Weizhu Bao 
  
Émi Carles 
email: remi.carles@math.cnrs.fr
  
AND Su § Chunmei 
  
Qinglin Tang 
email: qinglintang@scu.edu.cn
  
ERROR ESTIMATES OF A REGULARIZED FINITE DIFFERENCE METHOD FOR THE LOGARITHMIC SCHR ÖDINGER EQUATION *

Keywords: Logarithmic Schrödinger equation, logarithmic nonlinearity, regularized logarithmic Schrödinger equation, semi-implicit finite difference method, error estimates, convergence rate AMS subject classifications. 35Q40, 35Q55, 65M15, 81Q05

We present a regularized finite difference method for the logarithmic Schrödinger equation (LogSE) and establish its error bound. Due to the blow-up of the logarithmic nonlinearity, i.e. ln ρ → -∞ when ρ → 0 + with ρ = |u| 2 being the density and u being the complex-valued wave function or order parameter, there are significant difficulties in designing numerical methods and establishing their error bounds for the LogSE. In order to suppress the round-off error and to avoid blow-up, a regularized logarithmic Schrödinger equation (RLogSE) is proposed with a small regularization parameter 0 < ε ≪ 1 and linear convergence is established between the solutions of RLogSE and LogSE in term of ε. Then a semi-implicit finite difference method is presented for discretizing the RLogSE and error estimates are established in terms of the mesh size h and time step τ as well as the small regularization parameter ε. Finally numerical results are reported to confirm our error bounds.

1. Introduction. We consider the logarithmic Schrödinger equation (LogSE) which arises in a model of nonlinear wave mechanics (cf. [START_REF] Bia Lynicki-Birula | Nonlinear wave mechanics[END_REF]), (1.1) i∂ t u(x, t) + ∆u(x, t) = λu(x, t) ln(|u(x, t)| 2 ), x ∈ Ω, t > 0, u(x, 0) = u 0 (x), x ∈ Ω, where t is time, x ∈ R d (d = 1, 2, 3) is the spatial coordinate, λ ∈ R\{0} measures the force of the nonlinear interaction, u := u(x, t) ∈ C is the dimensionless wave function or order parameter and Ω = R d or Ω ⊂ R d is a bounded domain with homogeneous Dirichlet or periodic boundary condition 1 fixed on the boundary. It admits applications to quantum mechanics [START_REF] Bia Lynicki-Birula | Nonlinear wave mechanics[END_REF][START_REF] Gaussons | Solitons of the logarithmic Schrödinger equation[END_REF], quantum optics [START_REF] Buljan | Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media[END_REF][START_REF] Krolikowski | Unified model for partially coherent solitons in logaritmically nonlinear media[END_REF], nuclear physics [START_REF] Hefter | Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics[END_REF], transport and diffusion phenomena [START_REF] Hansson | Propagation of partially coherent solitons in saturable logarithmic media: A comparative analysis[END_REF][START_REF] Martino | Logarithmic Schrödinger-like equation as a model for magma transport[END_REF], open quantum systems [START_REF] Hernandez | General properties of Gausson-conserving descriptions of quantal damped motion[END_REF][START_REF] Yasue | Quantum mechanics of nonconservative systems[END_REF], effective quantum gravity [START_REF] Zloshchastiev | Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences[END_REF], theory of superfluidity and Bose-Einstein condensation [START_REF] Avdeenkov | Quantum bose liquids with logarithmic nonlinearity: Self-sustainability and emergence of spatial extent[END_REF].

The logarithmic Schrödinger equation enjoys three conservation laws, mass, momentum and energy [START_REF]Semilinear Schrödinger equations[END_REF][START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF], like in the case of the nonlinear Schrödinger equation with a power-like nonlinearity (e.g. cubic):

M (t) : = u(•, t) 2 L 2 (Ω) = Ω |u(x, t)| 2 dx ≡ Ω |u 0 (x)| 2 dx = M (0), P (t) 
: = Im Ω u(x, t)∇u(x, t)dx ≡ Im Ω u 0 (x)∇u 0 (x)dx = P (0), t ≥ 0,

E(t) : = Ω |∇u(x, t)| 2 dx + λF (|u(x, t)| 2 ) dx ≡ Ω |∇u 0 (x)| 2 + λF (|u 0 (x)| 2 ) dx = E(0), (1.2) 
where Im f and f denote the imaginary part and complex conjugate of f , respectively, and

(1.3) F (ρ) = ρ 0 ln(s)ds = ρ ln ρ -ρ, ρ ≥ 0.
On a mathematical level, the logarithmic nonlinearity possesses several features that make it quite different from more standard nonlinear Schrödinger equations. First, the nonlinearity is not locally Lipschitz continuous because of the behavior of the logarithm function at the origin. Note that in view of numerical simulation, this singularity of the "nonlinear potential" λ ln(|u(x, t)| 2 ) makes the choice of a discretization quite delicate. The second aspect is that whichever the sign of λ, the nonlinear potential energy in E has no definite sign. In fact, whether the nonlinearity is repulsive/attractive (or defocusing/focusing) depends on both λ and the value of the density ρ := ρ(x, t) = |u(x, t)| 2 . When λ > 0, then the nonlinearity λρ ln ρ is repulsive when ρ > 1; and respectively, it is attractive when 0 < ρ < 1. On the other hand, when λ < 0, then the nonlinearity λρ ln ρ is attractive when ρ > 1; and respectively, it is repulsive when 0 < ρ < 1. Therefore, solving the Cauchy problem for (1.1) is not a trivial issue, and constructing solutions which are defined for all time requires some work; see [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF][START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF][START_REF] Guerrero | Global H 1 solvability of the 3D logarithmic Schrödinger equation[END_REF]. Essentially, the outcome is that if u 0 belongs to (a subset of) H 1 (Ω), (1.1) has a unique, global solution, regardless of the space dimension d (see also Theorem 2.2 below).

Next, the large time behavior reveals new phenomena. A first remark suggests that nonlinear effects are weak. Indeed, unlike what happens in the case of a homogeneous nonlinearity (classically of the form λ|u| p u), replacing u with ku (k ∈ C \ {0}) in (1.1) has only little effect, since we have i∂ t (ku) + ∆(ku) = λku ln |ku| 2 -λ(ln |k| 2 )ku .

The scaling factor thus corresponds to a purely time-dependent gauge transform: ku(x, t)e -itλ ln |k| 2 solves (1.1) (with initial datum ku 0 ). In particular, the size of the initial datum does not influence the dynamics of the solution. In spite of this property which is reminiscent of linear equations, nonlinear effects are stronger in (1.1) than in, say, cubic Schrödinger equations in several respects. For Ω = R d , it was established in [START_REF] Cazenave | Stable solutions of the logarithmic Schrödinger equation[END_REF] that in the case λ < 0, no solution is dispersive (not even for small data, in view of the above remark), while if λ > 0, the results from [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] show that every solution disperses, at a faster rate than for the linear equation.

In view of the gauge invariance of the nonlinearity, for Ω = R d , (1.1) enjoys the standard Galilean invariance: if u(x, t) solves (1.1), then, for any v ∈ R d , so does u(x -2vt, t)e iv•x-i|v| 2 t .

A remarkable feature of (1.1) is that it possesses a large set of explicit solutions. In the case Ω = R d : if u 0 is Gaussian, u(•, t) is Gaussian for all time, and solving (1.1) amounts to solving ordinary differential equations [START_REF] Bia Lynicki-Birula | Nonlinear wave mechanics[END_REF]. For simplicity of notation, we take the one-dimensional case as an example. If the initial data in (1.1) with Ω = R is taken as

u 0 (x) = b 0 e -a 0 2 x 2 +ivx , x ∈ R,
where a 0 , b 0 ∈ C and v ∈ R are given constants satisfying α 0 := Re a 0 > 0 with Re f denoting the real part of f , then the solution of (1.1) is given by [START_REF] Ardila | Orbital stability of Gausson solutions to logarithmic Schrödinger equations[END_REF][START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] (

1.4) u(x, t) = b 0 r(t) e i(vx-v 2 t)+Y (x-2vt,t) , x ∈ R, t ≥ 0, with (1.5) Y (x, t) = -iφ(t) -α 0 x 2 2r(t) 2 + i ṙ(t) r(t) x 2 4 , x ∈ R, t ≥ 0,
where φ := φ(t) ∈ R and r := r(t) > 0 solve the ODEs [START_REF] Ardila | Orbital stability of Gausson solutions to logarithmic Schrödinger equations[END_REF][START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] 

φ = α 0 r 2 + λ ln |b 0 | 2 -λ ln r, φ(0) = 0, r = 4α 2 0 r 3 + 4λα 0 r , r(0) = 1, ṙ(0) = -2 Im a 0 .
(1.6)

In the case λ < 0, the function r is (time) periodic (in agreement with the absence of dispersive effects). In particular, if a 0 = -λ > 0, it follows from (1.6) that r(t) ≡ 1 and φ(t) = φ 0 t with φ 0 = λ ln(|b 0 | 2 ) -1 , which generates the uniformly moving Gausson as [START_REF] Ardila | Orbital stability of Gausson solutions to logarithmic Schrödinger equations[END_REF][START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] (

1.7) u(x, t) = b 0 e λ 2 (x-2vt) 2 +i(vx-(φ0+v 2 )t) , x ∈ R, t ≥ 0.
As a very special case with b 0 = e 1/2 and v = 0 such that φ 0 = 0, one can get the static Gausson as

(1.8) u(x, t) = e 1/2 e λ|x| 2 /2 , x ∈ R, t ≥ 0.
This special solution is orbitally stable [START_REF] Cazenave | Stable solutions of the logarithmic Schrödinger equation[END_REF][START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]. On the other hand, in the case λ > 0, it is proven in [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] that for general initial data (not necessarily Gaussian), there exists a universal dynamics. For extensions to higher dimensions, we refer to [START_REF] Ardila | Orbital stability of Gausson solutions to logarithmic Schrödinger equations[END_REF][START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] and references therein. Therefore, (1.1) possesses several specific features, which make it quite different from the nonlinear Schrödinger equation. Different numerical methods have been proposed and analyzed for the nonlinear Schrödinger equation with smooth nonlinearity (e.g. cubic nonlinearity) in the literature, such as the finite difference methods [START_REF] Bao | Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator[END_REF][START_REF]Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation[END_REF], finite element methods [START_REF] Akrivis | On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation[END_REF][START_REF] Karakashian | A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method[END_REF] and the time-splitting pseudospectral methods [START_REF] Bao | Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation[END_REF][START_REF] Taha | Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation[END_REF]. However, they cannot be applied to the LogSE (1.1) directly due to the blow-up of the logarithmic nonlinearity, i.e. ln ρ → -∞ when ρ → 0 + . The main aim of this paper is to present a regularized finite difference method for the LogSE (1.1) by introducing a proper regularized logarithmic Schrödinger equation (RLogSE) and then discretizing the RLogSE via a semi-implicit finite difference method. Error estimates will be established between the solutions of LogSE and RLogSE as well as their numerical approximations.

The rest of the paper is organized as follows. In Section 2, we propose a regularized version of (1.1) with a small regularization parameter 0 < ε ≪ 1, and analyze its properties, as well as the convergence of its solution to the solution of (1.1). In Section 3, we introduce a semi-implicit finite difference method for discretizing the regularized logarithmic Schrödinger equation, and prove an error estimate, in which the dependence of the constants with respect to the regularization parameter ε is tracked very explicitly. Finally, numerical results are provided in Section 4 to confirm our error bounds and to demonstrate the efficiency and accuracy of the proposed numerical method.

Throughout the paper, we use H m (Ω) and • H m (Ω) to denote the standard Sobolev spaces and their norms, respectively. In particular, the norm and inner product of L 2 (Ω) = H 0 (Ω) are denoted by • L 2 (Ω) and (•, •), respectively. Moreover, we adopt A B to mean that there exists a generic constant C > 0 independent of the regularization parameter ε, the time step τ and the mesh size h such that A ≤ C B, and c means the constant C depends on c.

2.

A regularized logarithmic Schrödinger equation. It turns out that a direct simulation of the solution of (1.1) is very delicate, due to the singularity of the logarithm at the origin, as discussed in the introduction. Instead of working directly with (1.1), we shall consider the following regularized logarithmic Schrödinger equation (RLogSE) with a samll regularized parameter 0 < ε ≪ 1 as

(2.1) i∂ t u ε (x, t) + ∆u ε (x, t) = λu ε (x, t) ln (ε + |u ε (x, t)|) 2 , x ∈ Ω, t > 0, u ε (x, 0) = u 0 (x), x ∈ Ω.
2.1. Conserved quantities. For the RLogSE (2.1), it can be similarly deduced that the mass, momentum, and energy are conserved.

Proposition 2.1. The mass, momentum, and 'regularized' energy are formally conserved for the RLogSE (2.1):

M ε (t) := Ω |u ε (x, t)| 2 dx ≡ Ω |u 0 (x)| 2 dx = M (0), P ε (t) := Im Ω u ε (x, t)∇u ε (x, t)dx ≡ Im Ω u 0 (x)∇u 0 (x)dx = P (0), t ≥ 0, E ε (t) := Ω |∇u ε (x, t)| 2 + λF ε (|u ε (x, t)| 2 ) (x, t)dx ≡ Ω |∇u 0 (x)| 2 + λF ε (|u 0 (x)| 2 ) dx = E ε (0), (2.2)
where

(2.3) F ε (ρ) = ρ 0 ln(ε + √ s) 2 ds = ρ ln (ε + √ ρ) 2 -ρ + 2ε √ ρ -ε 2 ln (1 + √ ρ/ε) 2 , ρ ≥ 0.
Proof. The conservation for mass and momentum is standard, and relies on the fact that the right hand side of (2.1) involves u ε multiplied by a real number. For the energy E ε (t), we compute

d dt E ε (t) = 2 Re Ω ∇u ε • ∇∂ t u ε + λu ε ∂ t u ε ln(ε + |u ε |) 2 -λu ε ∂ t u ε (x, t)dx + 2λ Ω ∂ t |u ε | ε + |u ε | 2 -ε 2 ε + |u ε | (x, t)dx = 2 Re Ω ∂ t u ε -∆u ε + λu ε ln(ε + |u ε |) 2 (x, t)dx = 2 Re Ω i|∂ t u ε | 2 (x, t)dx = 0, t ≥ 0,
which completes the proof. Note however that since the above 'regularized' energy involves L 1 -norm of u ε for any ε > 0, E ε is obviously well-defined for u 0 ∈ H 1 (Ω) when Ω has finite measure, but not when Ω = R d . This aspect is discussed more into details in Subsections 2.3.3 and 2.4.

The Cauchy problem.

For α > 0 and Ω = R d , denote by L 2 α the weighted

L 2 space L 2 α := {v ∈ L 2 (R d ), x -→ x α v(x) ∈ L 2 (R d )},
where x := 1 + |x| 2 , with norm

v L 2 α := x α v(x) L 2 (R d ) .
In the case where Ω is bounded, we simply set L 2 α = L 2 (Ω). Regarding the Cauchy problems (1.1) and (2.1), we have the following result. 

0 ∈ H 1 0 (Ω) ∩ L 2 α , for some 0 < α ≤ 1. • There exists a unique, global solution u ∈ L ∞ loc (R; H 1 0 (Ω) ∩ L 2 α ) to (1.1), and a unique, global solution u ε ∈ L ∞ loc (R; H 1 0 (Ω) ∩ L 2 α ) to (2.1). • If in addition u 0 ∈ H 2 (Ω), then u, u ε ∈ L ∞ loc (R; H 2 (Ω)). • In the case Ω = R d , if in addition u 0 ∈ H 2 ∩L 2 2 , then u, u ε ∈ L ∞ loc (R; H 2 ∩L 2 2 )
. Proof. This result can be proved by using more or less directly the arguments invoked in [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF]. First, for fixed ε > 0, the nonlinearity in (2.1) is locally Lipschitz, and grows more slowly than any power for large |u ε |. Therefore, the standard Cauchy theory for nonlinear Schrödinger equations applies (see in particular [START_REF]Semilinear Schrödinger equations[END_REF]Corollary 3.3.11 and Theorem 3.4.1]), and so if

u 0 ∈ H 1 0 (Ω), then (2.1) has a unique solution u ε ∈ L ∞ loc (R; H 1 0 (Ω)).
Higher Sobolev regularity is propagated, with controls depending on ε in general.

A solution u of (1.1) can be obtained by compactness arguments, by letting ε → 0 in (2.1), provided that we have suitable bounds independent of ε > 0. We have

i∂ t ∇u ε + ∆∇u ε = 2λ ln (ε + |u ε |) ∇u ε + 2λ u ε ε + |u ε | ∇|u ε |.
The standard energy estimate (multiply the above equation by ∇u ε , integrate over Ω and take the imaginary part) yields, when Ω = R d or when periodic boundary conditions are considered, 1 2

d dt ∇u ε 2 L 2 (Ω) ≤ 2|λ| Ω |u ε | ε + |u ε | |∇|u ε || |∇u ε |dx ≤ 2|λ ∇u ε 2 L 2 (Ω) .
Gronwall lemma yields a bound for u ε in L ∞ (0, T ; H 1 (Ω)), uniformly in ε > 0, for any given T > 0. Indeed, the above estimate uses the property

Im Ω ∇u ε • ∆∇u ε dx = 0,
which needs not be true when Ω is bounded and u ε satisfies homogeneous Dirichlet boundary conditions. In that case, we use the conservation of the energy E ε (Proposition 2.1), and write

∇u ε (t) 2 L 2 (Ω) ≤ E ε (u 0 ) + 2|λ| Ω |u ε (x, t)| 2 |ln (ε + |u ε (x, t)|)| dx + 2ε|λ| u ε (t) L 1 (Ω) + 2|λ|ε 2 Ω |ln (1 + |u ε (x, t)|/ε)| dx 1 + ε|Ω| 1/2 u ε (t) L 2 (Ω) + Ω |u ε (x, t)| 2 |ln (ε + |u ε (x, t)|)| dx 1 + Ω |u ε (x, t)| 2 |ln (ε + |u ε (x, t)|)| dx, t ≥ 0,
where we have used Cauchy-Schwarz inequality and the conservation of the mass M ε (t). Writing, for 0 < η ≪ 1,

Ω |u ε | 2 |ln (ε + |u ε |)| dx ε+|u ε |>1 |u ε | 2 (ε + |u ε |) η dx + ε+|u ε |<1 |u ε | 2 (ε + |u ε |) -η dx u ε L 2 (Ω) + u ε 2+η L 2+η (Ω) + u ε 2-η L 2-η (Ω) 1 + ∇u ε dη/2 L 2 (Ω) ,
where we have used the interpolation inequality (see e.g. [START_REF] Nirenberg | On elliptic partial differential equations[END_REF])

u L p (Ω) u 1-α L 2 (Ω) ∇u α L 2 (Ω) + u L 2 (Ω) , p = 2d d -2α , 0 ≤ α < 1,
we obtain again that u ε is bounded in L ∞ (0, T ; H 1 (Ω)), uniformly in ε > 0, for any given T > 0.

In the case where Ω is bounded, compactness arguments show that u ε converges to a solution u to (1.1); see [START_REF]Semilinear Schrödinger equations[END_REF][START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF]. When Ω = R d , compactness in space is provided by multiplying (2.1) with x 2α u ε and integrating in space:

d dt u ε 2 L 2 α = 4α Im x • ∇u ε x 2-2α u ε (t) dx x 2α-1 u ε L 2 (Ω) ∇u ε L 2 (Ω) ,
where we have used Cauchy-Schwarz inequality. Recalling that 0 < α ≤ 1,

x 2α-1 u ε L 2 (Ω) ≤ x α u ε L 2 (Ω) = u ε L 2 α ,
and we obtain a bound for u ε in L ∞ (0, T ; H 1 (Ω) ∩ L 2 α ) which is uniform in ε. Uniqueness of such a solution for (1.1) follows from the arguments of [START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF], involving a specific algebraic inequality, generalized in Lemma 2.4 below. Note that at this stage, we know that u ε converges to u by compactness arguments, so we have no convergence estimate. Such estimates are established in Subsection 2.3.

To prove the propagation of the H 2 regularity, we note that differentiating twice the nonlinearity in (2.1) makes it unrealistic to expect direct bounds which are uniform in ε. To overcome this difficulty, the argument proposed in [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] relies on Kato's idea: instead of differentiating the equation twice in space, differentiate it once in time, and use the equation to infer H 2 regularity. This yields the second part of the theorem.

To establish the last part of the theorem, we prove that u ∈ L ∞ loc (R; L 2 2 ) and the same approach applies to u ε . It follows from (1.1) that

d dt u(t) 2 L 2 2 = -2 Im R d x 4 u(x, t)∆u(x, t)dx = 8 Im R d x 2 u(x, t) x • ∇u(x, t)dx ≤ 8 u(t) L 2 2 x • ∇u(t) L 2 (R d ) . (2.4)
By Cauchy-Schwarz inequality and integration by parts, we have

x • ∇u(t) 2 L 2 (R d ) ≤ d j=1 d k=1 R d x 2 j ∂u(x, t) ∂x k ∂u(x, t) ∂x k dx = -2 R d u(x, t) x • ∇u(x, t)dx - R d |x| 2 u(x, t)∆u(x, t)dx ≤ 1 2 x • ∇u(t) 2 L 2 (R d ) + 2 u(t) 2 L 2 (R d ) + 1 2 u(t) 2 L 2 2 + 1 2 ∆u(t) 2 L 2 (R d ) ,
which yields directly that

x • ∇u(t) L 2 (R d ) ≤ 2 u(t) L 2 (R d ) + u(t) L 2 2 + ∆u(t) L 2 (R d )
. This together with (2.4) gives that

d dt u(t) L 2 2 ≤ 4 x • ∇u(t) L 2 (R d ) ≤ 4 u(t) L 2 2 + 8 u(t) L 2 (R d ) + 4 ∆u(t) L 2 (R d ) .
Since we already know that u ∈ L ∞ loc (R; H 2 (R d )), Gronwall lemma completes the proof.

Remark 2.1. We emphasize that if u 0 ∈ H k (R d ), k ≥ 3, we cannot guarantee in general that this higher regularity is propagated in (1.1), due to the singularities stemming from the logarithm. Still, this property is fulfilled in the case where u 0 is Gaussian, since then u remains Gaussian for all time. However, our numerical tests, in the case where the initial datum is chosen as the dark soliton of the cubic Schrödinger equation multiplied by a Gaussian, suggest that even the H 3 regularity is not propagated in general.

2.3.

Convergence of the regularized model. In this subsection, we show the approximation property of the regularized model (2.1) to (1.1).

2.3.1.

A general estimate. We prove: Lemma 2.3. Suppose the equation is set on Ω, where Ω = R d , or Ω ⊂ R d is a bounded domain with homogeneous Dirichlet or periodic boundary condition, then we have the general estimate:

(2.5) d dt u ε (t) -u(t) 2 L 2 (Ω) ≤ 4|λ| u ε (t) -u(t) 2 L 2 (Ω) + ε u ε (t) -u(t) L 1 (Ω) .
Before giving the proof of Lemma 2.3, we introduce the following lemma, which is a variant of [12, Lemma 9. 

|Im ((f ε (z 1 ) -f ε (z 2 )) (z 1 -z 2 ))| ≤ |z 1 -z 2 | 2 , z 1 , z 2 ∈ C. Proof. Notice that Im [(f ε (z 1 ) -f ε (z 2 )) (z 1 -z 2 )] = 1 2 [ln(ε + |z 1 |) -ln(ε + |z 2 |)] Im(z 1 z 2 -z 1 z 2 ). Supposing, for example, 0 < |z 2 | ≤ |z 1 |, we can obtain that |ln(ε + |z 1 |) -ln(ε + |z 2 |)| = ln 1 + |z 1 | -|z 2 | ε + |z 2 | ≤ |z 1 | -|z 2 | ε + |z 2 | ≤ |z 1 -z 2 | |z 2 | , and 
|Im(z 1 z 2 -z 1 z 2 )| = |z 2 (z 1 -z 2 ) + z 2 (z 2 -z 1 ))| ≤ 2|z 2 | |z 1 -z 2 |.
Otherwise the result follows by exchanging z 1 and z 2 .

Proof. (Proof of Lemma 2.3) Subtracting (1.1) from (2.1), we see that the error function e ε := u ε -u satisfies

i∂ t e ε + ∆e ε = λ u ε ln(ε + |u ε |) 2 -u ln(|u| 2 ) .
Multiplying the error equation by e ε (t), integrating in space and taking the imaginary parts, we can get by using Lemma 2.4 that 1 2

d dt e ε (t) 2 L 2 (Ω) = 2λ Im Ω [u ε ln(ε + |u ε |) -u ln(|u|)] (u ε -u)(x, t)dx ≤ 2|λ| e ε (t) 2 L 2 (Ω) + 2|λ| Ω e ε u [ln(ε + |u|) -ln(|u|)] (x, t)dx ≤ 2|λ| e ε (t) 2 L 2 (Ω) + 2ε|λ| e ε (t) L 1 (Ω) ,
where we have used the general estimate 0 ≤ ln(1 + |x|) ≤ |x|.

Convergence for bounded domain.

If Ω has finite measure, then we can have the following convergence behavior.

Proposition 2.5. Assume that Ω has finite measure, and let u 0 ∈ H 2 (Ω). For any T > 0, we have

(2.6) u ε -u L ∞ (0,T ;L 2 (Ω)) ≤ C 1 ε, u ε -u L ∞ (0,T ;H 1 (Ω)) ≤ C 2 ε 1/2 ,
where C 1 depends on |λ|, T , |Ω| and C 2 depends on |λ|, T , |Ω| and u 0 H 2 (Ω) . Proof. Note that e ε (t

) L 1 (Ω) ≤ |Ω| 1/2 e ε (t) L 2 (Ω) , then it follows from (2.5) that d dt e ε (t) L 2 (Ω) ≤ 2|λ| e ε (t) L 2 (Ω) + 2ε|λ||Ω| 1/2 .
Applying Gronwall's inequality, we immediately get that

e ε (t) L 2 (Ω) ≤ e ε (0) L 2 (Ω) + ε|Ω| 1/2 e 2|λ|t = ε|Ω| 1/2 e 2|λ|t .
The convergence rate in H 1 follows from the property u ε , u ∈ L ∞ loc (R; H 2 (Ω)) and the Gagliardo-Nirenberg inequality [START_REF] Leoni | A first course in Sobolev spaces[END_REF],

∇v L 2 (Ω) v 1/2 L 2 (Ω) ∆v 1/2 L 2 (Ω) ,
which completes the proof. Remark 2.2. The weaker rate in the H 1 estimate is due to the fact that Lemma 2.3 is not easily adapted to H 1 estimates, because of the presence of the logarithm. Differentiating (1.1) and (2.1) makes it hard to obtain the analogue in Lemma 2.3. This is why we bypass this difficulty by invoking boundedness in H 2 and interpolating with the error bound at the

L 2 level. If we have u ε , u ∈ L ∞ loc (R; H k (Ω)) for k > 2, then the convergence rate in H 1 (Ω) can be improved as e ε L ∞ (0,T ;H 1 (Ω)) ε k-1 k ,
by using the inequality (see e.g. [START_REF] Nirenberg | On elliptic partial differential equations[END_REF]):

v H 1 (Ω) v 1-1/k L 2 (Ω) v 1/k H k (Ω) .
2.3.3. Convergence for the whole space. In order to prove the convergence rate of the regularized model (2.1) to (1.1) for the whole space, we need the following lemma.

Lemma 2.6.

For d = 1, 2, 3, if v ∈ L 2 (R d ) ∩ L 2 2 , then we have (2.7) v L 1 (R d ) ≤ C v 1-d/4 L 2 (R d ) v d/4 L 2 2 ,
where C > 0 depends on d.

Proof. Applying the Cauchy-Schwarz inequality, we can get for fixed r > 0,

v L 1 (R d ) = |x|≤r |v(x)|dx + |x|≥r |x| 2 |v(x)| |x| 2 dx r d/2 |x|≤r |v(x)| 2 dx 1 2 + |x|≥r |x| 4 |v(x)| 2 dx 1 2 |x|≥r 1 |x| 4 dx 1 2 r d/2 v L 2 (R d ) + r d/2-2 v L 2 2 .
Then (2.7) can be obtained by setting

r = v L 2 2 / v L 2 (R d ) 1/2 . Proposition 2.7. Assume that Ω = R d , 1 ≤ d ≤ 3, and let u 0 ∈ H 2 (R d ) ∩ L 2 2 .
For any T > 0, we have

u ε -u L ∞ (0,T ;L 2 (R d )) ≤ C 1 ε 4 4+d , u ε -u L ∞ (0,T ;H 1 (R d ))) ≤ C 2 ε 2 4+d
,

where C 1 depends on d, |λ|, T , u 0 L 2 2 and C 2 depends on additional u 0 H 2 (R d ) . Proof. Applying (2.7) and the Young's inequality, we deduce that

ε e ε (t) L 1 (R d ) ≤ εC d e ε (t) 1-d/4 L 2 (R d ) e ε (t) d/4 L 2 2 ≤ C d e ε (t) 2 L 2 (R d ) + ε 8 4+d e ε (t) 2d 4+d L 2 2
, which together with (2.5) gives that

d dt e ε (t) 2 L 2 (R d ) ≤ 4|λ|(1 + C d ) e ε (t) 2 L 2 (R d ) + 4C d |λ|ε 8 4+d e ε (t) 2d 4+d L 2 2 .
Gronwall lemma yields

e ε (t) L 2 (R d ) ≤ ε 4 4+d e ε (t) d 4+d L 2 2 e tC d,|λ| .

The proposition follows by recalling that

u ε , u ∈ L ∞ loc (R; H 2 (R d ) ∩ L 2 2 ). Remark 2.3. If we have u ε , u ∈ L ∞ loc (R; L 2 m ) for m > 2,
then by applying the inequality

ε v L 1 (R d ) ε v 1-d 2m L 2 (R d ) v d 2m L 2 m v 2 L 2 (R d ) + ε 4m 2m+d v 2d 2m+d L 2 m ,
which can be proved like above, the convergence rate can be improved as

u ε -u L ∞ (0,T ;L 2 (R d )) ε 2m 2m+d . Remark 2.4. If in addition u ε , u ∈ L ∞ loc (R; H s (R d )) for s > 2, then the conver- gence rate in H 1 (R d ) can be improved as e ε L ∞ (0,T ;H 1 (R d ))) ≤ Cε 2m 2m+d s-1 s ,
by using the Gagliardo-Nirenberg inequality:

∇v L 2 (R d ) ≤ C v 1-1/s L 2 (R d ) ∇ s v 1/s L 2 (R d ) .
The previous two remarks apply typically in the case of Gaussian initial data.

Convergence of the energy.

In this subsection we will show the convergence of the energy

E ε (u 0 ) → E(u 0 ). Proposition 2.8. For u 0 ∈ H 1 (Ω) ∩ L 1 (Ω), the energy E ε (u 0 ) converges to E(u 0 ) with |E ε (u 0 ) -E(u 0 )| ≤ 4 ε|λ| u 0 L 1 (Ω) .
Proof. It can be deduced from the definition that

|E ε (u 0 ) -E(u 0 )| = 2|λ| ε u 0 L 1 (Ω) + Ω |u 0 (x)| 2 [ln(ε + |u 0 (x)| -ln(|u 0 (x)|)] dx -ε 2 Ω ln (1 + |u 0 (x)|/ε) dx ≤ 4 ε|λ| u 0 L 1 (Ω) , which completes the proof. Remark 2.5. If Ω is bounded, then H 1 (Ω) ⊆ L 1 (Ω). If Ω = R d , then Lemma 2.6 (and its natural generalizations) shows that H 1 (R) ∩ L 2 1 ⊆ L 1 (R), and if d = 2, 3, H 1 (R d ) ∩ L 2 2 ⊆ L 1 (R d
). Remark 2.6. This regularization is reminiscent of the one considered in [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] in order to prove (by compactness arguments) that (1.1) has a solution,

(2.8) i∂ t u ε (x, t) + ∆u ε (x, t) = λu ε (x, t) ln ε + |u ε (x, t)| 2 , x ∈ Ω, t > 0.
With that regularization, it is easy to adapt the error estimates established above for (2.1). Essentially, ε must be replaced by √ ε (in Lemma 2.3, and hence in its corollaries).

3. A regularized semi-implicit finite difference method. In this section, we study the approximation properties of a finite difference method for solving the regularized model (2.1). For simplicity of notation, we set λ = 1 and only present the numerical method for the RLogSE (2.1) in 1D, as extensions to higher dimensions are straightforward. When d = 1, we truncate the RLogSE on a bounded computational interval Ω = (a, b) with homogeneous Dirichlet boundary condition (here |a| and b are chosen large enough such that the truncation error is negligible):

(3.1) i∂ t u ε (x, t) + ∂ xx u ε (x, t) = u ε (x, t) ln(ε + |u ε (x, t)|) 2 , x ∈ Ω, t > 0, u ε (x, 0) = u 0 (x), x ∈ Ω; u ε (a, t) = u ε (b, t) = 0, t ≥ 0,
3.1. A finite difference scheme and main results on error bounds. Choose a mesh size h := ∆x = (b -a)/M with M being a positive integer and a time step τ := ∆t > 0 and denote the grid points and time steps as

x j := a + jh, j = 0, 1, • • • , M ; t k := kτ, k = 0, 1, 2, . . .

Define the index sets

T M = {j | j = 1, 2, • • • , M -1}, T 0 M = {j | j = 0, 1, • • • , M }.
Let u ε,k j be the approximation of u ε (x j , t k ), and denote u ε,k = (u ε,k 0 , u ε,k 1 , . . . , u ε,k M ) T ∈ C M+1 as the numerical solution vector at t = t k . Define the standard finite difference operators

δ c t u k j = u k+1 j -u k-1 j 2τ , δ + x u k j = u k j+1 -u k j h , δ 2 x u k j = u k j+1 -2u k j + u k j-1 h 2 .
Denote

X M = v = (v 0 , v 1 , . . . , v M ) T | v 0 = v M = 0 ⊆ C M+1 ,
equipped with inner products and norms defined as (recall that

u 0 = v 0 = u M = v M = 0 by Dirichlet boundary condition) (u, v) = h M-1 j=1 u j v j , u, v = h M-1 j=0 u j v j , u ∞ = sup j∈T 0 M |u j |; u 2 = (u, u), |u| 2 H 1 = δ + x u, δ + x u , u 2 H 1 = u 2 + |u| 2 H 1 . (3.2) 
Then we have for u, v ∈ X M ,

(3.3) (-δ 2 x u, v) = δ + x u, δ + x v = (u, -δ 2 x v).
Consider a semi-implicit finite difference (SIFD) discretization of (3.1) as following

(3.4) iδ c t u ε,k j = - 1 2 δ 2 x (u ε,k+1 j + u ε,k-1 j ) + u ε,k j ln(ε + |u ε,k j |) 2 , j ∈ T M , k ≥ 1.
The boundary and initial conditions are discretized as

(3.5) u ε,k 0 = u ε,k M = 0, k ≥ 0; u ε,0 j = u 0 (x j ), j ∈ T 0 M .
In addition, the first step u ε,1 j can be obtained via the Taylor expansion as

(3.6) u ε,1 j = u ε,0 j + τ u 1 (x j ), j ∈ T 0 M ,
where

u 1 (x) := ∂ t u ε (x, 0) = i u ′′ 0 (x) -u 0 (x) ln(ε + |u 0 (x)|) 2 , a ≤ x ≤ b.
Let 0 < T < T max with T max the maximum existence time of the solution u ε to the problem (3.1) for a fixed 0 ≤ ε ≪ 1. By using the standard von Neumann analysis, we can show that the discretization (3.4) is conditionally stable under the stability condition

(3.7) 0 < τ ≤ 1 2 max{| ln ε|, ln(ε + max j∈TM |u ε,k j |)} , 0 ≤ k ≤ T τ .
Define the error functions e ε,k ∈ X M as

(3.8) e ε,k j = u ε (x j , t k ) -u ε,k j , j ∈ T 0 M , 0 ≤ k ≤ T τ ,
where u ε is the solution of (3.1). Then we have the following error estimates for (3.4) with (3.5) and (3.6). Theorem 3.1 (Main result). Assume that the solution u ε is smooth enough over

Ω T := Ω × [0, T ], i.e. (A) u ε ∈ C [0, T ]; H 5 (Ω) ∩ C 2 [0, T ]; H 4 (Ω) ∩ C 3 [0, T ]; H 2 (Ω) ,
and there exist ε 0 > 0 and C 0 > 0 independent of ε such that

u ε L ∞ (0,T ;H 5 (Ω)) + ∂ 2 t u ε L ∞ (0,T ;H 4 (Ω)) + ∂ 3 t u ε L ∞ (0,T ;H 2 (Ω)) ≤ C 0 ,
uniformly in 0 ≤ ε ≤ ε 0 . Then there exist h 0 > 0 and τ 0 > 0 sufficiently small with h 0 ∼ √ εe -CT | ln(ε)| 2 and τ 0 ∼ √ εe -CT | ln(ε)| 2 such that, when 0 < h ≤ h 0 and 0 < τ ≤ τ 0 satisfying the stability condition (3.7), we have the following error estimates

e ε,k ≤ C 1 (ε, T )(h 2 + τ 2 ), 0 ≤ k ≤ T τ , e ε,k H 1 ≤ C 2 (ε, T )(h 2 + τ 2 ), u ε,k ∞ ≤ Λ + 1, (3.9) 
where

Λ = u ε L ∞ (ΩT ) , C 1 (ε, T ) ∼ e CT | ln(ε)| 2 , C 2 (ε, T ) ∼ 1 ε e CT | ln(ε)| 2 and C depends on C 0 .
The error bounds in this Theorem show not only the quadratical convergence in terms of the mesh size h and time step τ but also how the explicit dependence on the regularization parameter ε. Here we remark that the Assumption (A) is valid at least in the case of taking Gaussian as the initial datum.

Define the error functions e ε,k ∈ X M as

(3.10) e ε,k j = u(x j , t k ) -u ε,k j , j ∈ T 0 M , 0 ≤ k ≤ T τ ,
where u ε is the solution of the LogSE (1.1) with Ω = (a, b). Combining Proposition 2.5 and Theorem 3.1, we immediately obtain (see an illustration in the following diagram):

u ε,k O(h 2 +τ 2 ) / / O(ε)+O(h 2 +τ 2 ) * * U U U U U U U U U U U u ε (•, t k ) O(ε) u(•, t k ) Corollary 3.2.
Under the assumptions of Proposition 2.5 and Theorem 3.1, we have the following error estimates

e ε,k ≤ C 1 ε + C 1 (ε, T )(h 2 + τ 2 ), e ε,k H 1 ≤ C 2 ε 1/2 + C 2 (ε, T )(h 2 + τ 2 ), 0 ≤ k ≤ T τ , (3.11)
where C 1 and C 2 are presented as in Proposition 2.5, and C 1 (ε, T ) and C 2 (ε, T ) are given in Theorem 3.1.

Error estimates. Define the local truncation error

ξ ε,k j ∈ X M for k ≥ 1 as ξ ε,k j = iδ c t u ε (x j , t k ) + 1 2 δ 2 x u ε (x j , t k+1 ) + δ 2 x u ε (x j , t k-1 ) -u ε (x j , t k ) ln(ε + |u ε (x j , t k )|) 2 , j ∈ T M , 1 ≤ k < T τ , (3.12) 
then we have the following bounds for the local truncation error. Lemma 3.3 (Local truncation error). Under Assumption (A), we have

ξ ε,k H 1 h 2 + τ 2 , 1 ≤ k < T τ .
Proof. By Taylor expansion, we have

(3.13) ξ ε,k j = iτ 2 4 α ε,k j + τ 2 2 β ε,k j + h 2 12 γ ε,k j ,
where

α ε,k j = 1 -1 (1 -|s|) 2 ∂ 3 t u ε (x j , t k + sτ )ds, β ε,k j = 1 -1 (1 -|s|)∂ 2 t u ε xx (x j , t k + sτ )ds, γ ε,k j = 1 -1 (1 -|s|) 3 ∂ 4 x u ε (x j + sh, t k+1 ) + ∂ 4 x u ε (x j + sh, t k-1 ) ds.
By the Cauchy-Schwarz inequality, we can get that

α ε,k 2 = h M-1 j=1 |α ε,k j | 2 ≤ h 1 -1 (1 -|s|) 4 ds M-1 j=1 1 -1 ∂ 3 t u ε (x j , t k + sτ ) 2 ds = 2 5 1 -1 ∂ 3 t u ε (•, t k + sτ ) 2 L 2 (Ω) ds - 1 -1 M-1 j=0 xj+1 xj (|∂ 3 t u ε (x, t k + sτ )| 2 -|∂ 3 t u ε (x j , t k + sτ )| 2 )dxds = 2 5 1 -1 ∂ 3 t u ε (•, t k + sτ ) 2 L 2 (Ω) ds - 1 -1 M-1 j=0 xj+1 xj ω xj ∂ x |∂ 3 t u ε (x ′ , t k + sτ )| 2 dx ′ dωds ≤ 2 5 1 -1 ∂ 3 t u ε (•, t k + sτ ) 2 L 2 (Ω) + 2h ∂ 3 t u ε x (•, t k + sτ ) L 2 (Ω) ∂ 3 t u ε (•, t k + sτ ) L 2 (Ω) ds ≤ max 0≤t≤T ∂ 3 t u ε L 2 (Ω) + h ∂ 3 t u ε x L 2 (Ω) 2 ,
which yields that when h ≤ 1,

α ε,k ≤ ∂ 3 t u ε L ∞ (0,T ;H 1 (Ω)) .
Applying the similar approach, it can be established that

β ε,k ≤ 2 ∂ 2 t u ε L ∞ (0,T ;H 3 (Ω)) .
On the other hand, we can obtain that

γ ε,k 2 ≤ h 1 -1 (1 -|s|) 6 ds M-1 j=1 1 -1 ∂ 4 x u ε (x j + sh, t k+1 ) + ∂ 4 x u ε (x j + sh, t k-1 ) 2 ds ≤ 4h 7 M-1 j=1 1 -1 ∂ 4 x u ε (x j + sh, t k+1 ) 2 + ∂ 4 x u ε (x j + sh, t k-1 ) 2 ds ≤ 8 7 ∂ 4 x u ε (•, t k-1 ) 2 L 2 (Ω) + ∂ 4 x u ε (•, t k+1 ) 2 L 2 (Ω) ≤ 4 u ε 2 L ∞ (0,T ;H 4 (Ω)) , which implies that γ ε,k ≤ 2 u ε L ∞ (0,T ;H 4 (Ω))
. Hence by Assumption (A), we get

ξ ε,k τ 2 ∂ 3 t u ε L ∞ (0,T ;H 1 (Ω)) + ∂ 2 t u ε L ∞ (0,T ;H 3 (Ω)) + h 2 u ε L ∞ (0,T ;H 4 (Ω)) C0 τ 2 + h 2 .
Applying δ + x to ξ ε,k and using the same approach, we can get that

|ξ ε,k | H 1 τ 2 ∂ 3 t u ε L ∞ (0,T ;H 2 (Ω)) + ∂ 2 t u ε L ∞ (0,T ;H 4 (Ω)) + h 2 u ε L ∞ (0,T ;H 5 (Ω)) C0 τ 2 + h 2 ,
which completes the proof.

For the first step, we have the following estimates. Lemma 3.4 (Error bounds for k = 1). Under Assumption (A), the first step errors of the discretization (3.6) satisfy e ε,0 = 0, e ε,1

H 1 τ 2 .
Proof. By the definition of u ε,1 j in (3.6), we have

e ε,1 j = τ 2 1 0 (1 -s)u ε tt (x j , sτ )ds, which implies that e ε,1 τ 2 ∂ 2 t u ε L ∞ (0,T ;H 1 (Ω)) τ 2 , |e ε,1 | H 1 τ 2 ∂ 2 t u ε L ∞ (0,T ;H 2 (Ω)) τ 2 ,
and the proof is completed.

Proof. [Proof of Theorem 3.1] We prove (3.9) by induction. It follows from Lemma 3.4 that (3.9) is true for k = 0, 1.

Assume (3.9) is valid for k ≤ n ≤ T τ -1. Next we need to show that (3.9) still holds for k = n + 1. Subtracting (3.4) from (3.12), we get the error equations

(3.14) iδ c t e ε,m j = - 1 2 (δ 2 x e ε,m+1 j +δ 2 x e ε,m-1 j )+r ε,m j +ξ ε,m j , j ∈ T M , 1 ≤ m ≤ T τ -1,
where r ε,m ∈ X M represents the difference between the logarithmic nonlinearity

(3.15) r ε,m j = u ε (x j , t m ) ln(ε + |u ε (x j , t m )|) 2 -u ε,m j ln(ε + |u ε,m j |) 2 , 1 ≤ m ≤ T τ -1.
Multiplying both sides of (3.14) by 2τ (e ε,m+1 j + e ε,m-1 j ), summing together for j ∈ T M and taking the imaginary parts, we obtain for 1 ≤ m < T /τ ,

(3.16) e ε,m+1 2 -e ε,m-1 2 = 2τ Im(r ε,m + ξ ε,m , e ε,m+1 + e ε,m-1 ) ≤ 2τ r ε,m 2 + ξ ε,m 2 + e ε,m+1 2 + e ε,m-1 2 . Summing (3.16) for m = 1, 2, • • • , n (n ≤ T τ -1), we obtain e ε,n+1 2 + e ε,n 2 ≤ e ε,0 2 + e ε,1 2 + 2τ e ε,n+1 2 + 2τ n-1 m=0 ( e ε,m 2 + e ε,m+1 2 ) + 2τ n m=1 r ε,m 2 + ξ ε,m 2 . (3.17) For m ≤ n, when |u ε,m j | ≤ |u ε (x j , t m )|, we write r ε,m j as |r ε,m j | = e ε,m j ln(ε + |u ε (x j , t m )|) 2 + 2u ε,m j ln ε + |u ε (x j , t m )| ε + |u ε,m j | ≤ 2 max{ln(ε -1 ), | ln(ε + Λ)|}|e ε,m j | + 2|u ε,m j | ln 1 + |u ε (x j , t m )| -|u ε,m j | ε + |u ε,m j | ≤ 2|e ε,m j |(1 + max{ln(ε -1 ), | ln(ε + Λ)|}). On the other hand, when |u ε (x j , t m )| ≤ |u ε,m j |, we write r ε,m j as |r ε,m j | = e ε,m j ln(ε + |u ε,m j |) 2 + 2u ε (x j , t m ) ln ε + |u ε (x j , t m )| ε + |u ε,m j | ≤ 2 max{ln(ε -1 ), | ln(ε + 1 + Λ)|}|e ε,m j | + 2|u ε (x j , t m )| ln 1 + |u ε,m j | -|u ε (x j , t m )| ε + |u ε (x j , t m )| ≤ 2|e ε,m j |(1 + max{ln(ε -1 ), | ln(ε + 1 + Λ)|})
, where we use the assumption that u ε,m ∞ ≤ Λ + 1 for m ≤ n. Thus it follows that

r ε,m 2 | ln(ε)| 2 e ε,m 2 ,
when ε is sufficiently small. Thus when τ ≤ 1 2 , by using Lemmas 3.3, 3.4 and (3.17), we have

e ε,n+1 2 + e ε,n 2 e ε,0 2 + e ε,1 2 + τ n-1 m=0 ( e ε,m 2 + e ε,m+1 2 ) + τ n m=1 r ε,m 2 + ξ ε,m 2 (h 2 + τ 2 ) 2 + τ | ln(ε)| 2 n-1 m=0
( e ε,m 2 + e ε,m+1 2 ).

We emphasize here that the implicit multiplicative constant in this inequality depends only on C 0 , but not on n. Applying the discrete Gronwall inequality, we can conclude that

e ε,n+1 2 e CT | ln(ε)| 2 (h 2 + τ 2 ) 2 ,
for some C depending on C 0 , which gives the error bound for e ε,k with k = n + 1 in (3.9) immediately.

To estimate |e ε,n+1 | H 1 , multiplying both sides of (3.14) by 2(e ε,m+1 j -e ε,m-1 j

) for m ≤ n, summing together for j ∈ T M and taking the real parts, we obtain

|e ε,m+1 | 2 H 1 -|e ε,m-1 | 2 H 1 = -2 Re r ε,m + ξ ε,m , e ε,m+1 -e ε,m-1 = 2τ Im r ε,m + ξ ε,m , -δ 2 x (e ε,m+1 + e ε,m-1 ) = 2τ Im δ + x (r ε,m + ξ ε,m ), δ + x (e ε,m+1 + e ε,m-1 ) ≤ 2τ |r ε,m | 2 H 1 + |ξ ε,m | 2 H 1 + |e ε,m+1 | 2 H 1 + |e ε,m-1 | 2 H 1 . (3.18)
To give the bound for δ +

x r ε,m , for simplicity of notation, denote

u ε,m j,θ = θu ε (x j+1 , t m ) + (1 -θ)u ε (x j , t m ), v ε,m j,θ = θv ε,m j+1 + (1 -θ)v ε,m j ,
for j ∈ T M and θ ∈ [0, 1]. Then we have

δ + x r ε,m j = 2δ + x (u ε (x j , t m ) ln(ε + |u ε (x j , t m )|)) -2δ + x (u ε,m j ln(ε + |u ε,m j |)) = 2 h 1 0 [u ε,m j,θ ln(ε + |u ε,m j,θ |)] ′ (θ)dθ - 2 h 1 0 [v ε,m j,θ ln(ε + |v ε,m j,θ |)] ′ (θ)dθ = I 1 + I 2 + I 3 ,
where

I 1 := 2δ + x u ε (x j , t m ) 1 0 ln(ε + |u ε,m j,θ |)dθ -2δ + x u ε,m j 1 0 ln(ε + |v ε,m j,θ |)dθ, I 2 := δ + x u ε (x j , t m ) 1 0 |u ε,m j,θ | ε + |u ε,m j,θ | dθ -δ + x u ε,m j 1 0 |v ε,m j,θ | ε + |v ε,m j,θ | dθ, I 3 := δ + x u ε (x j , t m ) 1 0 (u ε,m j,θ ) 2 |u ε,m j,θ |(ε + |u ε,m j,θ |) dθ -δ + x u ε,m j 1 0 (v ε,m j,θ ) 2 |v ε,m j,θ |(ε + |v ε,m j,θ |)
dθ.

Then we estimate I 1 , I 2 and I 3 , separately. Similar as before, we have

|I 1 | ≤ 2|δ + x u ε (x j , t m )| 1 0 ln ε + |u ε,m j,θ | ε + |v ε,m j,θ | dθ + 2 δ + x e ε,m j 1 0 ln(ε + |v ε,m j,θ |) dθ = 2|δ + x u ε (x j , t m )| 1 0 ln 1 + |u ε,m j,θ | -|v ε,m j,θ | ε + min{|u ε,m j,θ |, |v ε,m j,θ |} dθ + 2 δ + x e ε,m j 1 0 ln(ε + |v ε,m j,θ |) dθ ≤ 2 ε |δ + x u ε (x j , t m )| |e ε,m j | + |e ε,m j+1 | + 2 δ + x e ε,m j max{ln(ε -1 ), | ln(ε + 1 + Λ)|} 1 ε |e ε,m j | + |e ε,m j+1 | + ln(ε -1 ) δ + x e ε,m j , and 
|I 2 | = δ + x u ε (x j , t m ) 1 0 |u ε,m j,θ | ε + |u ε,m j,θ | - |v ε,m j,θ | ε + |v ε,m j,θ | dθ + δ + x e ε,m j 1 0 |v ε,m j,θ | ε + |v ε,m j | dθ ≤ |δ + x e ε,m j | + |δ + x u ε (x j , t m )| 1 0 ε|u ε,m j,θ -v ε,m j,θ | (ε + |u ε,m j,θ |)(ε + |v ε,m j,θ |) dθ ≤ |δ + x e ε,m j | + |δ + x u ε (x j , t m )| ε 1 0 |u ε,m j,θ -v ε,m j,θ |dθ |δ + x e ε,m j | + 1 ε |e ε,m j | + |e ε,m j+1 | .
In view of the inequality that

(u ε,m j,θ ) 2 |u ε,m j,θ |(ε + |u ε,m j,θ |) - (v ε,m j,θ ) 2 |v ε,m j,θ |(ε + |v ε,m j,θ |) = (u ε,m j,θ ) 2 -u ε,m j,θ v ε,m j,θ |u ε,m j,θ |(ε + |u ε,m j,θ |) + u ε,m j,θ v ε,m j,θ |u ε,m j,θ |(ε + |u ε,m j,θ |) - (v ε,m j,θ ) 2 |v ε,m j,θ |(ε + |v ε,m j,θ |) ≤ |u ε,m j,θ -v ε,m j,θ | ε + u ε,m j,θ (v ε,m j,θ ) 2 (u ε,m j,θ -v ε,m j,θ ) + εv ε,m j,θ (u ε,m j,θ |v ε,m j,θ | -|u ε,m j,θ |v ε,m j,θ ) |u ε,m j,θ ||v ε,m j,θ |(ε + |u ε,m j,θ |)(ε + |v ε,m j,θ |) ≤ 4|u ε,m j,θ -v ε,m j,θ | ε ,
we can obtain that

I 3 |δ + x e ε,m j | + 1 ε |e ε,m j | + |e ε,m j+1 | .
Thus we can conclude that

|δ + x r ε,m j | 1 ε |e ε,m j | + |e ε,m j+1 | + ln(ε -1 ) δ + x e ε,m j . Summing (3.18) for m = 1, 2, • • • , n (n ≤ T τ -1), we obtain |e ε,n+1 | 2 H 1 + |e ε,n | 2 H 1 ≤ |e ε,0 | 2 H 1 + |e ε,1 | 2 H 1 + τ n m=1 |r ε,m | 2 H 1 + |ξ ε,m | 2 H 1 + τ |e ε,n+1 | 2 H 1 + τ n-1 m=0 (|e ε,m | 2 H 1 + |e ε,m+1 | 2 H 1 ).
Thus when τ ≤ 1/2, by using Lemmas 3.3 and 3.4, we have

|e ε,n+1 | 2 H 1 + |e ε,n | 2 H 1 |e ε,0 | 2 H 1 + |e ε,1 | 2 H 1 + τ n m=1 1 ε 2 |e ε,m | 2 H 1 + |ξ ε,m | 2 H 1 + τ | ln(ε)| 2 n-1 m=0 |e ε,m | 2 H 1 + |e ε,m+1 | 2 H 1 e CT | ln(ε)| 2 ε 2 (h 2 + τ 2 ) 2 + τ | ln(ε)| 2 n-1 m=0 (|e ε,m | 2 H 1 + |e ε,m+1 | 2 H 1 ).
Applying the discrete Gronwall's inequality, we can get that

|e ε,n+1 | 2 H 1 e CT | ln(ε)| 2 (h 2 + τ 2 ) 2 /ε 2 ,
which establishes the error estimate for e ε,k H 1 for k = n + 1. Finally the boundedness for the solution u ε,k can be obtained by the triangle inequality

u ε,k ∞ ≤ u ε (•, t k ) L ∞ (Ω) + e ε,k ∞ ,
and the inverse Sobolev inequality [START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF] e ε,k

∞ e ε,k H 1 ,
which completes the proof of Theorem 3.1. Case II: A general initial data, i.e. u 0 in (1.1) is chosen as

(4.2) u 0 (x) = tanh(x)e -x 2 , x ∈ R,
which is the multiplication of a dark soliton of the cubic nonlinear Schrödinger equation and a Gaussian. Notice that in this case, the logarithmic term ln |u 0 | 2 is singular at x = 0.

The RLogSE (2.1) is solved numerically by the SIFD (3.4) on domains Ω = [-12 , 12] and Ω = [-16, 16] for Case I and II, respectively. To quantify the numerical errors, we introduce the following error functions:

e ε (t k ) := u(•, t k ) -u ε (•, t k ), e ε (t k ) := u ε (•, t k ) -u ε,k , e ε (t k ) := u(•, t k ) -u ε,k , e ε E := |E(u) -E ε (u ε )|. (4.3) 
Here u and u ε are the exact solutions of the LogSE (1.1) and RLogSE (2.1), respectively, while u ε,k is the numerical solution of the RLogSE (2.1) obtained by the SIFD (3.4). The 'exact' solution u ε is obtained numerically by the SIFD (3.4) with a very small time step, e.g. τ = 0.01/2 9 and a very fine mesh size, e.g. h = 1/2 15 . Similarly, the 'exact' solution u in Case II is obtained numerically by the SIFD (3.4) with a very small time step and a very fine mesh size as well as a very small regularization parameter ε, e.g. ε = 10 -14 . The energy is obtained by the trapezoidal rule for approximating the integrals in the energy (1.2) and (2.2). 4.1), which confirms the error bounds in Corollary 3.2.

Conclusion.

In order to overcome the singularity of the log-nonlinearity in the logarithmic Schrödinger equation (LogSE), we proposed a regularized logarithmic Schrödinger equation (RLogSE) with a regularization parameter 0 < ε ≪ 1 and established linear convergence between RLogSE and LogSE in terms of the small regularization parameter. Then we presented a semi-implicit finite difference method
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 22 Let λ ∈ R and ε > 0. Consider (1.1) and (2.1) on Ω = R d , or bounded Ω with homogeneous Dirichlet or periodic boundary condition. Consider an initial datum u

  3.5], established initially in [13, Lemme 1.1.1]. Lemma 2.4. Let ε ≥ 0 and denote f ε (z) = z ln(ε + |z|), then we have

4 .

 4 Numerical results. In this section, we test the convergence rate of the regularized model (2.1) and the SIFD(3.4). To this end, we take d = 1, Ω = R and λ = -1 in the LogSE (1.1) and consider two different initial data: Case I: A Gaussian initial data, i.e. u 0 in (1.1) is chosen as(4.1) u 0 (x) = 4 -λ/πe ivx+ λ 2 x 2 , x ∈ R, with v = 1.In this case, the LogSE (1.1) admits the moving Gausson solution (1.7) with v = 1 and b 0 = 4 -λ/π as the exact solution.

4. 1 .

 1 Convergence rate of the regularized model. Here we consider the error between the solutions of the RLogSE (2.1) and the LogSE (1.1). Fig. 4.1 shows e ε , e ε H 1 , e ε ∞ (the definition of the norms is given in (3.2)) at time t = 0.5 for Cases I & II, while Fig. 4.2 depicts e ε E (0.5) for Cases I & II and time evolution of e ε (t) with different ε for Case I. For comparison, similar to Fig. 4.1, Fig. 4.3 displays the convergent results from (2.8) to (1.1). From Figs. 4.1, 4.2 & 4.3 and additional numerical results not shown here for brevity, we can draw the following conclusions: (i) The solution of the RLogSE (2.1) converges linearly to that of the LogSE (1.1) in terms of the regularization parameter ε in both L 2 -norm and L ∞ -norm, and respectively, the convergence rate becomes O( √ ε) in H 1 -norm for Case II. (ii) The regularized energy E ε (u ε ) converges linearly to the energy E(u) in terms of ε. (iii) The constant C in (2.6) may grow linearly with time T and it is independent of ε. (iv) The solution of (2.8) converges at O( √ ε) to that of (1.1) in both L 2 -norm and L ∞ -norm, and respectively, the convergence rate becomes O(ε 1/4 ) in H 1 -norm for Case II. Thus (2.1) is much more accurate than (2.8) for the regularization of the LogSE (1.1). (v) The numerical results agree and confirm our analytical results in Section 2.
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 214142 Fig. 4.1: Convergence of the RLogSE (2.1) to the LogSE (1.1), i.e. the error e ε (0.5) in different norms vs the regularization parameter ε for Case I (left) and Case II (right).
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 21143 Fig. 4.3: Convergence of the RLogSE (2.8) to the LogSE (1.1), i.e. the error e ε (0.5) in different norms vs the regularization parameter ε for Case I (left) and Case II (right).
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 244 Fig. 4.4: Convergence of the SIFD (3.4) to the RLogSE (2.1), i.e. errors e ε (0.5) vs τ (with h = 75τ /64) under different ε for Case I initial data.
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for discretizing RLogSE and proved second-order convergence rates in terms of mesh size h and time step τ . Finally, we established error bounds of the semi-implicit finite difference method to LogSE, which depend explicitly on the mesh size h and time step τ as well as the small regularization parameter ε. Our numerical results confirmed our error bounds and demonstrated that they are sharp.