X1X 2 2 . The Bernstein relations are (for λ ∈ Q) T -1 1 X λ -X s 1 λ T -1 1 = Q1 X λ -X s 1 λ X1 -1 and T -1 2 X λ -X s 2 λ T -1 2 = (Q2 + Q0X2) X λ -X s 2 λ X 2 2 -1 . Note that X λ -X s i λ = X s i λ (X λ,α i α ∨ i -1) is indeed divisible by X α ∨ i -1 because λ, αi ∈ Z for all λ ∈ Q.
For later reference we record the following complete set of relations for Hg in the Bernstein-Lusztig presentation. Let Y1 = X ω 1 and Y2 = X ω 2 . Then

T 2 1 = 1 + (q a -q -a )T1 T 2 2 = 1 + (q b -q -b )T2 T1T2T1T2 = T2T1T2T1 Y1Y2 = Y2Y1 T -1 1 Y1 = Y -1 1 Y2T1 T -1 2 Y2 = Y 2 1 Y -1 2 T2 + Q0Y1 T -1 1 Y2 = Y2T -1 1 T -1 2 Y1 = Y1T -1 2 
Remark 2.3. Let L : W → N>0 be the weight function with L(s1) = a, L(s2) = b, and L(s0) = c, and let H be the associated affine Hecke algebra, as in (1.2). The results of the above section of course apply equally well to H after applying the specialisation ΘL. For example, Proposition 2.2 applies with the obvious modification

Q(p) = (q a -q -a ) f 1 (p) (q b -q -b ) f 2 (p) (q c -q -c ) f 0 (p) .

The extended affine Hecke algebra

If q0 = q2 (or, in the specialisation, c = b) one can slightly enlarge the affine Hecke algebra as follows. Let

P = Zω1 + Zω2/2 = Zα ∨ 1 /2 + Zα ∨ 2 /2 and P + = Z ≥0 ω1 + Z ≥0 ω2/2.
The Weyl group W0 acts on P , and the extended affine Weyl group is

W = P ⋊ W0 ∼ = W ⋊ (P/Q).
Note that P/Q ∼ = Z2. Let σ ∈ W be the nontrivial element of P/Q. Then σsiσ -1 = s σ(i) for each i = 0, 1, 2, where σ(i) denotes the nontrivial diagram automorphism of (W, S).

The length function on W is extended to W by setting ℓ(wσ) = ℓ(w) for all w ∈ W . Thus the length 0 elements of W are precisely the elements e and σ.

Under the assumption q0 = q2 we have Rg = Z[q1, q2, q -1 1 , q -1 2 ]. The extended affine Hecke algebra is the algebra Hg over Rg with basis {Tw | w ∈ W } and multiplication (for u, v, w ∈ W and s ∈ S) given by

TuTv = Tuv if ℓ(uv) = ℓ(u) + ℓ(v) TwTs = Tws + (qs -q -1 s )Tw if ℓ(ws) = ℓ(w) -1.
The definition of the Bernstein-Lusztig basis {Xv | v ∈ W } can be extended to Hg by considering W as 2 sheets of W , and an alcove path of type w = si 1 • • • si k σ consists of an ordinary alcove path of type si 1 • • • si k followed by a jump to the σ-sheet of W (see [START_REF] Ram | Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux[END_REF]). The centre of Hg is Rg[P ] W 0 .

The Hecke algebra Hg (with q0 = q2) is naturally a subalgebra of Hg. Indeed Hg is generated by T0, T1, T2, and the additional element

Tσ = X ω 2 /2 T -1 2 T -1 1 T -1 2 .

Schur functions

The following Schur functions will play a role later. Let

λ ∈ Q. The Schur function s λ (X) ∈ Z[Q] W 0 is the polynomial s λ (X) = w∈W 0 w X λ α∈Φ + 0 (1 -X -α ∨ ) . (2.2) Let λ ∈ P . The dual Schur function s ′ λ (X) ∈ Z[P ] W 0 is the polynomial s ′ λ (X) = w∈W 0 w X λ α∈Φ + 1 (1 -X -α ∨ ) . (2.3) 
In particular we have

sω 1 (X) = X ω 1 + X -ω 1 + X ω 1 -ω 2 + X -ω 1 +ω 2 sω 2 (X) = 1 + X ω 2 + X -ω 2 + X 2ω 1 -ω 2 + X -2ω 1 +ω 2 s ′ ω 1 (X) = 1 + X ω 1 + X -ω 1 + X ω 1 -ω 2 + X -ω 1 +ω 2 s ′ ω 2 /2 (X) = X ω 2 /2 + X -ω 2 /2 + X ω 1 -ω 2 /2 + X -ω 1 +ω 2 /2 .

Kazhdan-Lusztig cells in type C2

Let W be a Coxeter group of type C2 with weight diagram

✐ ✐ ✐ c a b s0 s1 s2
That is, L(s1) = a, L(s2) = b, and L(s0) = c. In this section we recall the decomposition of W = C2 into cells for all choices of parameters (a, b, c) ∈ N 3 . We then study the properties of this partition and introduce various notions such as the generating set of a two-sided cell, cell factorisations and the ã-function. The ã-function is defined using the values of Lusztig a-function in finite parabolic subgroups of W and as a consequence of the main result of this paper, it turns out that a = ã, and thus the table listed in Section 3.5 in fact records the values of Lusztig's a-function (however, of course, this cannot be assumed at this stage). • L ∈ D for a weight function L to mean (L(s2)/L(s1), L(s0)/L(s1)) ∈ D. In a similar spirit, when considering a statistic F that depends on the choice of parameters (for instance the partition into cells), we will write F (L), or F (a, b, c) or F (r1, r2) to mean that we consider the statistic F with respect to the weight function L, the triplet (a, b, c) ∈ N 3 or the pair

Partition of C2 into cells

(r1, r2) ∈ Q 2 >0 . Furthermore, if F (r1, r2) = F (r ′ 1 , r ′ 2 ) whenever (r1, r2) and (r ′ 1 , r ′ 2 ) belong to a subset D ⊂ Q 2 >0
, we will also write F (D) to denote the common value of F on D.

The partition of W into cells has been obtained by the first author in [START_REF] Guilhot | Kazhdan-Lusztig cells in affine Weyl groups of rank 2[END_REF]. Even though there are an infinite number of positive weight functions on W , there are only a finite number of partitions of W into cells (as conjectured by Bonnafé in [START_REF] Bonnafé | Semicontinuity properties of Kazhdan-Lusztig cells[END_REF]). In order to describe these partitions we first need to define a set R of subsets of Q 2 >0 on which the partition into cells will be constant.

We define open subsets A1, . . . , A10 of Q 2 >0 in Figure 4. Write A i ′ = A ′ i for the region Ai reflected in the line r1 = r2 (we call this the "dual" region). For "adjacent" regions Ai and Aj (respectively Ai and A ′ i ), let Ai,j (respectively A i,i ′ ) be the line segment Ai∩Aj (respectively Ai ∩A i ′ ) with the endpoints removed. This partitions the set

{(x1, x2) ∈ Q 2 >0 | x2 ≤ x1} into 30 regions: • A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 (open subsets of Q 2 ), • A 1,1 ′ , A 2,2 ′ , A 5,5 ′ ,
A1,2, A2,3, A3,4, A4,5, A3,6, A6,7, A4,7, A7,8, A5,8, A7,9, A9,10, A8,10 (open intervals), 

• P1 = (1/2, 1/2), P2 = (1, 1), P3 = (3/2, 1/2), P4 = (2,
• = {Ai, A ′ i | 1 ≤ i ≤ 10}. A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 r 1 r 2 1 1 2 2 Fig. 4: Regions of R 2
For any region D ∈ R, the decomposition of W into right cells and two-sided cells is the same for all choices of parameters (r1, r2) ∈ D. In Figure 5, we represent Λ(D) for all

D ∈ R such that D ⊂ {(x1, x2) ∈ Q 2 >0 | x2 ≤ x1}.
The alcoves with the same colour lie in the same two-sided cell and the right cells in a given two-sided cell are the connected components. The Hasse diagram on the right of each partition describes the two-sided order on the two-sided cells, going from the highest cell at the top to the lowest one at the bottom. Finally to obtain the decomposition and the two-sided order for a region included in

{(x1, x2) ∈ Q 2 >0 | x2 > x1}
one simply applies the diagram automorphism σ to the partition for the dual region. Hence the partition of C2 into two-sided cells and right cells is known for all choices of parameters.

A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 1,1 ′ A 2,2 ′ A 5,5 ′ A 1,2 A 2,3 A 3,4 A 4,5 A 3,6 A 6,7 A 4,7
A 7,8 A 5,8 A 7,9 A 9,10 A 8,10 P 1 : (q 2 , q, q) P 2 : (q, q, q) P 3 : (q 2 , q 3 , q) P 4 : (q, q 2 , q) P 5 : (q, q 3 , q) Proof. One directly checks that each two-sided cell is invariant under inversion.

= Γ 0 = Γ 1 = Γ 2 = Γ 3 = Γ 4 = Γ 5 = Γ 6 = Γ 7 = Γ 8 = Γ 9 = Γ 10 = Γ 11 = Γ 12 = Γ 13

Semicontinuity conjecture

The parameters (r1, r2) ∈ Q 2 >0 are called generic if there exists an open subset O of R 2 that contains (r1, r2) and such that for all

(r ′ 1 , r ′ 2 ) ∈ O ∩ Q 2 >0 we have Λ(r1, r2) = Λ(r ′ 1 , r ′ 2 )
. According to Figure 4, we see that the generic parameters for W are exactly those that lie in some Ai or

A ′ i . For D ∈ R we set RD := {A ∈ R• | D ⊆ A}. For example, RP 2 = {A2, A3, A4, A5, A 2 ′ , A 3 ′ , A 4 ′ , A 5 ′ }.
In [START_REF] Bonnafé | Semicontinuity properties of Kazhdan-Lusztig cells[END_REF], Bonnafé has conjectured that the partition of an arbitrary Coxeter group into cells satisfies certain "semicontinuity properties". The basic idea of his conjecture is that the partition for all parameters can be determined from the knowledge of the partition for generic parameters. More precisely the partition Λ(D) for D ∈ R is the finest partition of W that satisfies the following property:

For all A ∈ RD, and for all Γ ∈ Λ(A), there exists a cell Γ ′ ∈ Λ(D) such that Γ ⊆ Γ ′ .

In the case of C2 the conjecture is known to hold (by direct inspection using Figure 5). Thus it is (retrospectively) sufficient to know Λ(A) for all A ∈ R• to determine Λ(D) for all D ∈ R (in fact, using the diagram automorphism σ it is enough to know Λ(Ai) for all 1 ≤ i ≤ 10). The most striking example of the semicontinuity phenomenon is when D = P2 (the equal parameter case) where one has to look at the partition of W into cells for parameters in the regions A2, A 2 ′ , A3, A 3 ′ , A4, A 4 ′ , A5 and A 5 ′ to determine the partition into cells. As a result, all finite cells get absorbed into the infinite cells.

Generating sets of two-sided cell

Recall the definition of in Example 1.4. Given a subset C of W we denote by C + the set that consists of all elements w ∈ W that satisfy u w for some u ∈ C. By inspection of Figure 5 we see that for all D ∈ R and all Γ ∈ Λ(D) there exists a minimal subset JΓ(D) of W such that

Γ = JΓ(D) + - Γ ′ < LR Γ Γ ′ .
We call this set the generating set of Γ. We have for all D ∈ R and all Γ ∈ Λ(D)

(1) JΓ(D) ⊆ I S WI;

(2) the elements of JΓ are involutions;

(3) if D ∈ R• then |JΓ(D)| = 1; (4) we have JΓ(D) ⊆ A∈R D Γ ′ ∈Λ(A),Γ ′ ∩Γ =∅ J Γ ′ (A)
where the inclusion can be strict (see the example D = P2 below);

(5) the set {Cw | w ∈ JΓ(D)} generates the module

H ≤ LR Γ ; (6) Γ1 ≤LR Γ2 if and only if JΓ 2 (D) + ∩ Γ1 = ∅.
Of course, it is also possible to have

|JΓ(D)| = 1 for some D / ∈ R•. When |JΓ(D)| = 1,
we will denote by wΓ the element of this set (or simply wi if Γ = Γi). In the table below, we give the elements wi for all Aj ∈ R and Γi ∈ Λ(Aj). 

A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A
- - - - Γ 7 - - - 101 - 101 1 101 1 Γ 8 - - - - - - - - 1010 1010 Γ 9 20 - - - - - - - - - Γ 10 - 1 2 - - 2 - - - - Γ 11 - - - - - 20 20 20 - - Γ 12 121 121 1 1 0 1 1 0 1 0
Tab. 1: The set J Γi (A j ) = {w i } for generic parameters

The set JΓ(D) when Γ ∈ Λ(D) and D / ∈ R• can be obtained by first computing the right-hand side J of (4) and then taking the minimal subset Jmin such that J ⊂ J + min . For instance, if D = P2 and Γ = Γ2 then the right-hand side of (4) is J = {s0, s1, s2, s1s2s1, s2s1s2, s1s0s1, s0s1s0}

and thus JΓ 2 (P2) = {s0, s1, s2} since s1 ≺ s1s2s1, s2s1s2, s0s1s0, s0s1s0.

Cell factorisations

When the set JΓ(D) contains a unique element then the two-sided cell Γ admits a cell factorisation. We refer to [11, §4] for a detailed description of this concept in type G2. To illustrate cell factorisation here, consider the lowest two-sided cell Γ0 in the regime r2 < r1. In this case we see that JΓ 0 (r1, r2) = {w0} where w0 = s1s2s1s2. By direct inspection of Figure 5 we have the following representation of elements of Γ0:

• Each right cell Υ ⊆ Γ0 contains a unique element wΥ of minimal length.

• The element w0 is a suffix of each wΥ.

Let uΥ = w0w -1 Υ and B0 = {uΥ | Υ ⊆ Γ0}. • We have Γ0 = {u -1 w0t λ v | u, v ∈ B0, λ ∈ Q + }.
Moreover, each w ∈ Γ0 has a unique expression in the form w = u -1 w0t λ v with u, v ∈ B0 and λ ∈ Q + , and this expression is reduced (that is, ℓ(w) = ℓ(u -1 ) + ℓ(w0) + ℓ(t λ ) + ℓ(v)). This expression is called the cell factorisation of w ∈ Γ0.

In the infinite cells Γ = Γi with i = 1, 2, 3 cell factorisation (if it exists) takes a similar form:

• Each right cell Υ ⊆ Γ contains a unique element wΥ of minimal length.

• The element wΓ is a suffix of each wΥ and we set uΥ = wΓw -1 Υ and BΓ = {uΥ | Υ ⊆ Γ}. • There exists tΓ ∈ W such that Γ = {u -1 wΓt n Γ v | u, v ∈ BΓ, n ∈ N}, and moreover each w ∈ Γ has a unique expression in this form, and this expression is reduced.

The specific cell factorisations that we require will be introduced at the appropriate time. Here we give one example for illustration. Consider Γ = Γ1(r1, r2) with r2 < r1 -1. Then the set JΓ(r1, r2) contains a unique element wΓ = s2s1s2. Therefore this cell admits a cell factorisation, and we have tΓ = 012, and BΓ = {e, 0, 01, 010}.

We represent this factorisation in Figure 6. The set of grey alcoves together with the black alcove A0 on the left hand side is B -1 Γ , and the small diagram on the right hand side illustrates BΓ. The connected sets of dark blue (respectively light blue) alcoves are the sets of the form {u -1 wΓt n Γ v | u, v ∈ BΓ} where n is odd (respectively even).

Fig. 6: Cell factorisation of Γ 1 in the case r 2 < r 1 -1.

There are also cases where there is a kind of "generalised" cell factorisation that involves the extended affine Weyl group. Specifically, these cases are Γ0 with r2 = r1, the cell Γ2 in the case r2 = r1 and r2 < 1, and the cell Γ2 in the case r2 = r1 and r2 > 1. We will discuss these factorisations at the appropriate time.

All finite cells except for Γ13 admit a cell factorisation. In these cases tΓ = e, and each element of the cell has a unique expression in the form u -1 wΓv with u, v ∈ BΓ and wΓ ∈ JΓ. For example, if Γ = Γ12 with (r1, r2) ∈ A1 ∪ A2 ∪ A1,2 then JΓ = {s1s2s1} and BΓ = {e, s0}, and if Γ = Γ11 with (r1, r2) ∈ A6 ∪ A7 ∪ A8 ∪ A6,7 ∪ A7,8 then JΓ = {s0s2} and BΓ = {e, s1, s1s0}.

Suppose that Γ is a cell admitting a cell factorisation. If w ∈ Γ is written as w = u -1 wΓt n Γ v with u, v ∈ BΓ and n ∈ N we write uw = u, vw = v, and τw = n (and in the case of Γ0 we have w = u -1 wΓt λ v and τw = λ). Let x, y ∈ Γ. With these notations, we have for all generic parameters:

x ∼L y ⇐⇒ vx = vy and x ∼R y ⇐⇒ ux = uy.

The ã-function

A useful auxiliary notion is the ã-function, defined as follows. The values of the a-function are explicitely known for finite dihedral groups (see, for example, [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Table 1]) and Lusztig's conjectures have been verified in this case (see [START_REF] Geck | On Iwahori-Hecke algebras with unequal parameters and Lusztig's isomorphism theorem[END_REF]Proposition 5.1]). Therefore, for all choices of parameters, we can define a-functions a k : WI k → N (k = 0, 1, 2) where I k := S\{k}, however we emphasise that it is not clear that a k is the restriction of a to WI k ; this is the content of P12.

It turns out, by direct observation, that if u, v ∈ Γ lie in a common two-sided cell, with u ∈ WI j and v ∈ WI k for j, k ∈ {0, 1, 2}, then aj(u) = a k (v). These observations, together with the fact that every two-sided cell intersects a finite parabolic subgroup, allows us to define a function ã : W → N (for each choice of parameters) by

ã(w) = a k (u) whenever w ∈ Γ ∈ Λ(r1, r2) and u ∈ Γ ∩ WI k .
By definition ã is constant on each two-sided cell Γ, and therefore we write ã(Γ) for the value of ã on any element of Γ, thereby considering ã as a function ã : Λ(r1, r2) → N. We remark that ã is a deacreasing function on the set Λ. Indeed it is not hard to check that ã(Γ) ≥ ã(Γ ′ ) whenever Γ ≤LR Γ ′ . Finally, the values of ã are "generically invariant" on the regions D ∈ R as shown in the following proposition. 

Furthermore, if D ∈ R is such that D ⊆ A, then for all Γ ′ ∈ Λ(D) such that Γ ⊆ Γ ′ we have ã(Γ ′ ) = x1a + x2b + x3c for all (a, b, c) ∈ D.
Proof. This can deduced from the values of the a-function in dihedral groups: see, for example, [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Table 1].

Since the values of ã-function will play a crucial role in the reminder of the paper, we record these values in the table below.

A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 Γ 0 2a + 2b 2a + 2b 2a + 2b 2a + 2b 2a + 2b 2a + 2b 2a + 2b 2a + 2b 2a + 2b 2a + 2b Γ 1 a b + c b + c b + c b + c -a + 2b -a + 2b -a + 2b -a + 2b -a + 2b Γ 2 2a -c 2a -c 2a -c b b 2a -c b b b b Γ 3 2a + 2c 2a + 2c 2a + 2c 2a + 2c 2a + 2c 2a + 2c 2a + 2c 2a + 2c b + c b + c Γ 4 0 0 0 0 0 0 0 0 0 0 Γ 5 c c c c -a + 2c c c -a + 2c c -a + 2c Γ 6 b b -a + 2b -a + 2b -a + 2b - - - - - Γ 7 - - - 2a -c a - 2a -c a 2a -c a Γ 8 - - - - - - - - 2a + 2c 2a + 2c Γ 9 b + c - - - - - - - - - Γ 10 - a b - - b - - - - Γ 11 - - - - - b + c b + c b + c - - Γ 12 2a -b 2a -b a a c a a c a c
Tab. 2: The values of ã(Γ i ) for (b/a, c/a) ∈ A j Table 2 only lists the values of ã(Γ k ) for (a, b, c) such that (r1, r2) ∈ Ai for some 1 ≤ i ≤ 10. The remaining cases can also be computed using Proposition 3.2. However we now explain another method to deduce these values (essentially due to semicontinuity).

• Firstly, if r2 > r1 then ã(Γ k (a, b, c)) = ã(Γ k (a, c, b)).
• Secondly, suppose that (r1, r2) ∈ D and

1 ≤ k ≤ 13. Let A ∈ RD and let Γ ∈ Λ(A) be such that Γ ⊆ Γ k . Then ã(Γ k (a, b, c)) = lim (a ′ ,b ′ ,c ′ )→(a,b,c) (b ′ /a ′ ,c ′ /a ′ )∈A ã(Γ(a ′ , b ′ , c ′ ))
Thus, for example, to compute ã(Γ2) in the equal parameter case (r1, r2) = (1, 1) we choose any A ∈ RP 2 (for example, A = A2) and any cell Γ ∈ Λ(A) with Γ ⊆ Γ2(1, 1) (for example, Γ ∈ {Γ2(A2), Γ5(A2), Γ6(A2), Γ10(A2), Γ12(A2)}) and take the limit as (a, b, c) → (a, a, a) in the associated ã(Γ) value from Table 2. Thus we conclude that ã(Γ2(1, 1)) = a.

Representations of H

Let (W, S) be the Coxeter group of type C2 and let L : W → N be a positive weight function. In this section we construct representations of H that will ultimately be used to produce a balanced system of cell representations for each parameter regime. In fact it is convenient to define representations of the generic Hecke algebra Hg of type C2, from which representations of H are obtained by the specialisation ΘL. In what follows we will use the same notations (eg, πi) for the representations of Hg and H.

The diagram automorphism

Let σ be the nontrivial diagram automorphism of (W, S). Then σ induces a ring automorphism of Rg by swapping q0 and q2, and it is easy to check that the formula 

The principal series representation

Let ζ1 and ζ2 be commuting indeterminants, and let M0 be the

1-dimensional right Rg[Q] module over the ring Rg[ζ1, ζ2, ζ -1 1 , ζ -1 2 ]
with generator ξ0 and Rg[Q]-action given by linearly extending ξ0

• X µ = ξ0 ζ µ where ζ µ = ζ m 1 ζ n 2 if µ = mα ∨ 1 + nα ∨ 2 /2. Let (π0, M0) be the induced right Hg-module. That is, M0 = Ind Hg Rg [Q] (M0) = M0 ⊗ Rg [Q] Hg.
We sometimes write π0 = π ζ 0 when the dependence on ζ = (ζ1, ζ2) requires emphasis. Note that {ξ0 ⊗ Xu | u ∈ W0} is a basis of M0. More generally, if B is a fundamental domain for the action of Q on W then it is clear that

B = {ξ0 ⊗ Xu | u ∈ B}
is a basis of M0. We will often write π0(Tw; B) in place of π0(Tw; B), even though strictly speaking B is not a basis of M0 (c.f. notation in Section 1.5).

We have the following important alcove path interpretation of the matrix coefficients [π0(Tw; B)]u,v, as in [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF].

Theorem 4.1. Let B be a fundamental domain for the action of Q on W . For u, v ∈ B we have

[π0(Tw; B)]u,v = {p∈P( w,u)|θ B (p)=v} Q(p)ζ wt B (p) , where Q(p) = 2 j=0 (qj -q -1 j ) f j (p)
and where w is any reduced expression for w.

For example, the matrices for π0(T0) with respect to the "standard basis" B = W0 and Lusztig's "box basis" B = B0 are

π0(T0; W0) =         0 0 0 0 0 ζ 1 ζ 2 0 0 0 0 0 0 ζ 2 0 0 0 0 0 0 0 0 0 0 ζ 1 ζ 2 0 0 0 0 0 0 ζ 2 0 0 ζ -1 2 0 0 Q 0 0 0 0 ζ -1 1 ζ -1 2 0 0 0 0 Q 0 0 0 0 0 0 ζ -1 2 0 0 Q 0 0 0 0 ζ -1 1 ζ -1 2 0 0 0 0 Q 0         and π0(T0; B0) =     0 1 0 0 0 0 0 0 1 Q 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 Q 0 0 0 0 0 0 0 1 0 Q 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 Q 0     ,
where we order W0 = (e, 1, 2, 12, 21, 121, 212, 1212) and B0 = (e, 0, 01, 012, 010, 0102, 01021, 010210). 

Induced representations

Let Hi (i = 1, 2) be the subalgebra of Hg generated by Ti, X1 and X2. Let ζ be an invertible indeterminant. Let M1 be the 1-dimensional (right) H1-module over the ring Rg[ζ, ζ -1 ] generated by ξ1 with

ξ1 • T1 = ξ1(-q -1 1 ) ξ1 • X1 = ξ1(q -2 1 ) ξ1 • X2 = ξ1(-q1ζ),
and for j ∈ {2, 3} let Mj be the 1-dimensional (right) H2-module over the ring Rg[ζ, ζ -1 ] generated by ξj with

ξ2 • T2 = ξ2(-q -1 2 ) ξ2 • X1 = ξ2(q0q2ζ) ξ2 • X2 = ξ2(q -1 0 q -1 2 ) ξ3 • T2 = ξ3(-q -1 2 ) ξ3 • X1 = ξ3(-q -1 0 q2ζ) ξ3 • X2 = ξ3(-q0q - 1 
2 ). One uses the formulae in Section 2.4 to check that the above formulae do indeed define representations of H1 and H2.

Let (πj , Mj) with j = 1, 2, 3 be the representations M1 = Ind Hg H 1 (M1) and Mj = Ind Hg H 2 (Mj) for j = 2, 3. Then each Mj is a 4-dimensional (right) Hg-module. Indeed {ξi ⊗ Xu | u ∈ W i 0 } is a basis of Mi (where we set W 3 0 = W 2 0 ). More generally, if B is a fundamental domain for the action of τi on Ui (see Section 2.3) then

B = {ξi ⊗ Xu | u ∈ B} is a basis of Mi.
If p is an i-folded alcove path we define

Qi(p) =      (-q -1 1 ) g 1 (p) 3 j=0 (qj -q -1 j ) f j (p) if i = 1 (-q -1 2 ) g 2 (p) (-q -1 0 ) g 0 (p) 3 j=0 (qj -q -1 j ) f j (p) if i = 2 (-q -1 2 ) g 2 (p) q g 0 (p) 0 3 j=0 (qj -q -1 j ) f j (p) if i = 3. (4.1)
We note that the action of τi on the set of i-folded alcove paths preserves Qi.

We have the following analogue of Theorem 4.1, giving a combinatorial formula for the matrix entries of πi(Tw; B) (i = 1, 2, 3) in terms of i-folded alcove paths.

Theorem 4.3. Let w ∈ W , i ∈ {1, 2, 3}, and let B be a fundamental domain for the action of τi on Ui. Then

[πi(Tw; B)]u,v = {p∈P i ( w,u)|θ i B (p)=v} Qi(p)ζ wt i B (p) ,
where w is any choice of reduced expression for w.

Proof. The proof is by induction, exactly as in [11, Theorem 7.2, Corollary 7.3].

For example, using the "standard basis" B = W i 0 we have

π1(T0; W 1 0 ) = 0 0 ζ 0 0 0 0 ζ ζ -1 0 Q 0 0 0 ζ -1 0 Q 0 π1(T1; W 1 0 ) =   -q -1 1 0 0 0 0 Q 1 1 0 0 1 0 0 0 0 0 -q -1 1   π1(T2; W 1 0 ) = Q 2 1 0 0 1 0 0 0 0 0 Q 2 1 0 0 1 0 π2(T0; W 2 0 ) =   0 0 0 ζ 0 -q -1 0 0 0 0 0 -q -1 0 0 ζ -1 0 0 Q 0   π2(T1; W 2 0 ) = Q 1 1 0 0 1 0 0 0 0 0 Q 1 1 0 0 1 0 π2(T2; W 2 0 ) =   -q -1 2 0 0 0 0 Q 2 1 0 0 1 0 0 0 0 0 -q -1 2   π3(T0; W 2 0 ) = 0 0 0 ζ 0 q 0 0 0 0 0 q 0 0 ζ -1 0 0 Q 0 π3(T1; W 2 0 ) = Q 1 1 0 0 1 0 0 0 0 0 Q 1 1 0 0 1 0 π3(T2; W 2 0 ) =   -q -1 2 0 0 0 0 Q 2 1 0 0 1 0 0 0 0 0 -q -1 2   .

Square integrable representations

The representations in this section will play a role in the analysis of the finite cells. It turns out that they are also "square integrable representations" (of certain natural C-algebra specialisations of Hg), although this fact will not be particularly important in this paper.

Define 1-dimensional representations πi, 4 ≤ i ≤ 9, of Hg by

(π4(T0), π4(T1), π4(T2)) = (-q -1 0 , -q -1 1 , -q -1 2 ) (π5(T0), π5(T1), π5(T2)) = (q0, -q -1 1 , -q -1 2 ) (π6(T0), π6(T1), π6(T2)) = (-q -1 0 , -q -1 1 , q2) (π7(T0), π7(T1), π7(T2)) = (-q -1 0 , q1, -q -1 2 ) (π8(T0), π8(T1), π8(T2)) = (q0, q1, -q -1
2 ) (π9(T0), π9(T1), π9(T2)) = (q0, -q -1 1 , q2)

We now define 3-dimensional representations π10 and π11. These representations were constructed as modules HΥ for some right cell Υ, however since we now consider them as representations of the generic Hecke algebra Hg we will simply provide explicit matrices, from which the defining relations are easily checked. In the case π10 we require two choices of basis for our applications, and we write the resulting matrices as π10( • ; A) and π10( • ; B). In the case π11 we require three choices of basis, and we write the resulting matrices as π11( • ; A), π11( • ; B), and π11( • ; C). The third case only occurs for the specialised algebras with q0 = q1, and indeed the matrices provided for this case below only give a representation of Hg under the specialisation q0 = q1.

π10(T0; A) = -q -1 0 0 0 1 q 0 0 0 0 -q -1 0 π10(T1; A) = q 1 µ 0,1 µ 1,2 0 -q -1 1 0 0 0 -q -1 1 π10(T2; A) = -q -1 2 0 0 0 -q -1 2 0 1 0 q 2 π10(T0; B) = -q -1 0 0 0 0 -q -1 0 0 0 1 q 0 π10(T1; B) = -q -1 1 0 0 1 q 1 µ 0,1 0 0 -q -1 1 π10(T2; B) = q 2 µ 1,2 0 0 -q -1 2 0 0 0 -q -1 2 π11(T0; A) = q 0 µ 0,1 0 0 -q -1 0 0 0 1 q 0 π11(T1; A) = -q -1 1 0 0 1 q 1 0 0 0 -q -1 1 π11(T2; A) = q 2 µ 1,2 ν 0 -q -1 2 0 0 0 -q -1 2 π11(T0; B) = q 0 0 0 0 -q -1 0 0 0 1 q 0 π11(T1; B) = -q -1 1 0 0 1 q 1 µ 0,1 0 0 -q -1 1 π11(T2; B) = q 2 µ 1,2 ν ′ 0 -q -1 2 0 0 0 -q -1 2 π11(T0; C) = q 1 1 0 0 -q -1 1 0 0 1 q 1 π11(T1; C) = -q -1 1 0 0 1 q 1 1 0 0 -q -1 1 π11(T2; C) = q 2 µ 1,2 q 2 1 q -1 2 +q -2 1 q 2 0 -q -1 2 0 0 0 -q -1 2
where µi,j = qiq -1 j + q -1 i qj, and

ν = -q0q -1 1 q -1 2 + q0q1q -1 2 + q -1 0 q -1 1 q2 -q -1 0 q1q2, ν ′ = q -1 0 q1q -1 2 + q0q1q -1 2 + q -1 0 q -1 1 q2 + q0q -1 1 q2.
Similarly we define a 2-dimensional representation π12, equipped with two choices of basis, by

π12(T0; A) = -q -1 0 0 1 q 0 π12(T1; A) = q 1 µ 0,1 0 -q -1 1 π12(T2; A) = -q -1 2 0 0 -q -1 2 π12(T0; B) = q 0 µ 0,1 0 -q -1 0 π12(T1; B) = -q -1 1 0 1 q 1 π12(T2; B) = -q -1 2 0 0 -q -1 2 .
We will some times write π A i in place of πi( • ; A), and similarly for π B i and π C i .

A generic version of axiom B1

The aim of this section is to show that the representations πi defined above "generically" satisfy B1 for the cell Γi. Our first task is to define some specific elements in Hg that specialise to Kazhdan-Lusztig elements. As we have seen in Example 1.1, this can easily be done when w is the longest element of some parabolic subgroup. In this section, we extend this construction to all elements in the sets JΓ.

Let D ∈ R and w ∈ JΓ(D) where Γ ∈ Λ(D). Then either w is the longest element of some parabolic subgroup WI or it is of the form w = sts where L(s) > L(t) for all weight functions L ∈ D. In the first case we set

C(w; D) = y∈W I q -1 w qyTy
and in the second case we set C(w; D) = Tsts + q -1 s (Tts + Tst) + q -1 s q -1 t q -1 s qt Ts + q -2 s Tt + q -2 s q -1 t q -2 s qt Te. Here, the element Cw on the right-hand side is computed with respect to the parameters (r1, r2).

Proof. This is a consequence of Example 2.12 in [START_REF] Geck | Computing Kazhdan-Lusztig cells for unequal parameters[END_REF].

To D ∈ R and Γ ∈ Λ(D) we associate the set of representations Rep D (Γ) of Hg defined by

Rep D (Γ) = {πi | ∃A ∈ RD such that Γi ∈ Λ(A) and Γi ∩ Γ = ∅}.
Note that the condition Γi ∩ Γ = ∅ is equivalent to Γi ⊆ Γ by the semicontinuity conjecture. In this case we find that Rep D (Γ2) = {π2, π5, π6, π7, π10, π12}.

We prove the following theorem by explicit computations, however we note that the conceptual reason why such a result holds, at least for finite cells, is that the representations we constructed above are the natural cell modules of the specialised Hecke algebras (c.f. Section 1.3). Proof. The representations πi, the cells, the two-sided order ≤LR and the sets JΓ(D) are known explicitly. The proof of this theorem is therefore a matter of computations. Let us give some examples here. For all parameters in A1, . . . , A10, the generating set of the lowest two-sided cell Γ0 is always {w0} and we have C(w0; D) = y∈W 0 q -1 w qyTy. Next if πi is such that i = 0 then we can find parameters (r1, r2) ∈ Aj such that Γ0 ≥LR Γi and so we should have πi(C(w0; D)) = 0 for all i = 0. This is easily checked using the matrices of the representations πi. Next let us look at the case A1 ∈ R•. According to the two-sided order given in Figure 5, we should have

• πi(C(w0; A1)) = 0 for all i ∈ {3, 2, 12, 1, 9, 5, 6, 4};

• πi(C(s1s0s1s0; A1)) = 0 for all i ∈ {2, 12, 1, 9, 5, 6, 4};

• πi(C(s1s0s1; A1)) = 0 for all i ∈ {12, 1, 9, 5, 6, 4};

• πi(C(s1s2s1; A1)) = 0 for all i ∈ {1, 9, 5, 6, 4};

• πi(C(s1; A1)) = 0 for all i ∈ {9, 5, 6, 4};

• πi(C(s2s0; A1)) = 0 for all i ∈ {5, 6, 4};

• π4(C(s2; A1)) = π4(C(s0; A1)) = 0 and this can again be easily verified.

From the properties (5) and ( 6) of the sets JΓ, we see that this theorem can be interpreted as a generic version of B1.

Finite cells

In this section we construct balanced representations for each finite cell. Recall that constructing such a system requires us to associate not only a representation to each two-sided cell, but also a distinguished basis of that representation.

Theorem 5.1. Each finite two-sided cell Γ admits a representation πΓ equipped with a basis B satisfying B1-B5 with aπ Γ = ã(Γ). Moreover, in all cases where the finite cell Γ admits a cell factorisation we have cπ Γ (w; B) = ±Eu w ,vw for all w ∈ Γ.

(5.1)

Proof. For the moment exclude the cell Γ13 from consideration. For all other finite cells we take πΓ to be the cell module HΥ where Υ is any right cell contained in Γ, equipped with the natural Kazhdan-Lusztig basis. The matrices for πΓ have been computed using the CHEVIE package [START_REF] Geck | CHEVIE -A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras[END_REF][START_REF] Michel | The development version of the CHEVIE package of GAP3[END_REF] in GAP3 [START_REF] Schönert | GAP -Groups[END_REF]. For 4 ≤ i ≤ 9 we have πΓ i = πi (these representations are 1-dimensional, and hence have unique representing matrices). For i ∈ {10, 11, 12} we have the following explicit matrices:

πΓ 10 = π A 10 if (r1, r2) ∈ A2 ∪ A 2,2 ′ π B 10 if (r1, r2) ∈ A3 ∪ A6 ∪ A3,6 πΓ 11 =      π A 11 if (r1, r2) ∈ A8 π B 11 if (r1, r2) ∈ A6 ∪ A7 ∪ A6,7 π C 11 if (r1, r2) ∈ A7,8 πΓ 12 = π A 12 if (r1, r2) ∈ X π B 12 if (r1, r2) ∈ Y where X = {(r1, r2) ∈ R 2 >0 | r2 < r1, r2 < 1, r1 = 1} and Y = {(r1, r2) ∈ R 2 >0 | r2 < r1, r2 > 1} (note that if (r1, r2) ∈ A7,8 then c = a and hence π C
11 is indeed a representation). It is then immediate that B1 is satisfied. However we note that B1 also follows from Theorem 4.6 (without needing to know that the representations above are the cell modules).

Next we claim that B2 and B3 hold, with aΓ = ã(Γ) (with the latter in Table 2). The basic approach is as follows. By B1 we know that πi(Cw) = 0 whenever w / ∈ (Γi) ≥LR . Thus it is sufficient to look at those w with w ∈ (Γi) ≥LR , and by Remark 1.6 we can work with the matrices πi(Tw) instead of πi(Cw). We use the Hasse diagrams in Figure 5 to compute the set (Γi) ≥LR . In the case that (Γi) ≥LR is a union of finite cells (and hence is a finite set) we verify B2 and B3 directly by computing the matrices πi(Tw) for each w ∈ (Γi) ≥LR . For example, consider the case Γ10 with (r1, r2) ∈ A3 ∪ A6 ∪ A3,6. Then Γ ≥LR = Γ4 ∪ Γ5 ∪ Γ12 ∪ Γ10, and by computing matrices we have

max{deg[π B 10 (Tw)]i,j | 1 ≤ i, j ≤ 3}} =          0 if w ∈ Γ4 c if w ∈ Γ5 a if w ∈ Γ12 b if w ∈ Γ10.
Since a < b and c < b whenever (r1, r2) ∈ A3 ∪ A6 ∪ A3,6 the axioms B3 and B4 follow. The case (r1, r2) ∈ A2 ∪ A 2,2 ′ is similar.

More interestingly, sometimes (Γi) ≥LR contains an infinite cell. These cases are outlined below (we note that this situation did not occur in type G2; see [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]).

1) Let Γ = Γ5(r1, r2). Then Γ ≥LR contains the infinite cell Γ2 in the case (r1, r2) ∈ A 5,5 ′ . The elements of Γ2 are {u -1 0(1210

) k v | u, v ∈ {e, 1}, k ≥ 0} ∪ {u -1 2(1012) k v | u, v ∈ {e, 1}, k ≥ 0}.
For (r1, r2) ∈ A 5,5 ′ we have b = c and c > a, and thus if u, v ∈ {e, 1} we have

deg π5(u -1 2(1012) k v) = deg π5(u -1 0(1210) k v) ≤ c -2ak -bk + ck = c -2ak < c.
Thus deg π5(Tw) < c < 2ca = ãΓ 5 for all w ∈ Γ2. The analysis for the cells Γi with 6 ≤ i ≤ 9 is similar.

2) Let Γ = Γ11(r1, r2). Then Γ ≥LR contains the infinite cell Γ2 in the cases (r1, r2) ∈ A7 ∪ A8 ∪ A6,7 ∪ A7,8. In the regime (r1, r2) ∈ A7 ∪ A8 ∪ A7,8 the cell Γ2(r1, r2) admits a cell factorisation with BΓ 2 = {e, 1, 10, 101}, t2 = tΓ 2 = 1012 and w2 = wΓ 2 = 2. If (r1, r2) ∈ A6,7 we have Γ2(r1, r2) = Γ2(A7) ∪ {101}, and so we can use the cell factorisation in A7 do describe all but one element of Γ2.

Let us consider one case in detail (the remaining cases are similar). Suppose that (r1, r2) ∈ A7,8 (thus c = a and 2a < b < 3a). Let z = q 4a-2b . By diagonalising π C 11 (t2) we obtain

π C 11 (t n 2 ) = (-1) n q (-3a+b)n
-zφ n-1 (z) -q 3a-2b φn(z) -q 2a-2b φn(z)

0 q (-4a+2b)n 0 q 2a φn(z) q a φn(z) φ n+1 (z)
where φn(z) = 1z n 1z , with φ-1(z) = -z -1 . Since 4a -2b < 0 for (r1, r2) ∈ A7,8 we have

φn(z) = 1 + z + • • • + z n-1 ∈ Z[q -1 ] for n ≥ 0.
It is then a straightforward (although somewhat tedious) exercise to show that the degrees of the matrix entries of π C 11 (w) are strictly bounded by a + b for all elements w = u -1 w2t n 2 v ∈ Γ2.

3) Let Γ = Γ12(r1, r2). Then Γ ≥LR contains the infinite cell Γ1 in the case (r1, r2) ∈ A1. For (r1, r2) ∈ A1 the cell Γ1 admits a cell factorisation with BΓ 1 = {e, 0, 2, 02}, t1 = tΓ 1 = 021, and w1 = wΓ 1 = 1. We compute π A 12 (w1t 2n 1 ) = (-1) n q -2nb q a µ 0,1 0 -q -a and π A 12 (w1t 2n+1 1

) = (-1) n q -(2n+1)b -q c 0 1 q -c
.

It is then easy to compute π A 12 (Tw) for all w = u -1 w1t n 1 v with n ∈ N and u, v ∈ BΓ 1 , and the result follows. Thus B1, B2, and B3 hold for all cells Γi with 4 ≤ i ≤ 12. Moreover, these cells admit cell factorisations, and the leading matrices are easily computed directly, verifying that (5.1) holds. For the cells Γi with 4 ≤ i ≤ 9 the sign in (5.1) is easily computed (since the associated representations are 1-dimensional). In the remaining cases we have the + sign except for the case π12 with (r1, r2) ∈ A1 ∪ A2 ∪ A1,2 in which case we have thesign.

It is thus clear, from (5.1), that B4 holds. To verify B5 for the cell Γ = Γi we note that if w = u -1 wΓv then

cπ Γ (u -1 wΓu)cπ Γ (w) = ±Eu,uEu,v = ±Eu,v = ±cπ Γ (w).
This completes the analysis for the finite cells Γi with 4 ≤ i ≤ 12.

We now consider the remaining cell Γ = Γ13. This cell appears for (r1, r2) ∈ A2,3 ∪ A4,5 ∪ A7,8 ∪ A9,10 ∪ P4 ∪ P5. We first consider the cases (r1, r2) ∈ A4,5 ∪ A7,8 ∪ A9,10 ∪ P4 ∪ P5 (these are precisely the parameters with r2 ≤ r1 and r2 = 1). In these cases Γ13 = Υ1 ∪ Υ2 is a union of two right cells Υ1 = {0, 01, 010} and Υ2 = {1, 10, 101}. Let

πΓ = π5 ⊕ π7 ⊕ π B 12 .
By Theorem 4.6, we can see that πΓ satisfies B1.

Next we note that B2 and B3, with aπ Γ = a, hold by an easy direct calculation (note that Γ ≥LR = Γ4 ∪ Γ13 is finite). Moreover the leading matrices are computed directly as

cπ Γ (0) = E11 + E33 cπ Γ (01) = 2E34 cπ Γ (010) = -E11 + E33 cπ Γ (1) = E22 + E44 cπ Γ (10) = E43 cπ Γ (101) = -E22 + E44,
and hence B4 holds. Let d1, d2 ∈ Γ13 be the elements d1 = 0 and d2 = 1 (these turn out to be the Duflo involutions; see Theorem 7.8). Then the formulae above give

cπ Γ (di)cπ Γ (w) = cπ Γ (w) for all w ∈ Υi, i ∈ {1, 2},
and hence B5 holds. 

πΓ = π6 ⊕ π A cπ Γ (210) = 2E46 cπ Γ (01) = E32 + E65 cπ Γ (010) = E33 + E66 cπ Γ (012) = E64 cπ Γ (0121) = -E32 + E65 cπ Γ (01210) = -E33 + E66
and B4 follows. Let d1 = 1, d2 = 2, and d3 = 01 (again, these turn out to be the Duflo involutions; see Theorem 7.8). Then the formulae above give

c(di)c(w) = c(w) for all w ∈ Υi, i ∈ {1, 2, 3}
and hence B5 holds, completing the proof.

Infinite cells

In this section we construct balanced representations for the infinite cells Γi with i ∈ {0, 1, 2, 3} for all choices of parameters. The results of this section, along with Theorem 5.1, give the following: Theorem 6.1. For each choice of parameters (a, b, c) ∈ Z 3 >0 there exists a balanced system of cell representations (πΓ) Γ∈Λ for H with bounds aπ Γ = ã(Γ).

Proof. By Theorem 5.1 and Theorems 6.4, 6.5, 6.15, 6.16, 6.17, 6.21 and 6.22 below we have a system (πΓ) Γ∈Λ for each parameter range satisfying B1-B5 with aπ Γ = ã(Γ). Then B6 follows from the fact that ã(Γ ′ ) ≥ ã(Γ) whenever Γ ′ ≤LR Γ (see Table 2). Thus, combined with Theorem 1.7 we can compute Lusztig's a-function. In fact, we have: Corollary 6.2. Table 2 (and the discussion immediately following the table ) gives the values of Lusztig's a-function for all choices of parameters. Moreover, the conjectures P4, P9, P10, P11, and P12 hold.

Proof. It follows from Theorems 1.7 and 6.1 that Lusztig's a-function is given by Table 2. Conjectures P4, P9, P10, P11 and P12 are then easily checked using the explicit values of the a-function. In fact, due to the logical dependencies amongst the conjectures established in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Chapter 14] it is sufficient to prove P4, P10, and P12, which are obvious from the explicit values of the a-function and the explicit decomposition of W into right cells given in Figure 5. Then P10 ⇒ P9 and P4 + P9 + P10 ⇒ P11.

Of course it remains to exhibit balanced systems for the infinite cells. We undertake this rather intricate task in the present section. Let us begin by noting the following immediate consequence of Theorem 4.6. Corollary 6.3. Let i ∈ {0, 1, 2, 3}. The representation πi satisfies B1 for the cell Γi.

The lowest two-sided cell

Suppose first that c = b. It is sufficient to consider the case c < b, for if c > b one can apply the diagram automorphism σ. In the case c < b the lowest two-sided cell Γ0 admits a cell factorisation

Γ0 = {u -1 w0t λ v | u, v ∈ B0, λ ∈ Q + }
where B0 = {e, 0, 01, 012, 010, 0102, 01021, 010210}, and if w = u -1 w0t λ v is written in this form we define uw = u, vw = v, and τw = λ.

Since B0 is a fundamental domain for the action of Q on W the set B0 = {ξ0 ⊗ Xu | u ∈ B0} is a basis of M0. The proof of the following theorem is very similar to [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Section 6] with only some minor adjustments, and so we will only sketch the argument. Proof. We have already verified B1 in Corollary 6.3. To verify B2 we note that deg Q(p) ≤ max{2a + 2b, 2a + 2c} for all positively folded alcove paths, and so for c < b we have deg Q(p) ≤ 2a + 2b (see [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Lemma 6.2]). Thus B2 follows from Theorem 4.1.

Axiom B3 is verified as in [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Theorem 6.6], with one additional ingredient: If deg(Q(p)) = 2a + 2b then necessarily p has no folds on type 0-walls (for otherwise the degree is bounded by 2a + b + c < 2a + 2b). The only simple hyperplane direction available in the "box" B0 is a type 0-wall, and thus if p is a maximal path of type u -1 w0t λ v with u, v ∈ B0 then by the above observation there is no fold on this wall in the final v-part of the path (see [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Remark 6.4]). With this observation in hand the proof of [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Theorem 6.6] applies verbatim, including the calculation of the leading matrices. Linear independence of the Schur functions gives B4, and to verify B5 we note that if w ∈ Γ0 then

cπ 0 (u -1 w w0uw; B0)cπ 0 (w; B0) = s0(ζ)sτ w (ζ)Eu w ,uw Eu w ,vw = sτ w (ζ)Eu w ,vw = cπ 0 (w; B0),
and the proof is complete. Now suppose that b = c. In this case we will work in the extended affine Weyl group W and the extended affine Hecke algebra H. See Remark 4.2 for the definition of the principal series representation (π0, M0) in this case.

Let B 1/2 = {e, 0, 01, 012} be the "half box". Each element w ∈ W of the (non-extended) affine Weyl group can be written uniquely as

w = t λ v with either λ ∈ Q and v ∈ B 1/2 , or with λ ∈ P \Q and v ∈ B 1/2 σ. (6.1) 
We will work with the basis

B0 = {ξ0 ⊗ Xu | u ∈ B 1/2 ∪ B 1/2 σ}
of the module M0. Then, as in Theorem 4.1, with respect to this basis we have

[π0(Tw; B0)]u,v = {p∈P( w,u)|θ(p)=v} Q(p)ζ wt(p) , (6.2) 
where, if w = t λ v as in (6.1), then wt(w) = λ and θ(w) = v.

We have the following generalised cell factorisation: Each w ∈ Γ0 has a unique expression as

w = u -1 w0t λ v with u, v ∈ B 1/2 ∪ B 1/2 σ and λ ∈ P + . (6.3) 
If w ∈ Γ0 is written in the form (6.3) then we define uw = u, vw = v, and τw = λ. Proof. The proof is again very similar to [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Theorem 6.6]. The choice of "box" B ′ 0 = B 1/2 ∪ B 1/2 σ again implies that if p is a maximal path of type u -1 w0t λ v with u, v ∈ B ′ 0 then there are no folds in the final v-part of the path. Moreover, a slight generalisation of [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Theorem 3.4] gives

s ′ λ (X) = p∈P( w 0 • t λ ,e)
X wt(p) for λ ∈ P + , and the proof of [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Theorem 6.6] now applies verbatim.

Slices of the induced representations and folding tables

In the following sections we analyse the remaining infinite cells Γi with i ∈ {1, 2, 3}. The basic idea is to use the combinatorial description of the matrix entries from Theorem 4.3 to show that the representation πi is balanced for the cell Γi. Thus we are primarily interested in the i-folded alcove paths that attain the maximal value of deg(Qi(p)), as these are the terms that contribute to the leading matrices. However the situation is complicated by the large number of distinct parameter regimes for the cells Γi as the i-folded alcove paths that attain the maximal value of deg(Qi(p)) vary with the parameter regimes.

Therefore it is desirable to be able to work with all parameter regimes simultaneously. To achieve this we work in the generic Hecke algebra Hg. In this setting the degree of the multivariate polynomial Qi(p) (see (4.1)) is too crude for our purposes, and so we introduce a more refined statistic, which we call the exponent of Qi(p), defined as follows. Firstly, if x = (x, y, z) ∈ Z 3 then the exponent of the monomial q x := q x 1 q y 2 q z 0 is exp(q x ) = (x, y, z) ∈ Z 3 . Let denote the partial order on Z 3 with (x ′ , y ′ , z ′ ) (x, y, z) if and only if xx ′ ≥ 0, yy ′ ≥ 0, and zz ′ ≥ 0. Definition 6.6. Let p be an i-folded alcove path. Then Qi(p) has a unique monomial with exponent maximal with respect to . We denote this maximal exponent by exp(Qi(p)). Explicitly,

exp(Qi(p)) =      (f1(p) -g1(p), f2(p), f0(p)) if i = 1 (f1(p), f2(p) -g2(p), f0(p) -g0(p)) if i = 2 (f1(p), f2(p) -g2(p), f0(p) + g0(p)) if i = 3.
Note that if exp(Qi(p)) = (x, y, z) then on specialising q0 → q c , q1 → q a , q2 → q b we have Proof. We may write each u ∈ B as u = τ k i u ′ for some k ∈ Z and u ′ ∈ B ′ . We claim that

ξi ⊗ Xu = (ξi ⊗ X u ′ )ζ k .
Consider the case i = 2, 3. Then by (2.1) we have Xu = X kω 1 X u ′ , and the result follows since ξi

• X ω 1 = ξi ζ for i = 2, 3. If i = 1 then we have Xu = X k τ 1 X u ′ (
this follows from the fact that τ1 preserves the orientation of all hyperplanes except for the hyperplanes in the α1 parallelism class, and that this class is not encountered in U1). Since

ξ1 • Xτ 1 = ξ1 • X ω 1 T -1 1 = ξ1 (-q -1 1 ζ)(-q1) = ξ1 ζ the claim follows.
Thus the change of basis matrix from the B basis to the B ′ basis is a monomial matrix with entries in Z[ζ], and the lemma follows.

Thus we can define E(πi) = E(πi; B) for any fundamental domain B.

We will show below (in the course of the proof of Theorem 6.18) that the elements of E(πi) are bounded above in each component -we will assume this fact for the moment. Let M(πi) = {maximal elements of the partially ordered set (E(πi), )}. Definition 6.9. Let B be a fundamental domain for the action of τi on Ui. For x = (x, y, z) ∈ Z 3 the x-slice of πi(Tw; B) is the matrix c x π i (w; B) whose (u, v) th entry is the coefficient of

q x in [πi(Tw; B)]u,v. Thus c x π i (w; B) is a matrix with entries in Z[ζ, ζ -1 ].
The following key theorem shows that the slices c x π i (w; B) with x ∈ M(πi) are sufficient to compute leading matrices in all parameter ranges. Theorem 6.10. Let (a, b, c) be a fixed choice of parameters, and suppose that property B2 holds for πi(•, B) with bound aπ i . Suppose that xa + yb + zc ≤ aπ i for all (x, y, z) ∈ M(πi). Then

cπ i (w; B) = c x π i (w; B),
where the sum is over those x = (x, y, z) ∈ M(πi) with xa + yb + zc = aπ i .

Proof. By Theorem 4.3 the entry [cπ i (w; B)]u,v of the leading matrix cπ i (w; B) is given as a sum over paths p ∈ Pi( w; u) with deg(Qi(p)) = aπ i . Thus it suffices to show that if exp(Qi(p)) / ∈ M(πi) then, after specialising, deg(Qi(p)) < aπ i .

Suppose that p is an i-folded alcove path with exp(Qi(p)) = (x, y, z) / ∈ M(πi). Hence there is an i-folded alcove path p ′ with (x, y, z) ≺ (x ′ , y ′ , z ′ ) = exp(Qi(p ′ )) ∈ M(πi). Thus x ′x, y ′y and z ′z are all nonnegative with at least one being strictly positive. Thus (x ′x)a + (y ′y)b + (z ′z)c > 0, and so by (6.4) we have, after specialising,

deg(Qi(p)) = xa + yb + zc < x ′ a + y ′ b + z ′ c ≤ aπ i ,
and hence the result.

Thus our approach in the following sections is to compute M(πi) and the slices corresponding to these maximal exponents. In fact, the cell Γ2 turns out to be the most complicated, in part due the intricate equal parameter regime. Thus we give complete details for Γ2, and we will only state the results for the easier cells Γ1 and Γ3. Remark 6.11. The hypothesis xa + yb + zc ≤ aπ i for all (x, y, z) ∈ M(πi) in Theorem 6.10 is required because it is a priori possible that there exists and i-folded alcove path p with exp(Qi(p)) = (x, y, z) and xa + yb + zc > aπ i . The leading contributions from all such paths in Theorem 4.3 must cancel (after specialisation) for otherwise B2 is violated. While indeed cancellations can (and do) occur, it turns out that the condition xa + yb + zc > aπ i in fact never occurs. We will see this in the course of the calculations in the following sections.

We will use "folding tables" to analyse i-folded alcove paths (i ∈ {1, 2, 3}). We give a brief outline below, and we refer to [11, §7.2] for further details. Let v ∈ W i 0 and x ∈ W with reduced expression x = si 1 . . . si n . We denote by p( x, v) ∈ Pi( x, v) the unique i-folded alcove path of type x starting at v with no folds. Of course p( x, v) may still have bounces, because i-folded alcove paths are required to say in the strip Ui. Nonetheless, we refer to p( x, v) as the straight path of type x starting at v. Let Note that I -∪ I + ∪ I * = {1, . . . , n}. We define a function

ϕ v x : I -( x, v) → W i 0 × Z as follows. For k ∈ I -( x, v
) let p k be the i-folded alcove path obtained from the straight path p0 = p( x, v) by folding at the kth step (note that after performing this fold one may need to include bounces at places where the folded path p k attempts to exit the strip Ui). Let

ϕ v x (k) = the unique (u, n) ∈ W i 0 × Z such that p( x, τ n i u
) and p k agree after the kth step.

Equivalently, (u, n) is the unique pair such that end(p( x, τ n i u)) = end(p k ), and thus τ n i u is simply the end of the straight alcove path p(rev( x), end(p k )), where rev( x) is the expression x read backwards. Definition 6.12 (Folding tables, see [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]). Fix the enumeration y1, y2, y3, y4 of W i 0 with ℓ(yj) = j -1 for j = 1, . . . , 4. For each (j, k) with 1 ≤ j ≤ 4 and 1 ≤ k ≤ ℓ(x) define f j,k ( x) ∈ {-, * , 1, 2, 3, 4} by

f j,k ( x) =      -if k ∈ I + ( x, yj) * if k ∈ I * ( x, yj ) j ′ if k ∈ I -( x,
yj) and ϕ y j x = (y j ′ , n) for some n ∈ Z.

The i-folding table of x is the 4 × ℓ(x) array Fi( x) with (j, k) th entry equal to f j,k ( x). Remark 6.13. If y is a prefix of y then Fi( y) is the subarray of F( x) consisting of the first ℓ(y) columns. Also note that of course any other enumeration of W i 0 can be used in the definition.

The fundamental domain B ′ 1 is depicted in the third example in Figure 3. The region R3 = R1,2 is "non-generic", and does not admit a cell factorisation. However we have Γ2(R1,2) = Γ2(R2) ∪ {w1}.

Thus we can use cell factorisation in Γ2(R2) to describe all elements of Γ2(R1,2)\{w1}, and hence the expressions uw, vw, and τw are defined for w ∈ Γ2(R1,2)\{w1}. We extend this definition by setting uw 1 = vw 1 = 101 and τw 1 = -1.

The regions R4 = R 1,1 ′ and R5 = R 2,2 ′ may be considered "generic" in a certain sense. Indeed these cases admit a generalised cell factorisation using the extended affine Weyl group. We have

Γ2(Rj) = W ∩ {u -1 wj t k j v | u, v ∈ Bj , k ≥ 0}
where

wj = 121 if j = 4 0 if j = 5 tj = 01σ if j = 4 12σ if j = 5
and Bj = (e, 0, σ, 0σ) if j = 4 (e, 1, σ, 1σ) if j = 5.

If w = u -1 wj t k j v with u, v ∈ Bj and k ≥ 0 we write uw = u, vw = v and τw = k. Define an ordered basis Bj of M2 by

Bj = (ξ2 ⊗ Xe, ξ2 ⊗ X0, ξ2 ⊗ Xσ, ξ2 ⊗ X0σ) if j = 4 (ξ2 ⊗ X1σ, ξ2 ⊗ Xσ, ξ2 ⊗ X1, ξ2 ⊗ Xe) if j = 5.
Finally, the region R6 = P2 is truely "non-generic", and exhibits rather remarkable behaviour. Every element of Γ2\{2, 12, 212, 010} can be written in the form w = ut k ω 1 v with k ≥ 0 and u ∈ {e, 1, 21, 121} and v ∈ {e, 0, 01, 012}, and moreover every element of this form with the exception of e = et 0 ω 1 e lies in Γ2. The following indexing of the elements of Γ2 will help with the statement of the main theorem. Let (ui) = (e, 1, 21, 121) and (vj ) = (e, 0, 01, 012). Then, for k ≥ 0, we define w k i,j = uit k ω 1 vj for all (i, j) / ∈ {(1, 1), (1, 2), (2, 4)}, and

w k 1,1 = u1t k+1 ω 1 v1, w k 1,2 = u1t k+1 ω 1 v2 and w k 2,4 = 12 if k = 0 u2t k-1 ω 1 v4 if k ≥ 1. Then Γ2 = {w k i,j | 1 ≤ i, j ≤ 4, k ≥ 0} ∪ {0, 2
, 212, 010}. The main theorems of this section are the following three results. Theorem 6.15. Let (r1, r2) ∈ Rj , with j = 1, 2, 3. Then π2, equipped with the basis Bj , satisfies B1-B5 for the cell Γ2 = Γ2(r1, r2), with aπ 2 = ã(Γ2). Moreover, for j = 1, 2 the leading matrices of π2 are cπ 2 (w; Bj ) = (-1) j sτ w (ζ)Eu w ,vw for w ∈ Γ2 where s k (ζ) is the Schur function of type A1. In the case j = 3 we have, for w ∈ Γ2, Theorem 6.17. Let (r1, r2) ∈ R6. Then π2 = π2 ⊕ π5 ⊕ π6, equipped with the standard W 2 0 -basis for the π2 component, satisfies B1-B5 for the cell Γ2 = Γ2(R6). Moreover, the leading matrices are as follows (for k ≥ 0):

cπ 2 (w; B3) = f uw ,vw τw (ζ)Eu w,vw where f u,v k (ζ) =          s k (ζ) -s k-1 (ζ) if u, v = 101 s k (ζ) -s k-1 (ζ) -ζ -k-1 if u = 101 and v = 101 s k (ζ) -s k-1 (ζ) -ζ k+1 if u = 101 and v = 101 s k (ζ) -s k+1 (ζ) if u = v =
c(w k 11 ) = ζ k E41 + ζ -k-1 E43 c(w k 12 ) = (ζ k+1 + ζ -k-1 )E44 c(w k 13 ) = ζ -k-1 E41 + ζ k E43 c(w k 14 ) = (ζ k + ζ -k-1 )E42 c(w k 21 ) = ζ k E11 + ζ -k E33 c(w k 22 ) = ζ k+1 E14 + ζ -k E34 c(w k 23 ) = ζ k+1 E13 + ζ -k-1 E31 c(w k 24 ) = ζ k E12 + ζ -k E32 c(w k 31 ) = ζ k E21 + ζ -k E23 c(w k 32 ) = (ζ k+1 + ζ -k )E24 c(w k 33 ) = ζ -k-1 E21 + ζ k+1 E23 c(w k 34 ) = (ζ k+1 + ζ -k-1 )E22 c(w k 41 ) = ζ -k E13 + ζ k E31 c(w k 42 ) = ζ -k E14 + ζ k+1 E34 c(w k 43 ) = ζ -k-1 E11 + ζ k+1 E33 c(w k 44 ) = ζ -k-1 E22 + ζ k+1 E32 c(2) = E22 + E66 c(0) = E44 + E55 c(212) = E22 -E66 c(010) = E44 -E55.
The proof of the above theorems will be given towards the end of this section. We first analyse the slices of the matrices π2(Tw; W 2 0 ). This in turn requires, by Theorem 4.3, a rather detailed analysis of 2-folded alcove paths. Each w ∈ W can be written uniquely as w = ut m 2 t n 1 v with u ∈ W0, v ∈ B0, and m, n ∈ Z (where we write t1 = tω 1 and t2 = tω 2 ) and necessarily ℓ(w) = ℓ(u) + nℓ(t1) + mℓ(t2) + ℓ(v). We choose and fix the reduced expressions for each u ∈ W0, v ∈ B0, and t1, t2, which are lexicographically minimal. Thus w0 = 1212, t1 = 0121, and t2 = 010212, and the expressions v for v ∈ B0 are the prefixes of b0 = 010210, along with the element 012 (see Example 6.14). These choices give a distinguished reduced expression for each w ∈ W , namely

w = u • t m 2 • t n 1 • v
with the reduced expressions for each component chosen as above. We fix this choice throughout this section. If p is a path of type

w = u • t m 2 • t n 1 • v we write p = p0 • p 0 where p0 is of type u and p 0 is of type t m 2 • t n 1 • v. (6.5) 
To efficiently record 2-folded alcove paths we will use the notation î to denote an i-fold, and ǐ to denote an i-bounce. Thus, for example, p = 2 101 21 is a 2-folded alcove path whose second and fourth steps are 1-folds, and whose third step is a 0-bounce (for example, this is a valid 2-folded alcove path starting at 1).

The main theorems of this section will follow from the following combinatorial theorem.

Theorem 6.18. Let p be an 2-folded alcove path of type

w = u • t ℓ 2 • t k 1 • v with u ∈ W0, v ∈ B0 and k, ℓ ≥ 0 starting at u0 ∈ W 2 0 .
Then exp(Q2(p)) x for some x ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, -1, 0), (2, 0, -1)}. Moreover, the paths p with exp(Q2(p)) = x for some x ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, -1, 0), (2, 0, -1)} are precisely the paths p = p0 • p 0 with end(p0) = start(p 0 ) where p0 is listed in Table 4 and p 0 is listed in Table 5.

Proof. Write p = p0 • p 0 as in (6.5). We claim that: 1) if end(p0) = e then exp(Q2(p0)) x for some x ∈ {(1, 0, 0), (0, 1, 0), (2, -1, 0)};

2) if end(p0) = 1 then exp(Q2(p0)) x for some x ∈ {(1, 0, 0), (0, 1, 0)};

3) if end(p0) = 12 then exp(Q2(p0)) (1, 0, 0); 4) if end(p0) = 121 then exp(Q2(p0)) (0, 0, 0), and moreover, the paths where equality is attained are listed in and each of these paths has exponent bounded by some element of {(1, 0, 0), (0, 1, 0), (2, -1, 0)} with equality in the second, sixth, and seventh cases (listed in rows 2, 11 and 12 of the table ).

Let E = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, -1, 0), (2, 0, -1)}. We claim that if p = p0 • p 0 then exp(Q2(p)) x for some x ∈ E, and moreover the paths attaining equality are precisely the concatenations of paths p0 from Table 4 with paths p 0 in Table 5 with end(p0) = start(p 0 ). The proof of this claim occupies the remainder of the proof. When combining two paths it is useful to note the obvious fact that if x ′ x and y ′ y then x ′ + y ′ x + y.

The folding tables for the elements t1 = 0121 and t2 = 010212 are shown in Table 3. The following observation will be used frequently: If a pass of either the t1 or t2 table is completed on a row containing at least one * , and if no folds are made in this pass, then

exp(Q2(p 0 )) ≺ exp(Q2(p ′ )), (6.6) 
where p ′ is the path obtained from p 0 by removing this copy of t1 or t2. Thus such paths necessarily have strictly dominated exponents, and can therefore be discarded in the following analysis.

The claim follows from the following four points.

1) Suppose that start(p 0 ) = e. Since every entry of the first row of the 2-folding table for t1 is -, and since every entry of the 2-folding table of t2 is eitheror * , it is clear that exp(Q2(p 0 )) (0, 0, 0). Thus, combined with the paths from Table 4 we have exp(Q2(p)) x for some x ∈ {(1, 0, 0), (0, 1, 0), (2, -1, 0)} ⊂ E. Moreover we have equality if and only if the p 0 part has no bounce, and therefore equality holds if and only if ℓ = 0 and v ∈ {e, 0, 01, 012}, giving the paths p 0 = t k 1 • v for some k ≥ 0 and v ∈ {e, 0, 01, 012}. These paths are listed on rows 1/34, 8/37, 15/39 and 24/43 of Table 5 (it is convenient to separate the cases k > 0 and k = 0, and this is indicated by the notation i/j for the table rows).

2) Suppose that start(p 0 ) = 1. Writing p 0 = p1 • p2 where p1 is of type t ℓ 2 and p1 is of type

t k 1 • v, we have exp(Q2(p 0 )) = (0, -ℓ, -ℓ) + exp(Q2(p2)).
It is clear that exp(Q2(p2)) (1, -1, -1) or exp(Q2(p2)) (0, 0, 0) (depending on whether k > 0 and the possible fold on the 4th place of t1 is taken). Therefore exp(Q2(p 0 )) (1, -ℓ -1, -ℓ -1) or exp(Q2(p 0 )) (0, -ℓ, -ℓ).

Thus exp(Q2(p 0 )) (1, -1, -1) or exp(Q2(p 0 )) (0, 0, 0). In the first case, combining the contribution from p0 we have exp(Q2(p)) (2, -1, -1) ≺ (2, -1, 0) ∈ E or exp(Q2(p)) (1, 0, -1) ≺ (2, 0, -1) ∈ E, and so the combined path is sub-optimal. In the second case we have exp(Q2(p)) (1, 0, 0) ∈ E or exp(Q2(p)) (0, 1, 0) ∈ E, with equality if and only if k = ℓ = 0 and v = e. This (trivial) path is listed on row 35 of Table 5.

3) Suppose that start(p 0 ) = 12. We first claim that if ℓ > 0 then exp(Q2(p)) ≺ x for some x ∈ E. By the observation made in (6.6) it suffices to assume that if ℓ > 0 then a fold is made in the first pass of the t2 table. Thus the first part of the path is one of the following: Thus we may assume that ℓ = 0, and so p 0 has type t k 1 • v for some k ≥ 0 and some v ∈ B0. If k > 0 then by the observation above we may assume that a fold is made in the first pass of the t1 table. Thus the first part of the path is necessarily 01 21, which has exponent (1, 0, -1) and exits on row 1 of the folding table. Any further t1 factors will have no effect on the exponent, and the final v factor can have contribution at most (0, 0, 0), and this occurs if and only if v ∈ {e, 0, 01, 012}. Thus the paths where the minus sign comes from the fact that Q2(p) = (-q0) -1 (q1q -1 1 ) 2 has leading term -q -1 0 q 2 1 . This calculation shows that exp(Q2(p)) = (2, 0, -1) if and only if w ∈ Γ2(R1). It follows that B2 and B3 hold for the representation π2 equipped with the basis associated to B ′ 1 , with aπ 2 = 2ac. Then, by Theorem 6.10 we have cπ 2 (w; B1) = c (2,0,-1) π 2

p 0 = 01 21 • t n 1 • v for n ≥ 0 and v ∈ {e, 0, 01, 012} row x start(p 0 ) p 0 exp(Q 2 (p 0 )) wt 2 (p 0 ) θ 2 (p 0 ) conditions 1 t k 1 e t k 1 (0, 0, 0) k e k ≥ 1 2 12 01 21 • t k-1 1 (1, 0, -1) k -1 e k ≥ 1 3 121 t k-1 1 • 012 1 (1, 0, 0) -k 12 k ≥ 1 4 121 t m 1 • 0121 • t n 1 (0, 0, 1) n -m e m + n = k -1 ≥ 0 5 121 t m 1 • 0 121 • t n 1 (2, -1, 0) n -m -1 e m + n = k -1 ≥ 0 6 121 t m 1 • 01 21 • t n 1 (0, 1, 0) n -m -1 e m + n = k -1 ≥ 0 7 121 t m 1 • 012 1 • 01 21 • t n 1 (2, 0, -1) n -m -1 e m + n = k -2 ≥ 0 8 t k 1 • 0 e t k 1 • 0 (0, 0, 0) k + 1 121 k ≥ 1 9 12 01 21 • t k-1 1 • 0 (1, 0, -1) k 121 k ≥ 1 10 121 t k 1 • 0 (0, 0, 1) -k 121 k ≥ 1 11 121 t m 1 • 0121 • t n 1 • 0 (0, 0, 1) n -m + 1 121 m + n = k -1 ≥ 0 12 121 t m 1 • 0 121 • t n 1 • 0 (2, -1, 0) n -m 121 m + n = k -1 ≥ 0 13 121 t m 1 • 01 21 • t n 1 • 0 (0, 1, 0) n -m 121 m + n = k -1 ≥ 0 14 121 t m 1 • 012 1 • 01 21 • t n 1 • 0 (2, 0, -1) n -m 121 m + n = k -2 ≥ 0 15 t k 1 • 01 e t k 1 • 01 (0, 0, 0) k + 1 12 k ≥ 1 16 12 01 21 • t k-1 1 • 01 (1, 0, -1) k 12 k ≥ 1 17 121 t k 1 • 01 (0, 0, 1) -k 12 k ≥ 1 18 121 t k 1 • 0 1 (1, 0, 0) -k -1 e k ≥ 1 19 121 t k-1 1 • 012 1 • 01 (2, 0, -1) -k 12 k ≥ 1 20 121 t m 1 • 0121 • t n 1 • 01 (0, 0, 1) n -m + 1 12 m + n = k -1 ≥ 0 21 121 t m 1 • 121 • t n 1 • 01 (2, -1, 0) n -m 12 m + = k -1 ≥ 0 22 121 t m 1 • 01 21 • t n 1 • 01 (0, 1, 0) n -m 12 m + n = k -1 ≥ 0 23 121 t m 1 • 012 1 • 01 21 • t n 1 • 01 (2, 0, -1) n -m 12 m + n = k -2 ≥ 0 24 t k 1 • 012 e t k 1 • 012 (0, 0, 0) k + 1 1 k ≥ 1 25 12 01 21 • t k-1 1 • 012 (1, 0, -1) k 1 k ≥ 1 26 121 t k 1 • 01 2 (0, 1, 0) -k -1 1 k ≥ 1 27 121 t k-1 1 • 012 1 • 01 2 (2, 0, -1) -k 1 k ≥ 1 28 121 t m 1 • 0121 • t n 1 • 012 (0, 0, 1) n -m + 1 1 m + n = k -1 ≥ 0 29 121 t m 1 • 0 121 • t n 1 • 012 (2, -1, 0) n -m 1 m + n = k -1 ≥ 0 30 121 t m 1 • 01 21 • t n 1 • 012 (0, 1, 0) n -m 1 m + n = k -1 ≥ 0 31 121 t m 1 • 012 1 • 01 21 • t n 1 • 012 (2, 0, -1) n -m 1 m + n = k -2 ≥ 0 32 * t k 1 • 010 121 t k 1 • 0 10 (1, 0, 0) -k 121 k ≥ 1 33 * 121 t k-1 1 • 012 1 • 01 0 (1, 0, 0) -k -1 121 k ≥ 0 34 e e e ( 
(w; B1).

It is then clear that B4 holds (by linear independence of Schur characters), and the formula

cπ 2 (u -1 w w1uw; B1)cπ 2 (w; B1) = (-s0(ζ)Eu w,uw )(-sτ w (ζ)Eu w ,vw ) = -cπ 2 (w; B1) verifies B5.
The case (r1, r2) ∈ R2 is very similar -one first identifies the paths with exponent (0, 1, 0), and then rewrites these paths in the cell factorisation u -1 w2t N 2 v with u, v ∈ B2. Next one adjusts the start of the paths according to the fundamental domain B ′ 2 = z -1 2 B2 = {e, 1, 0, 01} (paths starting at 121 now start at 0, and those starting at 12 now start at 01). Since Q2(p) = q2q -1 2 has leading term +q2 for all such paths we finally obtain +sN (ζ).

In fact, all other cases are similar (although somewhat more complicated). For example, consider the non-generic case (r1, r2) ∈ R3, where c = 2ab and c < b. One proceeds as above, however note that on specialising the maximum value of xa + yb + zc for x ∈ M(π2) is max{a, b, c, 2ac, 2a -c} = c attained at x = (0, 0, 1) and x = (2, -1, 0). One checks, directly from Theorem 6.18, that if p is of type w with exp(Q2(p)) ∈ {(0, 0, 1), (2, -1, 0)} then w ∈ Γ2(R3). We then compute the sum of slices c (0,0,1) π 2

(w; B2) + c (2,-1,0) π 2

(w; B2), and it turns out that this sum is precisely as stated in Theorem 6.15. It follows that exp(Q2(p)) ∈ {(0, 0, 1), (2, -1, 0)} if and only if w ∈ Γ2(R3). Hence B2 and B3 hold, and Theorem 6.10 shows that the above sum of slices equals cπ 2 (w; B2). Axiom B4 readily follows. To verify axiom B5 let u0 = 101 and set du 0 = w1 and du = u -1 w2u for all u ∈ B2\{u0} (these turn out to be the Duflo involutions, see Theorem 7.8). Note that cπ 2 (du) = -Eu,u for all u ∈ B2. Then, for w ∈ Γ2(R3) we have cπ 2 (du w ; B2)cπ 2 (w; B2) = -cπ 2 (w; B2), and hence B5 holds.

We omit the details for the "generic" cases in Theorem 6.16 which involve the extended affine Weyl group -the general approach is similar to the above. Thus consider the most intricate case of all -the equal parameter case of Theorem 6.17.

In this case, quite remarkably, the maximum value of xa + yb + zc is a, attained at all x ∈ M(πi). One checks directly from Theorem 6.18 that if p is of type w with exp(Q2(p)) ∈ M(π2) then either w ∈ Γ2(R6) or p 0 is on row 32 * or 33 * . However, as explained in Remark 6.19, the paths on rows 32 * and 33 * may be discarded (as their leading terms cancel one another). We now compute the sum of all slices:

x∈M(π 2 ) c x π 2 (w; W 2 0 )

with respect to the standard basis. A rather miraculous calculation (with many cancellations occurring) shows that this sum of slices is precisely as stated in Theorem 6.17. This computation can be read immediately off the tables in Theorem 6.18, because we work in the standard basis and thus no modifications or conversions are required; however one must be rather careful with signs. For example, let us compute the sum of slices for w = w k 3,3 . We look through the tables to find all paths of type w k 3,3 = 21 Therefore, with respect to the standard basis, c (1,0,0) Thus the sum of slices is

x∈M(π 2 ) c x π 2 (w; W 2 0 ) = ζ -k-1 E2,1 + ζ k+1 E2,3.
Note the remarkable cancellations that have occurred. The remaining formulae for the sum of slices for each w = w k i,j follow very similarly. Then B2 and B3 follow for the representation π2, and it is easy to see that B2 and B3 also hold for π2. Verification of B4 for π2 is as follows (note that obviously B4 fails for π2, as cπ 2 (0) = E4,4 = cπ 2 (010)). Suppose that The proof of Theorem 6.1 is now complete. Moreover, we have explicit formulae for the leading matrices for all cells. Using these formulae we can easily verify conjecture P8.

Corollary 6.23. Conjecture P8 holds for all choices of parameters.

Proof. Suppose that x, y, z ∈ W and γ x,y,z -1 = 0. It follows that x, y, z ∈ Γ for some Γ ∈ Λ (see Theorem 1.7). Then γ x,y,z -1 is the coefficient of cπ Γ (z; BΓ) in the expansion of cπ Γ (x; BΓ)cπ Γ (y; BΓ). Suppose that Γ admits a cell factorisation.

Then by the explicit formulae from Theorem 5.1 and Section 6 we have cπ Γ (w; BΓ) = fw Eu w ,vw for some constant or Schur function fw = 0. Then cπ Γ (x; BΓ)cπ Γ (y; BΓ) = fxfyEu x ,vx Eu y ,vy = δv x ,uy fxfyEu x ,vy .

Thus if γ x,y,z -1 = 0 we have vx = uy (that is, x -1 ∼R y), and moreover uz = ux (that is, z ∼R x) and vz = vy (that is, z -1 ∼R y -1 ). Hence P8 follows in this case.

If Γ does not admit a cell factorisation then the result follows by more direct computation using the explicit formulae for the leading matrices, and we omit the easy details.

7 The asymptotic Plancherel formula

At this stage we have computed Lusztig's a-function, and proved conjectures P4, P8, P9, P10, P11, P12, and P14 (see Corollaries 3.1, 6.2, and 6.23). In this section we prove the remaining conjectures. With the exception of P15, all of these conjectures follow from a remarkable property (Theorem 7.4) of Opdam's Plancherel formula which ensures that there is a descent to an "asymptotic Plancherel formula" on Lusztig's asymptotic algebra J . This asymptotic Plancherel formula ensures that P7 holds (since we obtain an inner product on J ), and moreover allows us to prove P1 and compute the Duflo involutions. Conjectures P2, P3, P5, P6, and P13 all follow. Conjecture P15 is of a slightly different flavour, and uses an additional ingredient due to Xie [START_REF] Xie | A decomposition formula for the Kazhdan-Lusztig basis of affine Hecke algebras of rank 2[END_REF] (see Theorem 7.13).

The Plancherel formula

Since the Plancherel Theorem is inherently an analytic concept, we regard H as an algebra over C by specialising q → q for some real number q > 1 and extending scalars from Z to C. Let πi, i = 0, 1, . . . , 13 be the specialisations of the representations πi defined earlier. 2 ) defines an Hermitian inner product on H. Let h 2 = (h, h) be the ℓ 2 -norm. The algebra H acts on itself by left multiplication, and the corresponding operator norm is h = sup{ hx 2 : x ∈ H, x 2 ≤ 1}. Let H denote the completion of H with respect to this norm. Thus H is a non-commutative C * -algebra. The irreducible representations of H are the (unique) extensions of the irreducible representations of H that are continuous with respect to the ℓ 2 -operator norm, and it turns out that these are the irreducible "tempered" representations of H (see [START_REF] Opdam | On the spectral decomposition of affine Hecke algebras[END_REF]§2.7 and Corollary 6.2]). In particular, every irreducible representation of H is finite dimensional (since every irreducible representation of H has degree at most |W0|), and it follows from the general theory of traces on "liminal" C * -algebras that there exists a unique positive Borel measure µ, called the Plancherel measure, such that (see [3, §8.8])

Tr(h) = Irrep(H)
χπ(h) dµ(π) for all h ∈ H.

The Plancherel measure has been computed in general by Opdam [START_REF] Opdam | On the spectral decomposition of affine Hecke algebras[END_REF]. We now recall the explicit formulation in type C2 obtained by the second author in [19, §4.7].

Define rational functions cj (ζ), j = 0, 1, 2, 3, by

c0(ζ) = (1 -q -2a ζ -1 1 )(1 -q -2a ζ -1 1 ζ -2 2 )(1 -q -b-c ζ -1 1 ζ -1 2 )(1 + q -b+c ζ -1 1 ζ -1 2 )(1 -q -b-c ζ -1 2 )(1 + q -b+c ζ -1 2 ) (1 -ζ -1 1 )(1 -ζ -1 1 ζ -2 2 )(1 -ζ -2 1 ζ -2 2 )(1 -ζ -2 2 ) c1(ζ) = (1 + q -a-b-c ζ -1 )(1 -q -a-b+c ζ -1 )(1 + q a-b-c ζ -1 )(1 -q a-b+c ζ -1 ) (1 -ζ -2 )(1 -q 2a ζ -2 ) c2(ζ) = (1 + q -b+c ζ -1 )(1 -q -2a-b-c ζ -1 )(1 -q -2a+b+c ζ -1 ) (1 -ζ -2 )(1 -q b+c ζ -1 ) c3(ζ) = (1 -q -b-c ζ -1 )(1 + q -2a-b+c ζ -1 )(1 + q -2a+b-c ζ -1 ) (1 -ζ -2 )(1 + q b-c ζ -1 ) ,

P2.

  If d ∈ D and x, y ∈ W satisfy γ x,y,d = 0, then y = x -1 . P3. If x ∈ W then there exists a unique d ∈ D such that γ x,x -1 ,d = 0. P4. If z ′ ≤LR z then a(z ′ ) ≥ a(z). In particular the a-function is constant on two-sided cells. P5. If d ∈ D, x ∈ W , and γ x,x -1 ,d = 0, then γ x,x -1 ,d = n d = ±1. P6. If d ∈ D then d 2 = e (the identity).

  When the alcoves x and xs both belong to Ui When xs lies outside of Ui

For

  i ∈ {1, 2} let Wi = si and let W i 0 denote the set of minimal length coset representatives for cosets in Wi\W0. Define θ i (p) = ψi(θ(p)) and wt i (p) = wt(p), ωi ,

1 B (p) = 3 and θ 1 B

 11 (p) = 21. In the second example B = {e, 2, 0, 20}, and we have wt 1 B (p) = 2 and θ 1 B (p) = 0. The third figure illustrates the fundamental domain B = {12, 2, e, 0} for the action of τ2 = τ3 on U2 = U3. We have wt 2 B

A

  positive weight function L on W is completly determined by its values L(s1) = a, L(s2) = b and L(s0) = c on the set S of generators. If the triplet (a, b, c) ∈ N>0 admits a common divisor d then the algebra H defined with respect to (a, b, c) is easily seen to be isomorphic to the one defined with respect to (a/d, b/d, c/d). Therefore the Hecke algebra H defined with respect to (a, b, c) only depends on the ratios b/a and c/a, and hence also the decomposition into cells depends only on these ratios. Thus we set In this paper, many notions will depend on the choice of parameters and, as far as Kazhdan-Lusztig theory is concerned, it is equivalent to fix a weight function L, a triplet (a, b, c) ∈ N 3 or a pair (r1, r2) ∈ Q 2 . Given D ⊂ Q 2 >0 , we write • (a, b, c) ∈ D for (a, b, c) ∈ N 3 to mean (b/a, c/a) ∈ D;

  1), and P5 = (3, 1) (points). The set Q 2 >0 is so partitioned into 55 regions (20 open subsets, 27 open intervals, and 8 points). Let R be the set of all such regions and let R

Fig. 5 : 1 Corollary 3 . 1 .

 5131 Fig. 5: Decomposition of C2 into cells for r 2 ≤ r 1

Proposition 3 . 2 .

 32 Let A ∈ R• and Γ ∈ Λ(A). There exists a unique triple (x1, x2, x3) ∈ Z 3 such that ã(Γ) = x1a + x2b + x3c for all (a, b, c) ∈ A.

  Twσ for aw ∈ Rg defines an involutive automorphism of Hg. Suppose that (π, M) be a right Hg-module over a ring S = Rg[ζ ±1 1 , . . . , ζ ±1 n ], where ζ1, . . . , ζn are invertible pairwise commuting indeterminants. The diagram automorphism σ of (W, S) gives rise to a "σ-dual" representation (π σ , M) of Hg by π σ (h) = π(h σ ) σ , where the outer σ is the homomorphism of End S (M) induced by σ. This construction will allow us to concentrate on the case c ≤ b for much of what follows, with the c > b case dealt with by replacing each representation with its σ-dual.

Remark 4 . 2 .1 ) 2 = 2 1 ) m ζ n 2 .

 42222 Suppose that q0 = q2. The representation π0 can be extended to the extended affine Hecke algebra Hg as follows. Introduce an indeterminant ζ ζ1. Let M0 be the 1-dimensional right Rg[P ] module with ξ0 • X µ = ξ0 ζ µ , where if µ = mα ∨ 1 /2 + nα ∨ 2 /2 then ζ µ = (ζ 1/Let (π0, M0) be the induced right Hg module. Then the restriction of π0 to Hg agrees with the representation defined above.

Proposition 4 . 4 .

 44 For all D ∈ R, Γ ∈ Λ(D) and w ∈ JΓ(D) we have Θr 1 ,r 2 (C(w; D)) = Cw for all (r1, r2) ∈ D.

Example 4 . 5 .

 45 When D lies in R•, we get Rep D (Γi) = {πi}. Next assume that D = P2 (the equal parameter case) and that Γ = Γ2(D).

Theorem 4 . 6 .

 46 Let D ∈ R and let Γi, Γj ∈ Λ(D). We have Γi ≥LR Γj =⇒ π(C(w; D)) = 0 for all π ∈ Rep D (Γj) and w ∈ JΓ i (D).

Finally

  consider (r1, r2) ∈ A2,3. In this case Γ = Υ1 ∪ Υ2 ∪ Υ3 is a union of right cells Υ1 = {1, 10, 12, 121, 1210}, Υ2 = {2, 21, 212, 210}, and Υ3 = {01, 010, 012, 0121, 01210}. Let

Theorem 6 . 4 .

 64 Let c < b. The representation π0, equipped with the basis B0 = {ξ0 ⊗ Xu | u ∈ B0}, satisfies B1-B5 for the lowest two-sided cell Γ0, with aπ 0 = 2a + 2b. Moreover, the leading matrices of π0 are cπ 0 (w; B0) = sτ w (ζ)Eu w ,vw for w ∈ Γ0, where s λ (ζ) is the Schur function defined in (2.2).

Theorem 6 . 5 .

 65 Let c = b. The representation π0, equipped with the basis B0, satisfies B1-B5 for the lowest two-sided cell Γ0, with aπ 0 = 2a + 2b. Moreover, the leading matrices of π0 are cπ 0 (w; B0) = s ′ τw (ζ)Eu w ,vw for w ∈ Γ0, where s ′ λ (ζ) is the Schur function defined in (2.3).

. 4 ) 6 . 7 .

 467 deg(Qi(p)) = xa + yb + zc. (6Definition Let B be a fundamental domain for the action of τi on Ui. Let E(πi; B) = {x ∈ Z 3 | q x appears with nonzero coefficient in some matrix entry of πi(Tw; B) for some w ∈ W }, where B = {ξi ⊗ Xu | u ∈ B} is the basis of Mi associated to B. Lemma 6.8. If B and B ′ are fundamental domains for the action of τi on Ui then E(πi; B) = E(πi; B ′ ).

I

  -( x, v) = {k ∈ {1, . . . , n} | p( x, v) makes a negative crossing at the kth step} I + ( x, v) = {k ∈ {1, . . . , n} | p( x, v) makes a positive crossing at the kth step} I * ( x, v) = {k ∈ {1, . . . , n} | p( x, v) bounces at the kth step}.

  101, where s k (ζ) is the Schur function of type A1 and we set s-1(ζ) = 0. Theorem 6.16. Let (r1, r2) ∈ Rj with j = 4, 5. Then π2, equipped with the basis Bj , satisfies B1-B5 for the cell Γ2 = Γ2(r1, r2), with aπ 2 = ã(Γ2). Moreover the leading matrices of π2 are, for w ∈ Γ2, cπ 2 (w; Bj) = (-1) j+1 sτ w (ζ 1/2 )Eu w ,vw .

pa = 010 21 2 p b = 01 02 12 pc = 010 212 p d = 010 21 2 ,

 2 with exponents (1, -1, -2), (0, -1, 0), (1, -2, -1), and (0, 0, -1) respectively. The paths pa and pc exit on row 1 of the 2-folding table, and paths p b and pc exit on row 2 of the table. Since no positive contributions occur on the first row of any of the tables we have (using the first claim)exp(Q2(p)) (1, 0, 0) + (1, -1, -2) = (2, -1, -2) ≺ (2, -1, 0) ∈ E in the case pa, and exp(Q2(p 0 )) (1, -2, -1) + (1, 0, 0) = (2, -2, -1) ≺ (2, 0, -1) ∈ E in the case pc.The only possible positive contribution on row 2 of the folding tables comes from the 1-fold in the t1 table, however accessing this fold comes at the cost of both a 0-bounce and a 2-bounce. Hence in case p b we have either exp(Q2(p)) (0, -1, 0) + (1, 0, 0) ≺ (1, 0, 0) ∈ E or exp(Q2(p)) (1, -2, -1) + (1, 0, 0) ≺ (2, 0, -1) ∈ E, and in case p d we have either exp(Q2(p)) (0, 0, -1) + (1, 0, 0) ≺ (1, 0, 0) ∈ E or exp(Q2(p)) (1, -1, -2) + (1, 0, 0) ≺ (2, -1, 0) ∈ E. This establishes the claim.

ζ 3 cζ 3 c ( 2 2 n=0ζ

 3322 2n-k+1 E2,3 = ζ k+1 + s k-1 (ζ) E2,2n-k+2 E2,3 = s k (ζ)E2,) =ζ k + ζ -k + k-2n-k+2 E2,3 = -s k (ζ)E2,3.

w∈Γ 2 awcπ 2

 22 (w) = 0 for some aw ∈ Z (finitely many of which are nonzero). (6.7)Write a k ij = a w k ij. Consider the (1, 1)-entry of (6.7). This givesk≥0 a k 21 ζ k + k≥0 a k 43 ζ -k-1 = 0.Since each power of ζ appears at most once, we have a k 21 = a k 43 = 0 for all k ≥ 0. Similarly, by considering the (1, 2),[START_REF] Bonnafé | Semicontinuity properties of Kazhdan-Lusztig cells[END_REF][START_REF] Dixmier | C * -algebras[END_REF],[START_REF] Bonnafé | Semicontinuity properties of Kazhdan-Lusztig cells[END_REF][START_REF] Elias | The Hodge theory of Soergel bimodules[END_REF] and (2, 1) entries of (6.7) givesa k 24 = a k 23 = a k 41 = a k 22 = a k 42 = a k 31 = a k 33 = 0.The (2, 2)-entry gives as 2 + as 2 s 1 s 2 + k≥0 a k 44 ζ -k-1 + k≥0 a k 34 (ζ k+1 + ζ -k-1 ) = 0

  Now we regard ζ ∈ (C × ) 2 for the representation π0 = π ζ 0 and ζ ∈ C × for the representations πi = π ζ i with i = 1, 2, 3. Write χi for the character of πi for i = 0, 1, . . . , 13. Define an involution * on H and the canonical trace functional Tr : H → C by w∈W awTw * = w∈W aw T w -1 and Tr w∈W awTw = ae where now aw denotes complex conjugation. An induction on ℓ(v) shows that Tr(TuT * v ) = δu,v for all u, v ∈ W , and hence Tr(h1h2) = Tr(h2h1) for all h1, h2 ∈ H. It follows that (h1, h2) = Tr(h1h *

Table 4 (

 4 the * in rows 17 and 18 will be explained later).Tab. 4: Optimal p 0 partsTo establish the claim we note that the paths listed obviously have the stated exponents. One now constructs all paths p0 of type u with u ∈ W0 starting at some u0 ∈ {e, 1, 12, 121}, and verifies the claim directly. For example, the paths starting and ending at e are precisely the following: e, 1, 2, 12 , 21 , 1 21, 121 , 212 , 121 2, 1212 

	row	u	start(p 0 )	p 0	exp(Q 2 (p 0 )) end(p 0 )
	1	e	121	e	(0, 0, 0)	121
	2	1	e	1	(1, 0, 0)	e
	3	1	12	1	(1, 0, 0)	12
	4	1	12	1	(0, 0, 0)	121
	5	2	1	2	(0, 1, 0)	1
	6	12	e	1 2	(0, 1, 0)	1
	7	12	12	12	(1, 0, 0)	1
	8	21	1	21	(0, 1, 0)	e
	9	21	1	2 1	(1, 0, 0)	12
	10	21	1	21	(0, 0, 0)	121
	11	121	e	1 21	(0, 1, 0)	e
	12	121	e	121	(2, -1, 0)	e
	13	121	e	12 1	(1, 0, 0)	12
	14	121	e	121	(0, 0, 0)	121
	15	121	12	121	(1, 0, 0)	e
	16	212	1	2 12	(1, 0, 0)	1
	17 * 1212	e	12 12	(1, 0, 0)	1
	18 * 1212	e	12 1 2	(1, 0, 0)	1

  • t k ω 1 • 01. These paths are listed in Table6.

	p 0 row p 0 row start(p)	p		exp(Q 2 (p)) coeff	wt 2 (p)	θ 2 (p)	conditions
	8	15/39	1	21t k 1 01		(0, 1, 0)	+1	k + 1	12	k ≥ 0
	9	16	1	2 101 21t k-1 1	01	(2, 0, -1)	-1	k	12	k ≥ 1
	9	40	1	2 101		(2, 0, -1)	-1	0	12
	10	17/41	1	21t k 1 01		(0, 0, 1)	+1	-k	12	k ≥ 0
	10	18/42	1	21t k 1 0 1		(1, 0, 0)	+1	-k -1	e	k ≥ 0
	10	19	1	21t k-1 1	012 101	(2, 0, -1)	-1	-k	12	k ≥ 1
	10	20	1	21t m 1 0121t n 1 01	(0, 0, 1)	+1 n -m + 1	12	m + n = k -1 ≥ 0
	10	21	1	21t m 1 0 121 t n 1 01	(2, -1, 0)	-1	n -m	12	m + n = k -1 ≥ 0
	10	22	1	21t m 1 01 21t n 1 01	(0, 1, 0)	+1	n -m	12	m + n = k -1 ≥ 0
	10	23	1	21t m 1 012 101 21t n 1 01 (2, 0, -1)	-1	n -m	12	m + n = k -2 ≥ 0
						Tab. 6: Paths for w k 3,3		

⊕ π B 10 .Once again, Theorem 4.6 yields that πΓ satisfies B1. Moreover B2 and B3 hold by direct calculation with aπ Γ = a, and the leading matrices are computed ascπ Γ (1) = E22 + E55 cπ Γ (10) = E23 + E56 cπ Γ (12) = E54 cπ Γ (121) = -E22 + E55 cπ Γ (1210) = -E23 + E56 cπ Γ (2) = E11 + E44 cπ Γ (21) = 2E45 cπ Γ (212) = -E11 + E44

Example 6.14. Let ti = tω i for i = 1, 2. The 2-folding tables for the elements t1 = 0121 and t2 = 010212 are shown in Table 3, where the rows are indexed by W 2 0 in the order e, 1, 12, 121, and the t2 table excludes the final column. Note that we have appended a 0-row and 0-column to the table for convenience. The 0-row is called the "header" of the table. The folding tables for the elements v ∈ B0 are also given by these tables, because the reduced expressions for the elements of B0 are the strict prefixes of t2, along with 010210 (which is given in the t2 table by removing the penultimate column), along with 012 (which is a subexpression of t1). Tab. 3: 2-folding tables

The folding table Fi( w) can be used to compute Qi(p) for all p ∈ Pi( w, u) with u ∈ W i 0 as follows (see [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF] for more details). We begin an excursion through the table Fi( w) starting at the first cell on row ℓ(u) + 1 (the row corresponding to u ∈ W i 0 ) with a counter Z starting at Z = 1. At each step we move to a cell strictly to the right of the current cell and modify Z according to the following rules. Suppose we are currently at the N th cell of row r, and this cell contains the symbol x ∈ {-, * , 1, 2, 3, 4}. Let j ∈ {0, 1, 2} denote the header entry of the N th column.

1) If x =then we move to the (N + 1) st cell of row r and Z remains unchanged.

2) If x = * then we move to the (N + 1) st cell of row r and replace Z by Z ′ where

, or if i = 3 and j = 2 Z × q0 if i = 3 and j = 0.

3) If x = k ∈ {1, 2, 3, 4} then we have two options:

(a) we can move to the (N + 1) st cell of row r and leave Z unchanged, or (b) we can move to the (N + 1) st cell of row k and replace Z by Z × (qjq -1 j ). The set of all such excursions through the table is naturally in bijection with the set of i-folded alcove paths Pi( w, u), and the final value of the counter Z at the end of the excursion is Qi(p). Moreover, the final exiting row gives the value of θ i (p). It may help to note that cases (1), (2), (3)(a) and (3)(b) correspond to a positive crossing, bounce, negative crossing, and fold respectively.

Suppose that w = t m ω 1 • t n ω 2 where m, n ∈ N, and let u ∈ W i 0 . Then Fi( w) is the concatenation of m copies of the i-folding table of tω 1 followed by n copies of the i-folding table of tω 2 (for this observation to hold it is important that tω 1 and tω 2 are translations). Thus the process described above may be regarded as "m passes through the tω 1 table, followed by n passes through the tω 2 table" in an obvious way.

The cell Γ 2

The cell Γ2 is stable on each of the following regions:

To explain this notation, notice that R1 and R2 are open regions, and R1,2 is the boarder between these regions. Moreover, R 1,1 ′ is the boarder between the regions R1 and R 1 ′ , where R j ′ denotes the σ-dual of Rj . Similarly R 2,2 ′ if the boarder between the regions R2 and R 2 ′ . We begin by describing the cell Γ2 in each of the above regions and setting up notation for the statement of the main theorems. The cases (r1, r2) ∈ Rj with j = 1, 2 are "generic", and admit cell factorisations where

and Bj = (e, 2, 21, 210) if j = 1 (e, 1, 10, 101) if j = 2.

For each j = 1, 2 let zj ∈ Bj be such that B ′ j = {z -1 j u | u ∈ Bj} is a fundamental domain for the action of τ2 on U2 with z -1 j e on the negative side of each hyperplane separating z -1 j e from z -1 j u with u ∈ Bj . Specifically, z1 = 21 and z2 = 1.

Define an ordered basis

(starting at 21) all have exponent precisely (1, 0, -1), and when composed with an optimal p0 path we have exp(Q2(p)) = (2, 0, -1) ∈ E. These paths are listed on rows 2, 9, 16 and 25 of Table 5.

If k = 0 then p 0 has type v for some v ∈ B0. By direct observation these paths have exponent bounded by either (0, 0, 0) or (1, 0, -1). The only paths with exponent (0, 0, 0) are the empty path e and the path 01 0, and the paths with exponent (1, 0, -1) are precisely 01 and 01 2. Appended with an optimal p0 path we therefore obtain paths with exponents (1, 0, 0) and (2, 0, -1). These paths are listed on rows 36, 47, 40, and 44 of Table 5.

4) Suppose that start(p 0 ) = 121. A very similar argument to the case start(p 0 ) = 12 shows that if ℓ > 0 then exp(Q2(p)) ≺ x for some x ∈ E. Thus we may assume that ℓ = 0. Thus p 0 has type t k 1 • v for some k ≥ 0 and v ∈ B0. Since the 4th row of the 2-folding table of t1 contains no bounces, one may begin by making any number k1 ≤ k passes through the folding table with no folds.

If k1 = k then the exponent of p 0 is equal to the exponent of the v part of p 0 . The possible paths of type v, v ∈ B0, starting on row 4 are as follows: Thus when appended with an optimal p0 part we have exp(Q2(p)) = (0, 0, 0) + exp(Q2(p 0 )) x for some x ∈ E, with equality precisely in the following cases of p 0 :

These paths are listed in rows 10/38, 17/41, 18/42, 32 * /46, and 26/45 of Table 5 (the * will be explained later in Remark 6.19, and again it is convenient to split the k1 = 0 and k1 > 0 cases).

If k1 < k then we assume that the (k1 + 1)-st pass of the t1 table has a fold. The possibilities on this pass are pa = 0121 exponent (0, 0, 1), exit row 1,

pe =012 1 exponent (1, 0, 0), exit row 3.

The paths pa, p b , and pc exiting on row 1 can be followed by any number of t1 factors, and then an element v ∈ {e, 0, 01, 012} (any other elements v ∈ B0 will decrease the exponent). Thus the paths

• v with k1, k2 ≥ 0, p ′ ∈ {pa, p b , pc} and v ∈ {e, 0, 01, 012}

have exponents (0, 0, 1) for p ′ = pa, (2, -1, 0) for p ′ = p b , and (0, 1, 0) for p ′ = pc. These paths are listed in rows 4, 11, 20, 28 (for p ′ = pa), 5, 12, 21, 29 (for p ′ = p b ), and 6, 13, 22, 30 (for p ′ = pc).

Consider the path p d . If k1 + 1 < k then there are further passes through the t1 table, and by the observation above there must be a fold on the next pass. Thus p 0 starts with t k 1 1 • p d • 01 21 , which has exponent (2, -2, -1) and exits on row 1. Since (2, -2, -1) ≺ (2, 0, -1) and no positive contributions can be obtained from row 1 it follows that in fact k1 + 1 = k. Thus p 0 is of the form t k-1 1 • p d • p ′′ for some path p ′′ of type v with v ∈ B0. However it is clear that such a path has exp(Q2(p 0 )) ≺ (2, 0, -1), and so p d does not lead to any optimal paths. Consider the path pe, which exits on row 3. Suppose that k1 + 1 < k. Applying the analysis of the start(p 0 ) = 12 case we see that

• v with k1, k2 ≥ 0 and v ∈ {e, 0, 01, 012} are the only paths with exponent (1, 0, 0) + (1, 0, -1) = (2, 0, -1). These paths are listed in rows 7, 14, 23 and 31 of Table 5. If k1 + 1 = k then the paths

(listed in rows 19 and 27) are the only paths with exponent (2, 0, -1), and the paths

(listed in rows 3 and 33 * ) are the only path with exponent (1, 0, 0).

The theorem now follows by combining Tables 4 and5.

Remark 6.19. We note that the paths in rows 17 * and 18 * from Table 4, and rows 32 * and 33 * from Table 5, while giving maximal exponent paths, do not contribute to maximal exponents in matrix entries due to cancellations. Let us explain this further.

Let p0 = 12 12 and p ′ 0 = 12 1 2 be the the paths on rows 17 * and 18 * of Table 4, and suppose that p 0 is a path of type t ℓ 2 • t k 1 • v with k, l ≥ 0 and v ∈ B0, with start(p 0 ) = end(p0) = end(p ′ 0 ) = 1. Let p = p0 • p 0 and p ′ = p ′ 0 • p 0 . Note that these paths are of the same type w = 1212t ℓ 2 t k 1 v, and they have the same start and end alcove. In particular, for any fundamental domain B, after using τ2 to move the start alcove of both paths into B (if required) we have start

The combined contribution to the matrix π2(Tw; B) from these two paths is in the (u, u ′ )-entry, and it is given by

Note that the leading terms have cancelled, and hence each remaining exponent x satisfies x ≺ exp(Q2(p)). A similar comment applies to the paths on rows 32 * and 33 * from Table 5. Thus, for the purpose of computing optimal terms in matrix entries, the paths from these rows can be ignored.

The cancellations outlined above turn out to be the only "generic" cancellations of leading terms that occur for paths in the tables. However, as we see below, cancellations can and do occur after specialising, where leading terms for one maximal exponent can cancel with leading terms from another maximal exponent when the exponents lead to equal degrees on specialisation.

Corollary 6.20. We have M(π2) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, -1, 0), (2, 0, -1)}.

Proof. Let E = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, -1, 0), (2, 0, -1)}. We have shown in Theorem 6.18 that if p is a 2-folded alcove path then exp(Q2(p)) x for some x ∈ E. It then follows from Theorem 4.3 that if y is an exponent appearing with nonzero coefficient in some matrix entry of some π2(Tw; B) then y x for some x ∈ E. Thus to show that M(π2) = E it is sufficient to show that each x ∈ E does indeed appear as an exponent in some matrix entry of some matrix π2(Tw; B) (note -it is a priori not sufficient to show that there exist 2-folded alcove paths with these exponents, because it is possible for leading terms to cancel in the matrix entries). To this end we use Theorem 4.3 to see that, in the standard W 2 0 -basis, we have [π2(T1)]e,e = q1q -1 1

giving exponents (2, -1, 0) and (2, 0, -1) respectively. Thus M(π2) = E.

We can now prove Theorems 6.15-6.17.

Proof of Theorems 6.15-6.17. Consider the case (r1, r2) ∈ R1. By specialising we have that deg(Q2(p)) is bounded by each integer xa + yb + zc with (x, y, z) ∈ M(π2) (see (6.4)), and thus deg(Q2(p)) is bounded by 2ac with equality if and only if exp(Q2(p)) = (2, 0, -1). We now compute the (2, 0, -1) slice of π2(Tw).

We first find all paths with exponent (2, 0, -1). These paths are obtained by choosing a path p0 from Table 4, and p 0 from Table 5, with end(p0) = start(p 0 ) and with exponents summing to (2, 0, -1). Explicitly these paths are as follows:

1) The paths starting at e are p = p0 • p 0 with either row(p0) = 13 and row(p 0 ) ∈ {2, 9, 16, 25, 40, 44}, or row(p0) = 14 and row(p0) ∈ {7, 14, 19, 23, 27, 31}.

2) The paths starting at 1 are p = p0 • p 0 with either row(p0) = 9 and row(p 0 ) ∈ {2, 9, 16, 25, 40, 44}, or row(p0) = 10 and row(p0) ∈ {7, 14, 19, 23, 27, 31}.

3) The paths starting at 12 are p = p0 • p 0 with either row(p0) = 3 and row(p 0 ) ∈ {2, 9, 16, 25, 40, 44}, or row(p0) = 4 and row(p0) ∈ {7, 14, 19, 23, 27, 31}.

4)

The paths starting at 121 are p = p0 • p 0 with row(p0) = 1 and row(p0) ∈ {7, 14, 19, 23, 27, 31}.

Each of these paths can be rewritten in the form u -1 w1t N 1 v for some u, v ∈ B1 and N ≥ 0 (recall that t1 = 2101, and note that t1 = tω 1 = 0121). This shows that if exp(Q2(p)) = (2, 0, -1) then w ∈ Γ2(R1).

The paths above combine to give all paths of the form

Using the action of τ2 on U2 we consider the paths in point 4 to start at 0 = τ2 • 121. Then, with respect to the fundamental domain

the paths in each of the points have weights N or 2k -N , and θ 2

Thus a k 34 = 0 for all k ≥ 0 (considering the powers ζ k+1 ), and then it follows that a k 44 = 0 for all k ≥ 0 (considering the powers ζ -k-1 ) and thus as 2 + as 2 s 1 s 2 = 0. Now considering the (6, 6)-entry we have as 2as 2 s 1 s 2 = 0, and hence as 2 = as 2 s 1 s 2 = 0. Continuing in this way we see that a k ij = 0 for all i, j, k, and hence B4 holds. To verify B5, note directly from the formulae for cπ 2 (w k ij ) that cπ 2 (sj)cπ 2 (w) = cπ 2 (w) for all w in the right cell of sj (with j = 0, 1, 2)

(we note that the elements sj, j = 0, 1, 2, turn out to be the Duflo involutions, see Theorem 7.8). The proof is now complete.

The cell Γ 1

The analysis of this cell is similar to (and in fact considerably easier than) the Γ2 case.

The stable regions for Γ1 (with r2 ≤ r1) are as follows.

The regimes (r1, r2) ∈ Rj with j = 1, 2, 3 are "generic", and admit cell factorisations where [START_REF] Bonnafé | Semicontinuity properties of Kazhdan-Lusztig cells[END_REF][START_REF] Guilhot | Kazhdan-Lusztig cells in affine Weyl groups of rank 2[END_REF][START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF] if j = 2 (e, 0, 01, 010) if j = 3

If w = u -1 wj t k j v with u, v ∈ Bj and k ≥ 0 we write, as usual, uw = u, vw = v, and τw = k.

For each j = 1, 2, 3 let zj ∈ Bj be such that {z -1 j u | u ∈ Bj } is a fundamental domain for the action of τ1 on U1 with z -1 j e on the negative side of each hyperplane separating z -1 j e from z -1 j u with u ∈ Bj. Specifically, zj = 2, 12, e in the cases j = 1, 2, 3. Define an ordered basis Bj of M1 by Bj = (ξ1

The fundamental domain B ′

1 is depicted in the second example in Figure 3. The regimes R1,2 and R2,3 are "non-generic", and do not admit cell factorisations. We have

Thus we can use cell factorisation in Γ1(R1) to describe all elements of Γ1(R1,2)\{w2}, and hence the expressions uw, vw, and τw are defined for w ∈ Γ1(R1,2)\{w2}. We extend this definition by setting

Similarly we can use cell factorisation in Γ1(R2) to describe all elements of Γ1(R2,3)\{w3}, and hence the expressions uw, vw, and τw are defined for w ∈ Γ1(R2,3)\{w3}. We extend this definition by setting

The main theorem of this section is the following. To conveniently state the theorem we will write R4 = R1,2, R5 = R2,3, B4 = B1, and B5 = B2. Moreover, we let b4 = 02 and b5 = 12. Theorem 6.21. Let (r1, r2) ∈ Rj , with 1 ≤ j ≤ 5. Then π1, equipped with the basis Bj , satisfies B1-B5 for the cell Γ1 = Γ1(r1, r2), with aπ 1 = ã(Γ1). Moreover, for j = 1, 2, 3 the leading matrices of π1 are

where s k (ζ) is the Schur function of type A1. In the cases j = 4, 5 we have, for w ∈ Γ1,

with the + sign for j = 4, and thesign for j = 5, and where s-1(ζ) = 0.

Proof. The proof of Theorem 6.21 is similar to the proof of Theorem 6.15, and we will simply make some comments and omit the details. One first establishes an analogue of Theorem 6.18 using the 1-folding tables for t1 and t2 given in Table 7.

Tab. 7: 1-folding tables

In particular one shows that exp(Q1(p))

x for some x ∈ {(1, 0, 0), (0, 1, 1), (-1, 2, 0), (-1, 0, 2)}. Then, as in Corollary 6.20 we see that

Next one classifies the paths p for which exp(Q1(p)) = x for some x ∈ M(π1). Theorem 6.21 now follows as in the Γ2 case.

The cell Γ 3

Again, the analysis of this cell is similar to (and considerably easier than) the Γ2 case.

The cell Γ3 is stable in the following regions:

The parameters (r1, r2) ∈ R1 ∪ R2 are generic for the cell Γ3, and we have a cell factorisation where

and Bj = (e, 2, 21, 210) if j = 1 (e, 1, 10, 101) if j = 2.

For each j = 1, 2 let zj ∈ Bj be such that {z -1 j u | u ∈ Bj } is a fundamental domain for the action of τ2 on U2 with z -1 j e on the negative side of each hyperplane separating z -1 j e from z -1 j u with u ∈ Bj . Specifically, zj = 21, 1 in the cases j = 1, 2. Define an ordered basis Bj of M3 by Bj = (ξ1

The fundamental domain B ′ 1 is depicted in the third example of Figure 3. The regime R3 = R1,2 is non-generic for Γ3, and there is no cell factorisation. However we note that

Thus we use the cell factorisation in Γ3(R2) to describe the elements of Γ3(R3), with the extension of notation where

where s-1(ζ) = 0.

Proof. Again the proof of Theorem 6.22 is similar to the proof of Theorem 6.15, however the presence of positive contribution q +1 0 to Q3(p) from the bounces on the "top" wall of the strip U2 requires some additional arguments, which we now outline. Since the cell Γ3 only occurs in the regime r2 < r1 the key idea is to include the relation (0, 0, 1) ≺ (0, 1, 0) in the partial order on Z 3 . This turns out to be most useful in the form (0, -1, 1) ≺ (0, 0, 0) which should be interpreted as saying that the combined contribution to exponent by performing both a bounce on the top of the strip and a bounce on the bottom of the strip is negative.

The 3-folding tables of t1 and t2 are as in Table 3. Note that each row that contains at least one * entry in fact contains precisely one * in a 0-headed column and one * in a 2-headed column. This fact makes the critical observation (6.6) remain true: If a pass of either the t1 or t2 table is completed on a row containing at least one * , and if no folds are made in this pass, then we have

where p ′ is the path obtained from p by removing this copy of t1 or t2. Thus such paths necessarily have strictly dominated exponents.

Incorporating the above observations into the analysis one readily establishes an analogue of Theorem 6.18. Specifically, for each 3-folded alcove path p we have exp(Q3(p)) x for some x ∈ {((2, 0, 2), (0, 1, 1)}. Then, as in Corollary 6.20 we see that

and the paths with exp(Q3(p)) = x for some x ∈ M(π3) are easily classified. Theorem 6.22 follows. and constants Cj, j = 0, 1, 2, . . . , 8 by C0 = 1 8q 4a+4b C1 = q 2a -1 2q 2a+4b (q 2a + 1) C2 = q 2b+2c -1 2q 4a+2b (q 2b + 1)(q 2c + 1) C3 = q 2bq 2c 2q 4a+2b (q 2b + 1)(q 2c + 1) C4 = (q 2a+2b+2c -1)(q 4a+2b+2c -1) (q 2a + 1)(q 2b + 1)(q 2c + 1)(q 2a+2b + 1)(q 2a+2c + 1) C5 = (q 2a-2b-2c -1)(q 4a-2b-2c -1) (q 2a + 1)(q -2b + 1)(q -2c + 1)(q 2a-2b + 1)(q 2a-2c + 1) C6 = (q 2bq 2c )(q 2b+2c -1) (q 2a+2b + 1)(q 2a+2c + 1)(q -2a+2b + 1)(q -2a+2c + 1) C7 = (q 2a+2b-2c -1)(q 4a+2b-2c -1) (q 2a + 1)(q 2b + 1)(q -2c + 1)(q 2a+2b + 1)(q 2a-2c + 1) C8 = (q 2a-2b+2c -1)(q 4a-2b+2c -1) (q 2a + 1)(q -2b + 1)(q 2c + 1)(q 2a-2b + 1)(q 2a+2c + 1) .

The explicit formulation of the Plancherel formula for C2 from [19, §4.7] is as follows.

Theorem 7.1. If r2 ≤ r1 then

where

If r2 > r1 then the Plancherel Theorem is obtained from the < r1 formula by applying σ to all representation, constants, and c-functions. The defining regions in (χ ′′ ) σ are r2 -r1 > 2, 1 < r2 -r1 < 2, and r2 -r1 < 1.

Proof. See [19, Section 4.7] for the case r1 = r2, and [19, Section 4.4] for the case r1 = r2.

The Plancherel formula and cell decomposition

In this section we make an observation comparing the cell decomposition and the Plancherel formula in type C2. This observation was conjectured in [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF] to hold in arbitrary affine type, and here we confirm this conjecture for type C2.

It is convenient to group the representations that appear under the integral signs in the Plancherel formula into classes

The remaining representations (the "point masses") are taken to be in their own classes: Πj = {πj } for 4 ≤ j ≤ 12. For each choice (r1, r2) (with r1 = b/a and r2 = c/a as usual) let Π(r1, r2) denote the set of classes that appear with nonzero coefficient in the Plancherel formula. For example, if (r1, r2) ∈ A1 then Π(r1, r2) = {Π0, Π1, Π2, Π3, Π4, Π5, Π6, Π9, Π12}.

(7.1) Let ρ0, . . . , ρ13 denote the representations of the balanced system of cell representations constructed in Theorem 6.1.

Thus typically ρj = πj , with only the following exceptions: In equal parameters we have ρ2 = π2 ⊕ π5 ⊕ π6, for (r1, r2) ∈ {(r, 1) | r ≥ 1} we have ρ13 = π5 ⊕ π7 ⊕ π12, and for (r1, r2) ∈ A2,3 we have ρ13 = π6 ⊕ π12 ⊕ π10.

Proposition 7.2. For each choice (r1, r2) ∈ Q 2 >0 there is a well defined surjective map Ω : Π(r1, r2) → Λ(r1, r2) given by Ω(Πj) = Γj if πj is a submodule of ρj (as representations of Hg).

Moreover, on each open region Aj the map Ω is bijective.

Proof. This is by direct observation for each parameter regime. For example, consider (r1, r2) ∈ A1. In this case Π(r1, r2) is as in (7.1), and from Figure 5 we have Λ(r1, r2) = {Γ0, Γ1, Γ2, Γ3, Γ4, Γ5, Γ6, Γ9, Γ12}, and the result follows in this case.

For another example, consider (r1, r2) ∈ A2,3. Thus r1 = 1 and 0 < r2 < 1. Then Π(r1, r2) = {Π0, Π1, Π2, Π3, Π4, Π5, Π6, Π10, Π12} and Λ(r1, r2) = {Γ0, Γ1, Γ2, Γ3, Γ4, Γ5, Γ13}.

Thus Ω(Πj) = Γj for j ∈ {0, 1, 2, 3, 4, 5}, and Ω(Π6) = Ω(Π10) = Ω(Π12) = Γ13 (recall that ρ13 = π6 ⊕ π12 ⊕ π10).

As a final example, consider (r1, r2) = (1, 1) = P2 (equal parameters). In this case Π(r1, r2) = {Π0, Π1, Π2, Π4, Π5, Π6} and Λ(r1, r2) = {Γ0, Γ1, Γ2, Γ4}.

Since ρ2 = π2 ⊕ π5 ⊕ π6 we have Ω(Πj ) = Γj for j ∈ {0, 1, 4} and Ω(Π2) = Ω(Π5) = Ω(Π6) = Γ2. All remaining cases are similar.

We will sometimes write Ω(π) in place of Ω(Π) if π is a member of the class Π.

The asymptotic Plancherel formula

Each rational function f (q) = a(q)/b(q) can be written as f (q) = q -N a ′ (q -1 )/b ′ (q -1 ) with N ∈ Z where a ′ (q -1 ) and b ′ (q -1 ) are polynomials in q -1 nonvanishing at q -1 = 0. The integer N in this expression is uniquely determined, and is called the q-valuation of f , written νq(f ) = N . For example, νq((q 2 + 1)(q 3 + 1)/(q 7q + 1)) = 2.

Definition 7.3. Let Π be a class of representations appearing in the Plancherel Theorem. Consider the coefficient in the Plancherel formula of a generic character χπ with π ∈ Π as a rational function C = C(q) in q by setting q = q. The q-valuation of Π is defined to be νq(Π) = νq(C(q)). We also write νq(π) = νq(Π) for any π ∈ Π.

Recall that we have seen that Lusztig's a-function is constant on two-sided cells, and thus we may write a(Γ) for the value of a(w) for any w ∈ Γ. Moreover the values of the a-function are given in Table 2 (and the discussion immediately following the table; see Corollary 6.2). The following remarkable property of the Plancherel measure has an analogue in the finite dimensional case where the Plancherel measure is replaced by the "generic degrees" of the Hecke algebra (see [START_REF] Pfeiffer | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]Chapter 11] and [START_REF] Geck | On Iwahori-Hecke algebras with unequal parameters and Lusztig's isomorphism theorem[END_REF]).

Theorem 7.4. For each classes Π appearing the the Plancherel formula in type C2 we have νq(Π) = 2a(Ω(Π)).

Proof. If νq(f (q)) = N then we write f (q) ∼ Cq -N where C is the specialisation at q -1 = 0 of q α f (q). Thus Cq -α is the "leading term" of f (q) when f (q) is expressed as a Laurent power series in q -1 . Then we compute, directly from Theorem 7.1,

showing that νq(Π0) = 2a(Γ0) for all choices of parameters. Similarly we compute

and thus νq(Πi) = 2a(Ω(Πi)) for all i = 1, 2, 3 and all choices of parameters.

For the point masses we have

and the result follows (by comparison with Table 2). Definition 7.5. Using Theorem 7.4 we define the asymptotic Plancherel measure on Irrep(H) by dµ ′ (π) = lim q→∞ q 2a(Ω(Π)) dµ(π) for all π ∈ Π.

Theorem 7.6. For r2 ≤ r1 the asymptotic Plancherel measure is as follows. The case r2 > r1 may be obtained by applying σ. For the infinite cells we have

and for the square integrable representations we have µ ′ (π4) = 1 for all (r1, r2), and

if r2 < r1 and either r1 = 1 or r2 = 1 0 otherwise Proof. This follows directly from the computations made in the proof of Theorem 7.4.

Conjecture P1

We can now prove that P1 holds for C2, following the technique of [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF].

Theorem 7.7. Lusztig's conjecture P1 holds for C2 for all choices of parameters.

Proof. Recall that ∆(w) is defined by Pe,w = nwq -∆(w) + (strictly smaller powers of q), where nw = 0. We are required to prove that a(w) ≤ ∆(w). This is equivalent to showing that lim q→∞ q a(w) Pe,w(q) < ∞, where we write Pe,w(q) for the specialisation of Pe,w at q = q. By the Plancherel Theorem we have q a(w) Pe,w(q) = q a(w) Tr(Cw) =

Suppose that w is in the two-sided cell Γ, and hence a(w) = a(Γ). Since the representations πi satisfy B1 and B2 for their respective cell Ω(πi), it follows that the integral above is over only those classes of representations π ∈ Π ∈ Ω -1 (Γ ′ ) with Γ ≥LR Γ ′ . For each such class of representations the Plancherel measure is, by Theorem 7.4, of the form

where dµ ′ is the asymptotic Plancherel measure. Thus the integrand (with respect to the asymptotic Plancherel measure) is q a(Γ)-a(Γ ′ ) tr(cπ(w))(1+O(q -1 )). Since Γ ≥LR Γ ′ we have a(Γ ′ ) ≥ a(Γ) (by P4) and thus the power of q in the integrand is at most 0. It is clear from the explicit C2 Plancherel Theorem that the limit may be passed under the integral sign, and the result follows.

Duflo involutions and conjecture P6

In this section we compute the Duflo elements for each cell. We recall that for r2 ≤ r1 all cells admit a cell factorisation (perhaps within the extended affine Weyl group) with the exceptions

Γ13 in all cases in which this cell appears. If Γ does not admit a cell factorisation then (in the local notation of the relevant subsection 6.3-6.5)

Proof. Let n ′ w be the coefficient of q -a(w) in Pe,w. Thus w ∈ D if and only if n ′ w = 0 (and in this case n ′ w = nw). Moreover, from the asymptotic Plancherel formula we have (see the proof of Theorem 7.7)

In particular, for w ∈ Γi with 4 ≤ i ≤ 12 we have, using Theorem 5.1, n ′ w = tr(cπ i (w))dµ ′ (πi) = ±tr(Eu w ,vw )dµ ′ (πi), and thus n ′ w = 0 if and only if w ∈ {u -1 wΓ i u | u ∈ BΓ i } as claimed. For the infinite cells admitting a cell factorisation the analysis is as follows. Consider the lowest two-sided cell Γ0. If r2 = r1 then Theorem 6.4 and the asymptotic Plancherel formula give (for w ∈ Γ0)

It is well known that the Schur functions s λ (ζ) defined in equation (2.2) are orthonormal with respect to the measure

2 )| 2 dζ1dζ2, and it follows that n ′ w = 0 unless τw = 0 and uw = vw, in which case n ′ w = 1. Hence the result in this case. If r2 = r1 then the analysis is similar, since the Schur functions s ′ λ (ζ) defined in (2.3) are orthonormal with respect to the asymptotic Plancherel measure 1 8

In this case we have (see Section 6.3) We now consider the cells that do not admit cell factorisations. Consider the case Γ2 with (r1, r2) ∈ R 2 1,2 . Here we have

where w1 = 101 and w2, t2, and B2 are as above. Recall that we extend the cell factorisation in Γ2(R2) to the element w1 by setting τw 1 = -1 and uw 1 = vw 1 = 101. The asymptotic Plancherel formula, along with Theorem 6.15, gives

Since the elements s 2k (-ζ 1/2 ) are orthonormal with respect to the measure |1 + ζ -1 | 2 dζ the result follows. The first 4 cases listed at the beginning of this section are similar. Now consider the cell Γ2 in the equal parameter case. We have Ω -1 (Γ2) = Π2 ∪ Π5 ∪ Π6, and so Theorem 6.17 and the asymptotic Plancherel formula gives (for w ∈ Γ2)

where the matrices cπ 2 (w) are obtained from the matrices in Theorem 6.17 by removing the 5th and 6th rows and columns. Since T ζ k dζ = δ k,0 we obtain

if w ∈ {0, 2, 010, 212} 0 otherwise (note that 1 = w 0 21 ). Moreover, we have

For example, in the case of cπ 5 (w), the above claim follows from the fact that γ0(w) -γ1(w) -γ2(w) ≤ 1 with equality if and only if w ∈ {0, 010}, where γi(w) denotes the number of i generators appearing in any reduced expression of w (note that since the orders mij of the products sisj are even this statistic is well defined).

Putting these facts together gives

and hence the result for this cell.

Finally we consider the finite cell Γ13. There are two regimes:

The asymptotic Plancherel measure is a sum of point masses:

and thus n ′ w = 1 2 tr(cπ 13 (w)). The result follows using the formulae for the leading matrices from Theorem 5.1.

Corollary 7.9. Conjecture P6 holds for all choices of parameters.

Proof. Using the explicit descriptions in Theorem 7.8 it is clear that the elements of D are involutions.

7.6 An inner product on J and conjectures P2, P3, P5, P7 and P13

In this section we endow Lusztig's asymptotic algebra JΓ with a natural inner product inherited from the Plancherel Theorem (a kind of asymptotic Plancherel Theorem). As a consequence we obtain a proof of conjectures P2, P3, P5, P7, and P13.

Recall that we have proved in Theorem 1.7 that for each Γ ∈ Λ we have that Lusztig's asymptotic algebra is isomorphic to the Z-algebra JΓ spanned by the leading matrices {cπ Γ ,w | w ∈ Γ}. We thus identify Lusztig's asymptotic algebra with this concrete algebra, with Jw ↔ cπ Γ ,w . Define an involution * on JΓ by linearly extending J * w = J w -1 .

Theorem 7.10. Let Γ ∈ Λ. The formula

tr(g1g * 2 ) dµ ′ (π) for g1, g2 ∈ JΓ defines an inner product on JΓ with {Jw | w ∈ Γ} an orthonormal basis.

Proof. The proof is exactly as in [START_REF] Guilhot | A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters[END_REF]Theorem 8.14].

Corollary 7.11. Conjectures P2, P3, P5, P7, and P13 hold for all choices of parameters.

Proof. If x, y, z ∈ Γ then γx,y,z = JxJy, J z -1 Γ = Jy, J x -1 J z -1 Γ = JyJz, J x -1 Γ = γy,z,x, and hence P7 holds.

Conjectures P2, P3, P5, and P13 will follow easily from the following observation. By Theorem 7.8 we see that each right cell Υ contains a unique Duflo involution dΥ ∈ D. Using the explicit formulae for the leading matrices we compute directly that for all two-sided cells Γ, and all right cells Υ ⊆ Γ, we have

where the sign is independent of w (and thus depends only on dΥ). For example, if Γ admits a cell factorisation then dΥ = u -1 wΓu for some u ∈ BΓ and cπ Γ (dΥ) = ±Eu,u. For w ∈ Γ we have cΓ(w) = c Eu w ,vw for some constant or Schur function c, and thus cπ Γ (dΥ)cπ Γ (w) = ±c Eu,uEu w ,vw = ±δu,u w cπ Γ (w).

Since w ∈ Υ if and only if uw = u the result follows (note also that if w / ∈ Γ then cπ Γ (w) = 0). For the cases where Γ does not admit a cell factorisation we have in fact already verified the above formulae in most cases in the course of establishing B5 (see for example Theorem 5.1 for the cell Γ13, and the final lines in Section 6.3 for the case Γ2 with equal parameters). Consider P2. If γ x,y,d = 0 with d = dΥ then x, y, d ∈ Γ for some two-sided cell Γ. Using P7 we have γ x,y,d = γ d,x,y = J d Jx, J y -1 Γ. By (7.3) we have x ∈ Υ (otherwise J d Jx = 0 and so γ x,y,d = 0) and therefore J d Jx = ±Jx (recall that Jw ∈ JΓ is identified with cπ Γ (w)). Therefore γ x,y,d = ± Jx, J y -1 Γ, and Theorem 7.10 forces y -1 = x. Thus P2 holds. Consider P5. Note from the previous paragraph that the condition γ x,y,d = 0 forces x, d ∈ Υ for some right cell Υ and y = x -1 . Moreover, γ x,x -1 ,d = γ d,x,x -1 = J d Jx, Jx Γ where Γ is the two-sided cell containing Υ. Using (7.3) it follows that γ x,x -1 ,d = ǫ Jx, Jx Γ = ǫ for some ǫ ∈ {-1, 1} independent of x. In particular, taking x = d we have

tr(cπ Γ (d) 3 ) dµ ′ (π),

where we have used the fact that d 2 = e. However, by (7. Remark 7.12. We note that some efficiency could be gained by using the logical dependencies between the conjectures established in [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Chapter 14]. For example, P1 + P3 ⇒ P5, and P2 + P3 + P4 + P5 ⇒ P7. However we have found it instructive and illustrative to demonstrate each conjecture directly. For example, it is considerably more satisfying to see that P7 is in fact a consequence of an inner product structure on Lusztig's asymptotic algebra rather than a consequence of axioms P2, P3, P4 and P5.

Conjecture P15

In summary, using the explicit decomposition into cells, the calculation of the a-function, and the asymptotic Plancherel Theorem we have proved conjectures P1-P14 (see Corollaries 3.1, 6.2, 6.23, 7.9, 7.11 and Theorem 7.7). The remaining conjecture P15 has been proved by Xie [START_REF] Xie | A decomposition formula for the Kazhdan-Lusztig basis of affine Hecke algebras of rank 2[END_REF]Theorem 6.2] under an assumption on the a-function. We see below that this assumption is easily checked using the results of this section, and P15 follows.