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A Framework for Distributed Power Control with
Partial Channel State Information
Chao Zhang:, Samson Lasaulce:, Achal Agrawal:, and Rapha:el Visoz;

Abstract—One of the goals of this paper is to contribute to
finding distributed power control strategies which exploit, as well
as possible, the information available about the global channel
state; which may be local or noisy. A suited way of measuring
the global efficiency of a distributed power control scheme is
to use the long-term utility region. First, we provide the utility
region characterization for any power control problem for which
the utility takes the form under consideration, the channel state
is i.i.d., and the observation structure is memoryless. Second,
the corresponding theorem is exploited to construct an iterative
algorithm which provides memoryless and stationary power
control strategies. The performance of the proposed algorithm
is assessed for energy-efficient utility functions and shown to
perform much better than closest state-of-the-art solutions, with
the additional advantage of being applicable even in the presence
of arbitrary observation structures such as noisy channel gain
estimates.

I. INTRODUCTION

Many modern wireless networks tend to become distributed.
This is already the case of Wifi networks which are distributed
decision-wise; for example, each access point performs chan-
nel or band selection without the assistance of a central or
coordinating node. As another example, small cells networks,
which are envisioned to constitute one of the key components
to implement the ambitious roadmap set for 5G networks [2]
[3] [4], will need to be largely distributed; distributedness
is one way of dealing with complexity and signalling issues
induced by the large number of small base stations and mobile
stations. In this paper, we consider wireless interference net-
works that are distributed both decision-wise and information-
wise. More specifically, each transmitter has to perform a
power control or, more generally, a radio resource allocation
task by itself and by having only access to partial information
of the network state.

When inspecting the literature on distributed power control
(see e.g., [5] [6] [7]), it appears that the derived power
control schemes are effectively distributed decision-wise and
information-wise but almost always globally inefficient. A
natural and important question arises. Is this because the
considered power control scheme is not good enough or does
it stem from intrinsic limitations such as limited information
availability? To the authors’ knowledge, this question has
not been addressed formally. One of the goals of the this
paper is precisely to provide a framework that allows one to
derive the limiting performance of power control with partial
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information and therefore to be able to measure the efficiency
of a given power control scheme. To reach this goal we
resort to recent results that bridge the gap between decision
theory and information theory [8]. We exploit these results
to characterize the limiting performance in terms of long-
term utility region1, each transmitter being assumed to have
its own utility function. The performance characterization is
then exploited in a constructive manner to determine power
control strategies and more specifically one-shot decision
functions, which allow the transmitter to choose its power
based on a single observation about the global channel state.
The practical interest in designing one-shot decision power
control functions is very well motivated in the literature (see
e.g., [9] [10]); in particular, it allows the transmitter to take
quick decisions, which do not generate extra delay (e.g., due
to backhauling or non-direct inter-transmitter exchanges). To
be more concrete, if Transmitter i knows an estimate pgii of the
channel gain of the link between Transmitter i and Receiver
i, the decision function writes under the form fippgiiq. For
example, in the pioneering work on energy-efficient power
control [11] and more advanced works such as [12] [13]
the obtained distributed decision function is of the form of
a channel inversion formula fipxq “

1

x
. Remarkably, our

approach allows one to obtain decision functions which may
perform much better globally e.g., when measured in terms of
sum energy-efficiency. And more importantly, our approach
allows one to generate decision functions which take any
partial information about the channel as an argument, which is
clearly not possible by using the state-of-the-art approaches.
To provide a concrete limitation of the state-of-the-art there are
many relevant works such as [14] where the energy-efficient
power control strategies are computed from the knowledge of
the SINR (signal-noise-plus interference ratio) feedback but
there is no clue about what should be done if some arbitrary
partial information e.g., the individual channel gain gii would
be available, which shows the strong interest in the framework
proposed in this paper.

The developed approach mainly relies on two key assump-
tions: the global channel state is assumed to be i.i.d., which is
a quite common assumption; the transmit power and channel
state are assumed to be discrete. The latter assumption is less
common and is supported by several strong arguments. First,
assuming the transmit power to be discrete is of practical
interest since there exist wireless communication standards

1The utility region can be seen as a counterpart of the capacity region.
Instead of considering the ultimate performance of a code, one considers the
ultimate performance of a power control strategy.
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in which the power can only be decreased or increased by
step and in which quantized wireless channel state infor-
mation (CSI) is used (see e.g., [15] [16]). Additionally, if
the transmitter task is to perform band or channel selection,
which is a special instance of power control, the transmitter
action set is again intrinsically discrete. Second, the argument
is mathematical; it is well known from the coding theorem
literature [17] that the performance characterization for the
continuous case follows as a special case of the discrete
case. Third, quite remarkably, imposing the transmitters to
use a reduced action space may be beneficial both for the
network and individual performance; simulations provided in
this paper show that the very interesting result obtained in
[18] is in fact more general; in [18], the authors show that
binary power control may be optimal or generate a very small
performance loss compared to the continuous case. In this
respect, the authors have shown in [9] that using one-shot
decision functions which are step functions may be optimal
when the utility function is chosen to be the Shannon sum-rate.
One of the important contributions of the present work can be
seen as a generalization of such a result to arbitrary utility
functions (namely, functions that have the quite general form
assumed in this paper). At last, concerning the discretization
of the channel gains, it has to be noticed that the actual
channel gains are assumed to be continuous but the version of
the algorithm proposed in this paper that generates decision
functions uses quantized channel gains; this technical point is
discussed further in Sec. V.

This paper is structured as follows. In Sec. II, we provide the
proposed general formulation of the problem of power control
under partial information. In Sec. III, we derive the character-
ization of the best achievable performance of power control
under partial information, which amounts to characterizing the
long-term utility region; the latter being fully characterized by
its Pareto frontier. In Sec. IV, we propose one possible way of
constructing good or efficient power control strategies under
partial information. Sec. V corresponds to a detailed numerical
analysis; to facilitate comparisons, several simulation scenarios
have been chosen to mimic the closest state-of-the-art papers
as much as possible. The paper is concluded by Sec. VI, which
not only recaps some attractive features of our approach but
also some its weaknesses.

II. PROBLEM STATEMENT

The wireless system under consideration comprises K ě 2
pairs of interfering transmitters and receivers which can oper-
ate over B ě 1 non-overlapping bands. The power Transmitter
i P t1, ...,Ku allocates to band b P t1, ..., Bu is denoted by
abi , a

b
i being subject to classical power limitations: abi ď Pmax

and
B
ÿ

b“1

abi ď P , with Pmax ď P . In the setup under study,

the quantities of interest for Transmitter i to control its power
vector

ai “ pa
1
i , ..., a

B
i q (1)

are given by the channel gains of the different links between
the transmitters and receivers. The channel gain of the link
between Transmitter i P t1, ...,Ku and Receiver j P t1, ...,Ku

for band b P t1, ..., Bu is denoted by gbij “ |hbij |
2 P G.

The global channel state is then given by the following
K2´dimensional vector which comprises all channel gains:

a0 “ pg
1
11, ..., g

B
11, g

1
12, ..., g

B
12, ..., g

1
KK , ..., g

B
KKq (2)

and is assumed to follow a given probability distribution which
is denoted by ρ0.

Transmitter i, i P t1, ...,Ku, can update its power vector
ai from block to block. To update its power, each transmitter
has a certain knowledge of the global channel state, which
is called the partial information available to Transmitter i
and is represented by the signal si. Before defining si, it has
to be mentioned that for all the analytical and algorithmic
results provided in this paper, the key quantities such as
the power vector, the global channel state, and the partial
information are assumed to be discrete (this assumption has
been discussed in the introduction section). This means that:
@i P t0, 1, ...,Ku, ai P Ai with |Ai| ă 8; @i P t1, ...,Ku, si P
Si with |Si| ă 8. More specifically, the signal si is as-
sumed to be the output of a discrete memoryless channel
PpSi “ si|A0 “ a0q “ kipsi|a0q [17], where A0 and Si
represent the random variables used to model the channel state
variations and the partial information available to Transmitter
i respectively2. The full or perfect global CSI at Transmitter i
corresponds to si “ a0. The case where only perfect individual
CSI is available is given by si “ pg

1
ii, ..., g

B
ii q. The signal si

may also be a noisy estimate of pg1ii, ..., g
B
ii q: si “ ppg

1
ii, ..., pg

B
ii q.

Note that in the numerical performance analysis, the proposed
power control strategy is effectively implemented by using
discrete quantities but is tested over continuous channels
(namely, channel gains correspond to realizations of complex
Gaussian random variables i.e., Rayleigh fading is assumed).
At last, each channel gain is assumed to obey a classical block-
fading variation.

By denoting t as the block index, the purpose of Transmitter
i is to tune the power vector aiptq for block t by exploiting
its knowledge about the channel state that is, the signal siptq.
More precisely, we assume that Transmitter knows si at time
t but also the past realizations of it, namely sip1q, ..., sipt´1q,
the transmission being assumed to start at block t “ 1 and to
stop at block t “ T . In its general form, the power control
strategy of Transmitter i is a sequence of functions which is
denoted by fi “ pfi,tq1ďtďT and defined by:

fi,t : Sti ÝÑ Ai
psip1q, sip2q, ..., siptqq ÞÝÑ aiptq.

(3)

The typical power control scenario is that Transmitter i has to
implement a power control strategy which aims at maximizing
a certain performance metric called utility function in this
paper and denoted by ui. In full generality, we assume that this
maximization has to be performed in presence of constraints
(e.g., quality-of-service constraints) which are represented by
the constraint functions γ1, ..., γM , M being the number of
constraints.

2To avoid any ambiguity where there is any, we use capital letters to refer
to random processes or variables. In particular, Ai is used to represent the
random process of ai.
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The two main issues addressed in this paper are as follows.
First, we characterize the achievable performance in terms of
long-term utility region when the block or instantaneous utility
is a function of the form uipa0, a1, ..., aKq. The long-term
utility of Transmitter i is defined by:

Uipf1, ..., fKq “ lim
TÑ`8

1

T

T
ÿ

t“1

E
“

uipa0ptq, a1ptq, ..., aKptqq
‰

(4)
whenever the above limit exists. The long-term utility region
therefore formally corresponds to all the points pU1, ..., UKq P
RK that can be reached by considering all possible power
control strategies as defined by (3). The presence of the
expectation operator is required in general (it can be omitted
when a law of large numbers is applicable) since the channel is
random and every power vector is a function of it. In general
the channel is a random process A0p1q, ..., A0pT q but since
we assume the channel gains to be i.i.d., the notation can be
simplified by only using a single random variable A0. The cor-
responding probability distribution is the global channel state
distribution (as already mentioned, it is denoted by ρ0). The
second issue we want to address in this paper is to determine
power control strategies which only use the available local
information while performing as well as possible in terms

of a global utility e.g., in terms of sum-utility
K
ÿ

i“1

Ui with

ui “ log p1` SINRiq (see [18]).

III. LIMITING PERFORMANCE CHARACTERIZATION OF
POWER CONTROL WITH PARTIAL INFORMATION

While many power control schemes using partial CSI are
available in the literature, very often it is not possible to
know whether the available information is exploited optimally
by the considered power control scheme. While the problem
of optimality is in general a very important and challenging
problem, it turns out to be solvable in important scenarios
such as the scenario under investigation in this paper. Indeed,
an important message of the present work is that, under the
made assumptions, information theory tools can be used to
fully characterize the limiting theoretical performance of the
power control strategies. The two key assumptions which are
made for this are as follows: (i) The channel state a0ptq is
i.i.d.; (ii) The observation structure which defines the partial
observation si is memoryless. Assuming (i) and (ii), the
following theorem provides the utility region characterization
for any power control problem under the form specified by [8].
For the sake of clarity we will use the following notations:
a “ pa0, a1, ..., aKq and s “ ps1, ..., sKq; k stands for
the conditional probability PS|A0

, S “ pS1, ..., SKq being
the random variable used to model the vector of individ-
ual signals available to the transmitters; V is an auxiliary
variable as used in coding theorems [17] and its operational
meaning will be interpreted a little further; the notation ∆K

will refer to the unit simplex of dimension K: ∆K “
#

px1, ..., xKq P RK : @i P t1, ...,Ku, xi ě 0;
K
ÿ

i“1

xi “ 1

+

. At

last, to state the theorem which follows, we will use the

following notations: the function wλ “
K
ÿ

i“1

λiui represents the

weighted utility with λ “ pλ1, ..., λKq P ∆K ; the function
Wλ represents the expected version of the function wλ i.e.,
Wλ “ Epwλq; the function Γm represents the expected version
of the constraint function γm i.e., Γm “ Epγmq.

Theorem III.1. Define the pK ` 1q´uplet of probability
distributions

´

QλA1|S1,V
, ..., QλAK |SK ,V

, QλV

¯

as a solution of
the following optimization problem

max
PA1|S1,V ,...,PAK |SK,V ,PV

Wλ

`

PA1|S1,V , ..., PAK |SK ,V , PV
˘

(5)
s.t.@m P t1, . . . ,Mu, Γpmq

`

PA1|S1,V , ..., PAK |SK ,V , PV
˘

ě 0
(6)

where

Wλ

`

PA1|S1,V , ..., PAK |SK ,V , PV
˘

“

ÿ

a,s,v

ρ0pa0qkps|a0qPV pvq
K
ź

i“1

PAi|Si,V pai|si, vqwλpa0, a1, ..., aKq

(7)
Γpmq

`

PA1|S1,V , ..., PAK |SK ,V , PV
˘

“

ÿ

a,s,v

ρ0pa0qkps|a0qPV pvq
K
ź

i“1

PAi|Si,V pai|si, vqγmpa0, a1, ..., aKq

(8)
PV being the distribution of some auxiliary variable V P

V verifying the Markov chain V ´ pA0, A1, ..., AKq ´
pS1, ..., SKq.
Then, when T Ñ `8, the Pareto frontier U of the long-term
utility region associated with the constraints is given by:

U “

"

pU1, ..., UKq P RK : Ui “
ÿ

a,s,v

Qλpa, s, vquipa0, a1, ..., aKq

*

(9)

with Qλpa, s, vq “ ρ0pa0qkps|a0qQλV pvq
K
ź

i“1

QλAi|Si,V
pai|si, vq

and λ P ∆K .

Proof: First of all, we show that the power control strategies
of the different users f1, ..., fK intervene in the long-term
utility only through the joint probability over A0 ˆ ...ˆAK .
Therefore, characterizing the long-term utility region is equiv-
alent to characterizing the set of achievable or implementable
joint probability distributions. We have that:

Uipf1, ..., fKq (10)

“ lim
TÑ`8

1

T

T
ÿ

t“1

E ruipA0ptq, A1ptq, ..., AKptqqs (11)

“ lim
TÑ`8

1

T

T
ÿ

t“1

ÿ

a0,...,aK

Ptpa0, ..., aKquipa0, ...aKq (12)

“
ÿ

a0,...,aK

uipa0, ..., aKq lim
TÑ`8

1

T

T
ÿ

t“1

Ptpa0, ..., aKq (13)

where Ptpa0, ..., aKq is the joint probability distribution in-
duced by the power control strategy profile f1, ..., fK at time
t. Again, we denote the random process Aiptq by capital letters
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to distinguish it from its realization, denoted by ai. Therefore,
a utility µi is achievable if and only if it can be written as

µi “
ÿ

a0,a1,...,aK

Qpa0, a1, ..., aKquipa0, a1, ..., aKq (14)

and there exists a power control strategy profile pf1, ..., fKq
such that

lim
TÑ8

1

T

T
ÿ

t“1

Ptpa0, ..., aKq “ Qpa0, ..., aKq. (15)

Second, we show that the long-term utility region is nec-
essarily convex, whatever the instantaneous utility functions
under consideration. As a consequence, as indicated by (9)
the Pareto frontier can be obtained by maximizing the long-
term weighted utility Wλ. Assume that there exists a power
control strategy profile pf1, ..., fKq which allows to reach a
point pµ1, ..., µKq of the long-term utility region. Then, there
exists a joint distribution Q which is implementable. Similarly,
we consider another power control strategy profile pf 11, ..., f

1
Kq

which ensures that pµ11, ..., µ
1
Kq can be reached and that there

exists an implementable Q1. By using 100α % of the time
the strategy profile pf1, ..., fKq and 100α1 “ 100p1 ´ αq %
of the time the strategy profile pf 11, ..., f

1
Kq it follows that

the convex combination Q2 “ αQ ` α1Q1, α ` α1 “ 1,
α ě 0, α1 ě 0, is also implementable. Therefore the point
pµ1”, ..., µK”q, µi” “ αµi ` αµ1i can be attained. Note that
this argument holds in presence of the constraints defined by
(6)(8).

As the last step of the proof, we exploit the coding the-
orem of [8] which states that a joint probability distribution
Qpa0, a1, ..., aKq is implementable if and only if it writes as:

Qpaq “ ρ0pa0q
ÿ

s,v

kps|a0qPV pvq
K
ź

i“1

PAi|Si,V pai|si, vq (16)

where V is any random variable which verifies the Markov
chain V ´ pA0, A1, ..., AKq ´ pS1, ..., SKq. �

To better understand Theorem III.1 and its proof, let us
comment on it in detail.

The first comment which can be made is that the long-
term utility region Pareto frontier characterization relies on
the use of an auxiliary random variable V . The presence
of such variables is very common in coding theorems. For
example, the capacity region of degraded broadcast channels
is parameterized by auxiliary variables; for one transmitter and
two receivers, only one auxiliary variable suffices. In the latter
case, the auxiliary variable can be interpreted for instance
as a degree of freedom the transmitter has for allocating
the available resource between the two receivers [17]. In
general, auxiliary random variables have to be considered as
parameters which allow one to describe a set of points and
thus constitute, before all, a purely mathematical tool. Their
operational meaning is generally given by the achievability
part of the coding theorem. As far as Theorem III.1 is
concerned, the achievability part mainly corresponds to the
general coding theorem given in [8]. In a power control
setting, V may be seen as a coordination random variable
or a lottery which allows one to generate a coordination

key. To be more concrete, consider a single-band interference
channel with two transmitters and two receivers. The idea is
to exchange a coordination key offline and which consists
of a sequence of realizations vp1q, ..., vpT q of a (Bernouilli)
binary random variable: V „ Bpτq, τ P r0, 1s. Then, online,
a possible rule for the transmitters might be as follows: if
vptq “ 1, Transmitter 1 transmits and if vptq “ 0, Transmitter
2 transmits. We see that in this simple example, V would
act as a time-sharing variable which would allow to manage
interference even if the transmitters have no knowledge at all
about the channel (i.e., si “ const.). Then, by optimizing
the Bernoulli probability τ , one can obtain better performance
than transmitting at full (or constant) power. Note that the
full power operation point would be obtained by applying the
iterative water-filling algorithm (IWFA) (see e.g. [19] [20]) to
a single-band interference network where each Transmitter i
wants to maximize its utility ui “ logp1 ` SINRiq, SINRi

being the SINR at Receiver i.
The second comment we would like to make on Theorem

III.1 is that the achievable utility region can be described only
by its Pareto frontier. This result follows from the fact that
the long-term utility region is convex, as shown throughout
the proof. This explains the presence of the vector λ. The
vector allows one to move along the Pareto frontier U.

The third comment we will make here is that the power
control strategy only intervenes in the long-term utility through
its average behavior i.e., in terms of conditional probability
PAi|Si,U that is, the (conditional) frequency at which a given
power vector ai is used. Optimality of a given power con-
trol strategy under partial information is only related to the
frequencies at which the possible transmit power levels are
used.

The fourth comment concerns the alphabet V lies in, namely
V. Indeed, it is possible to cover all the feasible utility region
by choosing appropriately the possible range for |V| i.e., by
following the next theorem. In general, to cover all the feasible
utility region, the range for |V| has to vary in an interval which
is specified in Theorem III.1. Considering larger values for |V|
would not bring any performance gain.

Theorem III.2. (Cardinality of V) The set of implementable
distributions Q (as defined per Theorem III.1) can be reached
by considering the possible auxiliary random variables V P V
with:

|V| ď |A| ¨ |S| ´ 1 (17)

where |A| “
K
ź

i“0

|Ai| and |S| “
K
ź

i“1

|Si|.

Proof: The proof is based on the following lemma (see [21]
[22]).
Support Lemma. Let X be a finite set and V be an arbitrary
set. Let P be a connected compact subset of probability
distributions on X and ppx|vq P P, indexed by v P V, be
a collection of (conditional) pmfs on X. Suppose that ηjpπq,
j “ 1, ..., d, are real-valued continuous functions of π P P.
Then for every V „ F pvq defined on V, there exists a
random variable V 1 „ ppv1q with |V1| ď d and a collection of
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conditional probability distributions ppx|v1q P P, indexed by
v1 P V1, such that for j “ 1, ..., d,

ż

V

ηjpppx|vqqdF pvq “
ÿ

v1PV1

ηjpppx|v
1qqppv1q. (18)

We now show how this lemma is used to bound the car-
dinality of auxiliary random variables. Suppose X “ A ˆ

S, which refers to the joint action and joint state (ob-
servation) profiles. The corresponding P will be a con-
nected compact subset of probability distributions on A ˆ

S and ppa1, ..., aK , s1, ..., sK |vq P P, indexed by v P

V, will be a collection of (conditional) pmfs on A ¨

S. Note that the product distribution
K
ź

i“1

PAi|Si,V ppi|si, vq

constitutes a special form of the general probability
PA1,...,AK |S1,...,SK ,V pa1, ..., aK |s1, ..., sK , vq, which itself can
be rewritten as:

PA1,...,AK |S1,...,SK ,V pa1, ..., aK |s1, ..., sK , vq

“
PA1,...,AK ,S1,...,SK |V pa1, ..., aK , s1, ..., sK |vq

PS1,...,SK |V ps1, ..., sK |vq

(19)

Hence,
K
ź

i“1

PAi|Si,V pai|si, vq can be expressed by π P P.

Denoting by jq the ratio of j over K, consider the following
|A| ´ 1 continuous functions on P:

ηjpπq “
πpjq

i“jq`K
ÿ

i“jq`1

πpiq

j “ 1, ..., |A| ˆ |S| ´ 1. (20)

Clearly, these |A|ˆ|S|´1 functions are continuous. According
to the support lemma, for every V „ PV pvq defined on V,
for the distribution Qpaq, there exist a V 1 „ PV 1pv

1q with
|V1| ď |A| ¨ |S| ´ 1 such that

Qpaq “ ρ0pa0q
ÿ

s,v

kps|a0qPV pvq
K
ź

i“1

PAi|Si,V pai|si, vq

“ ρ0pa0q
ÿ

s,v1

kps|a0qPV 1pv1q
K
ź

i“1

PAi|Si,V 1pai|si, v
1q.

(21)

Remark. In general, the auxiliary random variable is re-
quired to describe the long-term utility region for the problem
of power control under consideration. However, there are
special cases where choosing V to be a singleton set does
not induce any performance loss. For example, if there are
no constraints and if one wants to operate at the Pareto
frontier of the utility region, it can be checked that the
aforementioned choice is optimal. But more generally, if there
are communication constraints (such as QoS constraints) or if
one considers feasible points which are also (Nash/correlated)
equilibrium points, the auxiliary variable is required. This
would be typically the case for selfish power control under
a minimum communication rate constraint.

IV. PROPOSED POWER CONTROL STRATEGIES

Just as the problem of designing multiuser channel codes,
knowing the capacity region, there is no general recipe to
find power control schemes which allows one to operate
arbitrarily close to a point of the utility region established
through Theorem III.1. Therefore, to be able to provide
practical power control schemes, we propose to focus on
a special class of power control schemes. We will restrict
our attention to memoryless and stationary power control
strategies, which amounts to finding good one-shot decision
functions. A strategy is memoryless in the sense that it does
not exploit the past realizations of the signal si; it is therefore a
sequence of functions which writes as fi,tpsiptqq. Additionally,
we assume it is stationary which means that the function
fi,t does not depend on time, which ultimately means that a
power control strategy boils down to a single decision function
say f i; the latter function will be referred to as a decision
function. In fact, considering that the power level, vector, or
matrix of a transmitter only depends on the current realization
of the channel, and this in a stationary manner, is a very
common and practical scenario in the wireless literature [9].
As advocated by recent works (see e.g., [23] for the MIMO
case), the problem of finding one-shot decision functions with
partial information and which perform well in terms of global
performance is still a challenging problem. Remarkably, one
of our observations is that Theorem III.1 can be exploited
in a constructive way, that is, it can be exploited to find good
decision functions. This is precisely the purpose of this section.

The key observation we make is as follows. The functional
Wλ is a multilinear function of its arguments which are con-
ditional probability distributions PA1|S1,V , ..., PAK |SK ,V , PV .
When the constraints defined by (6)(8) are not active,Wλ is
multilinear, its maximum points are on the vertices of the unit
simplex [24]. The important consequence of this is that optimal
condition probabilities boil down to functions ai “ fipsi, vq,
i P t1, ...,Ku. The key idea is to solve the corresponding
optimization problem to determine these functions and use
them as candidates for power control decision functions. This
is why we will denote these functions by f i, i P t1, ...,Ku.
Finding a low-complexity numerical technique to determine
the optimal functions is left as a challenging extension of
the present work. Instead, here we propose a suboptimal
optimization technique which has a lower complexity and
relies on the use of the sequential best-response dynamics (see
e.g., [7] [25]).

To apply the sequential best-response dynamics to Wλ, we
rewrite it by isolating the sum w.r.t. si i.e., the observation of
Transmitter i:

Wλ

“
ÿ

a0,s,v

ρ0pa0qkps|a0qPV pvqwλpa0, f1ps1, vq, ..., fKpsK , vqq

“
ÿ

a0,si,v

ρ0pa0qkipsi|a0qPV pvq
ÿ

s´i

k´ips´i|a0qˆ

wλpa0, f1ps1, vq, ..., fKpsK , vqq
(22)
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where: s´i “ ps1, ..., si´1, si`1, ..., sKq represents the vector
comprising all observations of the transmitters other than
Transmitter i; the condition probability k´i is given by

k´ips´i|a0q “
ÿ

si

kps|a0q. (23)

To describe the proposed iterative algorithm, it is convenient
to introduce the following auxiliary quantity:

ωpsi, ai, vq “
ÿ

a0

«

ρ0pa0qkipsi|a0q
ÿ

s´i

k´ips´i|a0q ˆ wλpa0,

f1ps1, vq, ..., f i´1psi´1, vq, ai, f i`1psi`1, vq, ..., fKpsK , vqqq
‰

.
(24)

The sequential best-response dynamics procedure consists in
updating one variable at a time, the variables being the
decision functions here. Denoting an algorithm iteration as
iter, the auxiliary quantity ω at iteration iter writes as:

ωiterpsi, ai, vq

“
ÿ

a0

«

ρ0pa0qkipsi|a0q
ÿ

s´i

k´ips´i|a0q ˆ wλpa0, f
iter

1 ps1, vq,

..., f
iter

i´1psi´1, vq, ai, f
iter´1

i`1 psi`1, vq, ..., f
iter´1

K psK , vqqq
ı

.

(25)
By assuming the knowledge of the utility function wλ, the

alphabets A0,A1, ...,AK , S1, ..., SK , the probability distribu-
tion of the channel ρ0, the observed signals k, and an initial
choice for the decision functions f

init

1 , ..., f
init

K , Algorithm 1
can be implemented offline. The proposed algorithm would
typically be implemented offline, whereas the obtained deci-
sion functions are designed to be exploited online. Therefore,
even though the decision function determination operation
requires the knowledge of the different alphabets, the channel
statistics, the observation signal statistics, and the initial deci-
sion functions, Transmitter i only needs si and possibly v to
tune (online) its power vector. Typically, the former operation
might be performed offline by a base station while the online
operations would be executed by the transmitters.

A classical issue is to know whether this iterative algorithm
converges. For clarity, we state the following convergence
result under the form of a proposition.

Proposition IV.1. Algorithm 1 always converges.

Proof: The result can be proved by induction or by calling
for an exact potential game property [26]. Indeed, since the
underlying game is a strategic-form game with a common
utility Wλ, it is trivially an exact potential game, which ensures
convergence.�

Obviously, there is no guarantee for global optimality and
only local maximum points for Wλ are reached in general
by implementing Algorithm 1. Quantifying the optimality gap
is known to be a non-trivial issue related to the problem of
determining a tight bound of the price of anarchy [7] [27]. Two
comments can be made. First, if the algorithm is initialized by
the best state-of-the-art decision functions, then it will lead to
new decision functions which perform at least as well as the
initial functions. Second, many simulations performed for a
large variety of scenarios have shown that the optimality gap

inputs : @i P t0, ...,Ku, Ai; @i P t1, ...,Ku, Si
wλ, ρ0, k
@i P t1, ...,Ku, f

init

i

outputs: @i P t1, ...,Ku, f‹i

Initialization: f
0

i “ f
init

i , iter “ 0

while Di : f
iter´1

i ´ f
iter

i ě ε AND iter ď itermax

OR iter “ 0 do
iter “ iter` 1;

foreach i P t1, . . . ,Ku do
foreach si P Si do

f
iter

i psi, vq “ arg max
ai

ωiter
i psi, ai, vq using

(25);

end
end

end
Final update: @i P t1, ...,Ku, f

‹

i “ f
iter

i

Algorithm 1: Proposed decentralized algorithm for finding
decision functions for the transmitters

seems to be relatively small for classical utility functions used
in the power control literature.

V. NUMERICAL PERFORMANCE ANALYSIS

In this section, unless explicitly mentioned otherwise, our
attention will be dedicated to energy-efficient power control.
The reason for this is twofold. First, the problem of rate-
efficient power control (for which it is typically assumed that
ui “ logp1` SNRiq) has been largely addressed in the litera-
ture, albeit almost always in presence of perfect individual
CSI. Second, designing energy-efficient communications is
becoming a more and more important issue in real wireless
systems. The assumed sum-utility function is the one used e.g,
in [28] [33] [34] and the references therein:

wEEpa0, a1, ..., aKq “
K
ÿ

i“1

R0 ˆ ψpSINRiq

ai ` P0
(26)

where R0 is the raw data rate (in bit/s) and ψ is a
function which represents the net data rate. The function ψ
might represent the packet success rate (see e.g., [29] where
ψpxq “ p1 ´ e´xqM , M ě 1 being the packet length), the
complementary of the outage probability (see e.g., [30] where
ψpxq “ e´

c
x , c ą 0 being a constant related to spectral

efficiency), or the Shannon spectral efficiency (see e.g., [14]
[31] [32] where ψpxq “ logp1` xq). The raw data rate is the
same as [14], i.e., R0 “ 1 Mbit/s. At last, the constant P0

represents the power consumed by the transmitter when the
radiated power is zero. For instance, in [33] it may represent
the computation power, the circuit power, or the base station
power consumption as in [34] [35].
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To implement Algorithm 1, quantized channel gains are
used. To obtain the channel gain alphabet G in which each
channel gain gbij “ |h

b
ij | lies, we apply a maximum entropy

quantizer [36] to the modulus of hbij , the real and imaginary
parts of hbij being Rayleigh distributed. Also we will assume
that V “ const and γm “ 0. At the end of this section,
however, we shall provide numerical results to get a bit more
insights about the choice of the auxiliary variable V , knowing
that the proper design of the coordination key is an interesting
issue which is left as an extension of this paper.

A. Influence of the channel estimation quality of the individual
CSI on the shape of decision functions

In this subsection, the cardinality of G is set to 15: |G| “ 15.
For the ease of exposition, we shall choose the reference
scenario given by the following choices for the model pa-
rameters: K “ 2, B “ 1, σ2 “ 10 mW, Pmax “ 100 mW,

Epgiiq “ 1, for j ‰ i, 10 log10

ˆ

Epgiiq
Epgjiq

˙

“ 5 dB, Ai “
"

0,
Pmax

|P| ´ 1
,

2Pmax

|P| ´ 1
, ..., Pmax

*

for the power level alphabet

with |P| “ 75, γm “ 0 and R0 “ 1 Mbit/s (or 1 MHz). We
assume that Transmitter i, i P t1, ...,Ku has some imperfect
knowledge about the individual CSI i.e., si “ pgii. To obtain
the channel gain estimate pgii we consider a noisy version of
the actual (continuous) channel gain with rgii “ gii ` zi (zi
being an AWGN) and apply the aforementioned quantization
operation to obtain pgii. This defines a certain estimation SNR
(ESNR) which is given by:

ESNRi “
Erg2iis

Erppgii ´ giiq2s
. (27)

Fig. 1 represents the decision function f ipsiq provided by
Algorithm 1 for various values of ESNR while maximizing
the sum-energy-efficiency, with equal weights for individual

utilities, i.e. @i P t1, ...,Ku, λi “
1

K
. For this figure we

assume that ψpxq “ e´
c
x , c “ 1, and P0 “ 0. At least two

very interesting practical insights can be extracted from the
figure. First, when perfect individual CSI is available (i.e.,
when ESNR Ñ 8), the optimal decision function naturally
exhibits a threshold below which the transmitter should not
transmit. This is very interesting since, to our knowledge, no
paper on energy-efficient power control (at least in the sense
as defined as in the present paper) has exhibited the need
for a threshold, and this, in the absence of QoS constraints.
This also allows one to make an interesting connection with
[9] where the sum-rate maximization is obtained with a
thresholding technique and by merely using binary power
control; our results shows that this is more general and applies
to other utility functions. Second, we see that, when only noisy
estimation are available for the direct channel gain gii, the
optimal decision functions comprises some piecewise constant
parts. This shows, in particular, that not all available transmit
power levels are exploited to maximize the average sum-
energy-efficiency. Indeed, here 75 levels are available but it
is seen e.g., that when ESNR “ 6 dB only some of them
are exploited on the plot represented here. This situation may

be referred to as a ”cooling effect” since less and less power
levels are exploited as the ESNR decreases (in connection
with the literature of learning when the chosen action consists
of a tradeoff between exploration and exploitation -see e.g.,
[7]). Indeed, when the estimation noise is stronger (ESNR “ 0
dB) this cooling effect on the decision function is completely
apparent since only one transmit power level is exploited. In
this respect, Fig. 2 represents the decision functions provided
Algorithm 1 when ψpxq “ log2p1 ` xq and P0 “ 10 mW
(as chosen in [14]). Interestingly, the cooling effect appears
again and even in the absence of estimation noise, showing
it is strongly related to the utility function form. Of the key
messages our study conveys is that the best global performance
may still be obtained even after reducing the possible choices
in terms of transmit power levels. Having reduced action
spaces may be very attractive in terms of computational
complexity but also for measuring or sensing accurately the
activity of the transmitters of interest.

0 1 2 3 4

s
i

0

5

10

15

a
i (

m
W

)

Fig. 1: When the estimation noise level increases only some of
the available transmit power levels are exploited to maximize
sum-energy-efficiency (namely, by using Algorithm 1) here
with ψpxq “ e´

c
x and P0 “ 0. In connection with the

literature [7] on learning we refer to this effect as a cooling
effect.

B. Influence of the available CSI on the achievable long-term
utility region

Another type of precious information which is currently
not available in the literature is the utility region for the
problem of power control under partial information. Indeed,
the knowledge of the long-term utility region is instrumental
since it allows the best performance of the system to be
fully characterized. In particular, any proposed power control
scheme can be represented on the utility region and therefore,
assessed in terms of efficiency. Again, for ease of exposition,
we assume two transmitter-receiver pairs (K “ 2), which
means that the utility region can be represented in a plane
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Fig. 2: The cooling effect observed for the previous figure is
confirmed when considering other definitions for the energy-
efficiency-based utility function (here with ψpxq “ log2p1`xq
and P0 “ 10 mW). In fact, it may also occur even in the
absence of estimation noise.

but the proposed framework is valid for any value of K ě 2.

Additionally, we choose 10 log10

ˆ

Epgiiq
Epgjiq

˙

“ 0 dB (j ‰ i)

to better illustrate the influence of the different channels. The
other system configurations are the same as Sec. V-A.

Fig. 3 represents the Pareto-frontier of the long-term utility
region (thus in the pU1, U2q plane) for the same scenarios
as in the previous subsection. This allows one to see the
impact of the individual channel gain quality in terms of
achievable utility. The outer curve is obtained by assuming
perfect individual CSI at the transmitters (si “ gii) and
using exhaustive search, which means that the curve represents
exactly the best performance achievable under the considered
partial information; interestingly, almost the same curve has
been obtained by using Algorithm 1, which indicates that the
corresponding optimality loss is negligible here. The other
curves are obtained with the different values of ESNR consid-
ered for Fig. 1 (namely, ESNR P t0, 6,`8u dB) and using
Algorithm 1. This result brings new insights w.r.t. existing
works since it allows one to quantify the impact of the channel
estimation quality on the final performance of the resource
allocation policy i.e., when measured in terms of energy-
efficiency. In the scenario, the cost of imperfect knowledge
in terms of individual CSI is seen to be approximately 25%
when the estimates are very noisy (namely ESNR “ 0 dB).

From here on, we assume no estimation noise and rather
assess the influence of partial information in terms of what
channel gains is known. We define four information sce-
narios: 1. Perfect global CSI: si “ pg11, g12, g21, g22q; 2.
Perfect direct CSI si “ pg11, g22q; 3. Perfect local CSI
si “ pgii, gjiq, j ‰ i; 4. Perfect individual CSI: si “ gii.
Fig. 4 represents the Pareto-frontier of the long-term utility
region (always in the pU1, U2q plane) for these four scenarios.

Several useful observations can be made. First, moving from
individual to local CSI does only bring a very marginal
improvement in terms of energy-efficiency. On the other hand,
knowing all the direct channels is definitely very useful for
reaching good global performance. Third, the loss induced by
not having global CSI is clearly assessed here and might be
found to be acceptable. However, note that for the sake of
representation, we assume two transmitter-receiver pair here.
For more users, these conclusions would need to be refined.
Further, we provide simulations for more typical number of
users and assess the performance under these conditions.

0 10 20 30 40

EE of user 1 [Mbits/J]

0

5

10

15

20

25

30

35

40

E
E

 o
f 

u
s
e

r 
2

 [
M

b
it
s
/J

]

Fig. 3: Interestingly, the loss induced by having noisy individ-
ual channel gain estimates instead of perfect estimates is seen
to be reasonable even when the estimates are very noisy.

C. Comparison between Algorithm 1 and the state-of-the-art

Here (see Fig. 5), we consider a more general and generic
wireless scenario namely, a small cell network (see e.g. [36]
[37]) for which the interaction between K “ 9 neighboring
cells is studied. The communication scenario is the same as
the one considered in [36]. In this model, the path loss effects
for the link ij are denoted by Epgsijq and is inversely pro-
portional to the distance between Transmitter i and Receiver

j. More precisely, Epgsijq “
ˆ

d0
dij

˙2

where dij denotes the

aforementioned distance and d0 “ 5 m is a normalization
factor. All small base stations are considered to be in the center
of their own cells, whereas the mobile stations MS1, ...,MS9

have been chosen to have the following normalized coordi-
nates : p3.8, 3.2q, p7.9, 1.4q, p10.2, 0.7q, p2.3, 5.9q, p6.6, 5.9q,
p14.1, 9.3q, p1.8, 10.6q, p7.1, 14.6q, p12.5, 10.7q. One can ob-
tain the real coordinates for the mobile stations by scaling

these coordinates by a multiplying factor of
ISD

d0
, where

ISD denotes the inter-site distance. The choices made for the
parameter values are almost the same as in [14] except for
the SNR which is set here to a value that is more suitable for
small cell networks (namely, SNR “ 30 dB). More precisely:
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Fig. 4: Here, the knowledge is assumed to be partial but
perfect. While knowing the cross channel gains is seen to bring
very marginal improvement, the knowledge of direct channels
allows one to bridge a quite good fraction of the gap between
the individual CSI and global CSI scenarios.

K “ 9, S “ 1, Pmax “ 10 dBW, σ2 “ 10 dBm, P0 “ 10
dBm, |P| “ 2000 with uniform power increment, |G| “ 6.

For Fig. 6, it is assumed that ψpxq “ 1´ e´x whereas, for
Fig. 7 ψpxq “ log2p1 ` xq is assumed. Both figures repre-
sent the sum-energy-efficiency against the inter-site distance
namely, the distance between two small base stations. Three
curves are represented. The top curve corresponds to the team
power control provided by Algorithm 1. The curve in the
middle depicts the performance for the cooperative solution
derived by Zappone et al on [14]. At last, the bottom curve
corresponds to the non-cooperative solution which is described
e.g., in [14]. For both choices of ψ, the gain brought by using
Algorithm 1 is seen to be very significant. Note that here we
assume perfect individual CSI, which makes the comparison
with the closest state-of-the-art technique possible. However,
note that the power control schemes in [14] have not been
designed to deal with noisy estimates or an arbitrary partial
knowledge about the global CSI, as opposed to Algorithm 1
that can always be used even in these complex scenarios.

D. Additional simulations

To conclude the simulation section, we first want to know
more about the importance of the choice of auxiliary variable,
which allows one to generate suitable coordination keys. To
this effect, we consider a simple scenario (K “ 2) and the
sum-rate as the performance criterion. More precisely, we
assume a multiple access channel (MAC) scenario, which is a
special case of the interference channel scenario. The channel
between Transmitter i and Receiver i is denoted by gi and the

SBS1 SBS2 SBS3

SBS4 SBS5 SBS6

SBS7 SBS8 SBS9

MS1

MS2 MS3

MS4 MS5

MS6

MS7

MS8

MS9

Cell size: d ˆ d

Inter-site distance: d

d

Interference

Fig. 5: Assumed small cell scenario for Sec. V-C.
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Algorithm 1

Cooperative power control of Zappone et al [14]

Non-cooperative power control of Zappone et al [14]

Fig. 6: Comparison of Algorithm 1 with state-of-the-art power
control schemes for ψpxq “ 1´e´x for the scenario of Fig. 5
(namely, with K “ 9 users.)

sum-rate is defined as

uSRMACpa1, . . . , aK ; g1, . . . , gKq “
K
ÿ

i“1

log2

˜

1`
giai

σ2 `
ř

j‰k gjaj

¸

.

(28)
All the alphabets are considered to be binary with Pi P
t0, Pmaxu, gi P t0.3, 1u and V P tV1, V2u. The probability
for each channel realization is half, namely, for i P t1, 2u,
Prpgi “ 0.3q “ Prpgi “ 1q “ 50%. For the QoS constraints,
we considered the asymmetric case where u1 ě 0.45 ˆ
K
ÿ

k“1

log2p1` SNRq and u2 ě 0.15ˆ
K
ÿ

k“1

log2p1` SNRq with



10

15 20 25 30 35

Inter-site distance [m]

50

100

150

200

250

300

S
u

m
-E

E
 [

M
b

it
s
/J

]

Algorithm 1

Cooperative power control of Zappone et al [14]
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Fig. 7: Comparison of Algorithm 1 with state-of-the-art power
control schemes for ψpxq “ log2p1 ` xq for the scenario of
Fig. 5 (namely, with K “ 9 users.)

SNR “
Pmax

σ2
. For maximizing the utility sum-rate for K “ 2

transmitters, Fig. 8 represents the sum-rate against the SNR
for three different cases: without auxiliary variable (bottom
curve), with a uniformly distributed auxiliary variable (middle
curve), and with the optimally distributed auxiliary variable
(top curve). The figure shows that having a coordination key
can effectively improve the performance; the improvement is
especially apparent at high SNR regime where, unsurprisingly,
coordination plays a more important role. Obtained gains are
appreciable since they can be obtained quite easily. Indeed,
exchanging offline a sequence of binary realizations of a
Bernouilli variable is perfectly doable when designing a real
wireless system.

Another interesting case to consider is the multi-band MAC
scenario, which has been treated in [29]. We consider the
sum-energy-efficiency utility and compare it with the scheme
derived in [29]. For this, we assume K “ 3 users, 2 possible
operating bands, and ψpxq “ p1´e´xq100. The other parame-
ters are: Pmax “ 10 dBW, σ2 “ 10 dBm, P0 “ 0, |P| “ 2000
with uniform power increment, |G| “ 6. Fig. 9 shows the
sum-rate performance against the average link quality Epgiq
for the scheme obtained from Algorithm 1 and the scheme
proposed in [29]. The performance gain is appreciable even

for a quite small ratio
K

B
; indeed, the sum-utility performance

is improved by more than three times. Moreover, it is has
been observed for other simulations that the gain is even
more significant when the load per band increases, e.g., in
the scenario K “ 9, B “ 2.

VI. CONCLUSION

To summarize in a concise way what the proposed approach
brings w.r.t. the state-of-the-art and what its limitations are, we
propose to describe its strengths and weaknesses under a list
form.

0 5 10 15 20

SNR [dB]

0

1

2

3

4

5

6

S
u
m

-r
a
te

 [
b
p
s
/H

z
]

When V has the best probability distribution

When V has a uniform distribution

When V=constant

Fig. 8: Considering the sum-rate utility for K “ 2 with quality
of service constraints, it is seen that exchanging a coordination
key offline (and built from a lottery given by the random
auxiliary variable V ) brings a non-negligible improvement,
especially at high SNR and regarding the underlying ease of
implementation.
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Algorithm 1

Non-cooperative power allocation of Meshkati et al [29]

Fig. 9: For multi-band MAC and typical values for the channel
gain mean (Epgiq ě 0.1), the proposed power control scheme
is shown to provide a significant performance gain over the
technique proposed in [29].

Strong features of our approach
§ In contrast with the state-of-the-art, by making a fruitful
connection between power control and information theory, our
approach allows one to characterize the best performance a set
of transmitters can achieve in terms of power control under
partial information. In particular, this allows one to measure
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the efficiency of any proposed power control scheme.
§ Both the limiting performance analysis and the proposed
algorithm work for a broad class of utility functions and not
only for a specific utility function as often assumed in the
literature.
§ Both the limiting performance analysis and the proposed al-
gorithm work for a broad class of partial observation structures
and not only for a very specific observation structure as often
assumed in the literature. For instance, the vast majority of
power control and radio resource allocation schemes (see e.g.,
[9] [14] [19] [20] [38] [39]) makes information assumptions
such as perfect individual or global CSI but does not allow
one to deal with noisy estimation or other arbitrary partial
and perfect information.
Limitations of our approach
§ Although assuming the power control actions and network
state to be discrete does not constitute a limitation for the limit-
ing performance analysis since the continuous case follows by
specialization (namely, as a limiting case of the discrete case
as done for classical coding theorems), it typically involves
some complexity limitations for the proposed algorithm. The
proposed algorithm corresponds to one possible numerical
solution to determine good power control functions, however
finding low complexity numerical routines constitutes a very
relevant issue to be explored.
§ Both the limiting performance analysis and the pro-
posed algorithm assume utility functions under the form
uipa0, a1, ..., aKq when a0 corresponds to the realizations of
an i.i.d. random process pA0,tqtě1 and the partial information
available to Transmitter i (namely, si) is the output of dis-
crete memoryless channel. In this paper, the channel state is
assumed to be i.i.d. which is a common and very well accepted
assumption. If the state or the observation structure happens to
be with memory, the derived results would not hold anymore.
They would need to be generalized. This would be necessary
for instance, for a Markovian state.
§ As many related papers, the proposed algorithm provides
power control functions under a numerical form but not in an
analytical form. However, the obtained numerical results may
be used as a source of inspiration to propose relevant classes
of functions which are suited to the considered setup. Thresh-
olding, saturation, steps, scaling are examples of operations
which may be exhibited and used.
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