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Abstract: We address formally the problem of opinion dynamics when the agents of a social network
(e.g., consumers) are not only influenced by their neighbors but also by an external influential entity
referred to as a marketer. The influential entity tries to sway the overall opinion to its own side by
using a specific influence budget during discrete-time advertising campaigns; consequently, the overall
closed-loop dynamics becomes a linear-impulsive (hybrid) one. The main technical issue addressed is
finding how the marketer should allocate its budget over time (through marketing campaigns) and over
space (among the agents) such that the agents’ opinion be as close as possible to a desired opinion; for
instance, the marketer may prioritize certain agents over others based on their influence in the social
graph. The corresponding space-time allocation problem is formulated and solved for several special
cases of practical interest. Valuable insights can be extracted from our analysis. For instance, for most
cases we prove that the marketer has an interest in investing most of its budget at the beginning of the
process and that budget should be shared among agents according to the famous water-filling allocation
rule. Numerical examples illustrate the analysis.

Keywords: Social networks, hybrid systems, optimal control.

1. INTRODUCTION

The last decades have witnessed an increasing interest in the
study of opinion dynamics in social networks. This is mainly
motivated by the fact that people’s opinions are increasingly
influenced through digital social networks. Therefore, govern-
mental institution but also private companies consider that mar-
keting over social networks becomes a key tool for promoting
new products or ideas. However, most of the existing studies
focus on the analysis of models without control, i.e., they study
the convergence, dynamical patterns or asymptotic configura-
tions of the open-loop dynamics. Various mathematical models
(DeGroot, 1974; Friedkin and Johnsen., 1990; Deffuant et al.,
2000; Hegselmann and Krause, 2002; Altafini, 2013; Chowd-
hury et al., 2016) have been proposed to capture more features
of these complex dynamics. Empirical models based on in vitro
and in vivo experiments have also been developed (Davis, 1996;
Ohtsubo et al., 2002; Kerckhove et al., 2016).
The emergence of consensus received a particular attention
in opinion dynamics (Axelrod, 1997; Galam and Moscovici,
1991). While some mathematical models naturally lead to con-
sensus (DeGroot, 1974; Friedkin and Johnsen., 1990), others
lead to network clustering (Hegselmann and Krause, 2002;
Altafini, 2013; Morărescu and Girard, 2011). In order to enforce
consensus, some recent studies propose the control of one or a
few agents, see Caponigro et al. (2016); Dietrich et al. (2017).
? This work was supported by projects PEPS INS2I IODINE and PEPS S2IH
INS2I YPSOC funded by the CNRS .

Beside these methods of controlling opinion dynamics towards
consensus, we also find recent attempts to control the discrete-
time dynamics of opinions such that as many agents as possible
reach a certain set after a finite number of influences (Hegsel-
mann et al., 2015). In (Masucci and Silva, 2014), the authors
consider multiple influential entities competing to control the
opinion of consumers under a game theoretical setting. How-
ever, this work assumes an undirected graph and a voter model
for opinion dynamics resulting in strategies that are indepen-
dent of the node centrality. On the other hand, (Varma et al.,
2017) considers a similar competition with opinion dynamics
over a directed graph and no budget constraints.
In this paper, we consider a different problem that requires min-
imizing the distance between opinions and a desired value using
a given control/marketing budget. Moreover, we assume that
the maximal marketing influence cannot instantaneously shift
the opinion of one individual to the desired value. Basically,
we consider a continuous time opinion dynamics and we want
to design a marketing strategy that minimizes the distance be-
tween opinions and the desired value after a given finite number
of discrete-time campaigns under budget constraints. To solve
this control design problem we write the overall closed-loop
dynamics as a linear-impulsive system and we show that the
optimal strategy is to influence as much as possible the most
central/popular individuals of the network. (see Bonacich and
Lloyd (2001) for a formal definition of centrality).
To the best of our knowledge our work is different from all the
existing results on opinion dynamics control. Unlike the few



previous works on the control of opinions in social networks,
we do not control the state of the influencing entity. Instead,
we consider that value as fixed and we control the influence
weight that the marketer has on different individuals of the
social network. By doing so, we emphasize the advantages of
targeted marketing with respect to broadcasting strategies when
budget constraints have to be taken into account. Moreover, we
show that, although the individual control action ui(tk) at time
tk can be chosen in the interval [0, ū], the optimal choice is
discrete: either 0 or ū.
The rest of the paper is organized as follows. Section 2 formu-
lates the opinion dynamics control problem under considera-
tion. A useful preliminary result for solving a specific optimiza-
tion problem with constraints is given in Section 3. To motivate
our analysis, we emphasize in Section 4 the improvements that
can be obtained by targeted advertising with respect to a uni-
form/broadcasting control. Section 5 contains the results related
to the optimal control strategy. We first analyze the case when
the campaign budget is given a priori and must be optimally
partitioned among the network agents. Secondly, we look at the
case when the campaign budget is unknown but the campaigns
are distanced in time. Both cases point out that the optimal
control contains only 0 or ū actions. These results motivate us to
study in Section 6 the spatio-temporal distribution of the budget
under the assumption that all the components of u(tk) are either
0 or ū. Numerical examples and concluding remarks end the
paper.

2. PROBLEM STATEMENT

We consider an entity (for example, a governmental institution
or a company) that is interested in attracting consumers to a
certain opinion. Consumers belong to a social network and we
refer to any consumer as an agent. For the sake of simplicity,
we consider a fixed social network over the set of vertices
V = {1, 2, . . . , N} of N agents. In other words, we identify
each agent with its index in the set V . To agent n ∈ V
we assign a normalized scalar opinion xn(t) ∈ [0, 1] that
represents its opinion level and can be interpreted e.g., as the
probability for an agent to act as desired. We use x(t) =
(x1(t), x2(t), . . . , xN (t))> to denote the state of the network
at any time t, where x(t) ∈ X and X = [0, 1]N .

In order to obtain a larger market share with a minimum in-
vestment, the external entity applies an action vector u(tk) =
(u1(tk), . . . , uN (tk))> ∈ Ui in marketing campaigns at dis-
crete time instants tk ∈ T , k ∈ N. A given action therefore
corresponds to a given marketing campaign aiming at influ-
encing the consumer’s opinion. The instants corresponding to
the campaigns are known and are collected in the set T =
{t0, t1, . . . , tM}. Between two consecutive campaigns, the con-
sumer’s opinion is only influenced by the other consumers of
the network. We assume that tk− tk−1 = δk ∈ [δm, δM ] where
δm < δM are two fixed real numbers.
Throughout the paper we refer to d ∈ {0, 1} as the desired
opinion that the external entity wants to be adopted. We con-
sider ∀i ∈ V the following dynamics:

ẋi(t) =

N∑
j=1

aij(xj(t)− xi(t)), t ∈ [tk, tk+1)

xi(tk) = ui(tk)d+ (1− ui(tk))xi(t
−
k )

, ∀k ∈ N,

(1)
where ui(tk) ∈ [0, ū] with ū < 1, ∀i ∈ V and

M∑
k=0

N∑
i=1

ui(tk) ≤ B

where B represents the total budget of the external entity for
the marketing campaigns.
Dynamics (1) can be rewritten using the collective variable
X(t) = (d, x(t))> as:{

Ẋ(t) = −LX(t)

X(tk) = PX(t−k )
, (2)

where

L =

(
0 01,N

0N,1 L

)
, P =

(
1 01,N

u(tk) IN − diag(u(tk))

)
with diag(u(tk)) ∈ RN×N being the diagonal matrix having
the components of u(tk) on the diagonal.
Remark 1. It is noteworthy that:

• L is a Laplacian matrix corresponding to a network of
N + 1 agents. The first agent represents the external
entity and is not connected to any other agent while the
rest of the agents represents the consumers and are con-
nected through the social network defined by the influence
weights aij .

• P is a row stochastic matrix that can be interpreted as a
Perron matrix associated with the tree having the external
entity as a parent of all the other nodes. Consequently,
without budget constraints, the network reaches, at least
asymptotically, the value d.

Several space-time control strategies can be implemented under
the budget constraints. For instance, we can spend the same
budget for each agent i.e., ui(tk) = uj(tk), ∀i, j ∈ V , we
can also allocate the entire budget for specific agents of the
network. Moreover, the budget can be spent either on few
or many campaigns. Our objective is to design a space-time
control strategy that minimizes the following cost function

JT =

N∑
i=1

|xi(T )− d| (3)

for some T > tM , and we have the cost associated with the
asymptotic opinion given by

J∞ =

N∑
i=1

lim
t→∞

|xi(t)− d| (4)

This can be interpreted as follows. If the entity (a governmental
institution for example) is interested in convincing the public
to buy some product or change their habits (practice sports or
quit smoking for instance), it will try to move the asymptotic
consensus value of the network as close as possible to the
desired value, i.e. minimize J∞. In some other cases, like an
election campaign which targets to get the opinions close to
d within a finite time T , we will minimize JT . It is worth
mentioning that between campaigns and after the last campaign
the opinions evolve according to consensus dynamics.

3. PRELIMINARIES

We first state a very useful Lemma which will help us to find
the optimal solutions for many sub-cases of our problem.
Lemma 1. Given an optimization problem (OP) of the form



minimize
y∈RL

C(y)

subject to 0 ≤ yi ≤ ȳ < 1,∑L
i=1 yi ≤ B.

(5)

where C(y) is a decreasing convex function in yi such that one
of the following two conditions hold
Case 1: ∀ i ∈ {1, . . . , L}, ∃g(y) ≥ 0 such that

∂C(y)

∂yi
= −cig(y);

Case 2:
∂C(y)

∂yi
=

1

1− yi
for all i ∈ {1, . . . , L}.

Then, a solution y∗ to this OP is given by water-filling as
follows

y∗R(i) =


ȳ if i ≤

⌊
B
Lȳ

⌋
B − ȳL

⌊
B
Lȳ

⌋
if i =

⌈
B
Lȳ

⌉
0 otherwise

(6)

where R : {1, . . . , L} 7→ {1, . . . , L} is any bijection for Case
2 and, a bijection satisfying

cR(1) ≥ cR(2) ≥ · · · ≥ cR(L).

for Case 1.

4. THE BROADCASTING CASE STUDY

To emphasize the relevance of the problem under consideration,
we will show that for some particular network topologies we
can obtain a significant improvement of the revenue by using
targeted marketing instead of broadcasting-based marketing in
which the marketer allocates the same amount of resource to all
the agents.
First, we derive the optimal revenue that can be obtained by
implementing a broadcasting strategy i.e., ui(tk) = uj(tk) ,
αk, ∀i, j ∈ V . We suppose that the graph representing the
social network contains a spanning tree. Let v be the right
eigenvector of L associated with the eigenvalue 0 and satisfying
v>1N = 1. Therefore, in the absence of any control action,
one has that limt→∞ x(t) = v>x(0)1N , x∞0 . Let us also
introduce the following notation:

x∞k = lim
t→∞

e−L(t−tk)x(tk) = v>x(tk)1N , ∀k ∈ N.

Following (2) and using δk = tk+1 − tk, Dk = diag(u(tk))
one deduces that:
x∞k+1 = v>x(tk+1)1N

= v>
(
u(tk+1)d+ (IN −Dk+1)x(t−k+1)

)
1N

= v>
(
u(tk+1)d+ (IN −Dk+1)e−Lδkx(tk)

)
1N .

Since v>L = 0N one has that v>e−Lδk = v> and conse-
quently one obtains that
x∞k+1 − x∞k = v>

(
u(tk+1)d−Dk+1e

−Lδkx(tk)
)
1N . (7)

In the case of broadcasting one has u(tk) = αk1N and Dk =
αkIN , where αk ∈ [0, ū] for all k ∈ {0, . . . ,M}. Therefore,
using v>1N = 1, (7) becomes

x∞k+1 − x∞k = αk+1(d1N − x∞k ),

which can be equivalently rewritten as
(d1N − x∞k+1) = (1− αk+1)(d1N − x∞k ). (8)

Using (8) recursively one obtains that

J∞(α) = (d1N − x∞M ) =

M∏
`=0

(1− α`)(d1N − x∞0 ). (9)

where JB(α) denotes the cost associated with a broadcasting
strategy using αk at stage tk.
Proposition 1. The broadcasting cost J∞(α) is minimized by
using the maximum possible investments as soon as possible,
i.e.

αk =


ū if k ≤

⌊
B
Nū

⌋
B − ūN

⌊
B
Nū

⌋
if k =

⌈
B
Nū

⌉
0 otherwise

(10)

Proof. Minimizing J∞(α) under the broadcasting strategy
assumption is equivalent to minimizing

∏k+1
`=0 (1 − α`). This

is equivalent to minimizing

C(α) = log

(
k+1∏
`=0

(1− α`)

)
and we have

∂C

∂α`
= − 1

1− α`
(11)

This results in an OP which satisfies the conditions to use
Lemma 1 case 2. �

It is noteworthy that for ui ∈ [0, 1) one has that
k+1∏
`=0

(1− α`) ≥ 1−
k+1∑
`=0

α` ≥ 1− B

N
. (12)

The last inequality in (12) comes from the broadcasting hypoth-
esis ui(t`) = α`, ∀i ∈ V which mean that the budget spent in
the `−th campaign is N · α`. Therefore, the total budget for
k + 2 campaigns is N

∑k+1
`=0 α` and has to be smaller than B.

Thus

J = 1>N |(d1N − x∞k+1)| ≥ (1− B

N
)1>N |(d1N − x∞0 )|.

The interpretation of (12) is that for the broadcasting strategy
the minimal cost J is obtained when the whole budget is
spent in one marketing campaign (provided this is possible i.e.,
B ≤ Nū), otherwise the first inequality in (12) becomes strict
meaning that

J > (1− B

N
)1>N |(d1N − x∞0 )|.

Let us now suppose that the graph under consideration is
a tree having the first node as root. Then, using a targeted
marketing in which the external entity influences only the root,
we will show that, under the same budget constraints, the cost
J will be smaller. Indeed, for this graph topology one has
v = (1, 0, . . . , 0)> yielding x∞k = x1(tk)1N . Moreover, the
dynamics of x1(·) writes as:{

ẋ1(t) = 0, t ∈ [tk, tk+1)

x1(tk) = u1(tk)d+ (1− u1(tk))x1(t−k )
, ∀k ∈ N. (13)

Therefore,
x1(tk) = u1(tk)d+ (1− u1(tk))x1(tk−1)

yielding
d− x1(tk) = (1− u1(tk))(d− x1(tk−1)),

which is equivalent to (8). As we have seen before, in the
broadcasting strategy one has

∑k+1
`=0 α` ≤

B
N whereas targeting

only the root, the constraint becomes
∑k+1
`=0 u1(t`) ≤ B.

Therefore, for any given broadcasting strategy (u1, u2, . . . , uk)



there exists a strategy targeted on the root that consists of
repeating N times (u1, u2, . . . , uk). Doing so, one obtains

(d1N − x∞k+1) =

[
k+1∏
`=0

(1− α`)

]N
(d1N − x∞0 ).

which leads to a much smaller cost J i.e., the strategy is more
efficient.

5. GENERAL OPTIMAL SPACE-TIME CONTROL
STRATEGY

First, we rewrite the optimal control problem as an optimization
problem by treating the control u(tk) as an NM dimensional
vector to optimize. We denote ui,k = ui(tk) to represent the
control for agent i ∈ V at time tk. Then our problem can be
rewritten as

Minimize
u∈RNM

JT (u)

Subject to 0 ≤ ui,k ≤ ū ∀i ∈ V, k ∈ {0, . . . ,M},
and

∑N
i=1

∑M
k=1 ui,k ≤ B

(14)

Here, JT (u) is a multilinear function in u. Before solving prob-
lem (14) we want to get further insights on the solution’s struc-
ture, which will lead to important simplifications. Therefore,
instead of solving the general optimization problem (14), we
consider splitting our problem into time-allocation and space-
allocation. For a given time-allocation, i.e. if we know that for
stage k a maximum budget of βk ≤ B has been allocated,
we find the optimal control strategy for the k−th stage. More-
over, for long stage durations (i.e., tk+1 − tk large) and given
temporal budget allocation (β0, . . . , βM ), we characterize the
optimal space allocation of the budget. Based on these results,
we propose a discrete-action spatio-temporal control strategy.

5.1 Minimizing the per-stage cost

In this section we consider that the budget βk for each campaign
is a priori given, and optimize the corresponding |d1N − x∞k |.
Denote the budget for stage k by βk such that

N∑
i=1

ui(tk) ≤ βk (15)

The corresponding cost for the stage k is written as

J∞k (u(tk)) = (d1N − x∞k ) = |d−
N∑
i=1

vixi(tk)|

= |d−
N∑
i=1

vi(ui(tk)d+ (1− ui(tk))xi(t
−
k ))|

(16)

We use γi = vi|d − xi(t−k )| to denote the gain by investing in
agent i ∈ V . Define by R : V → V , a bijection which sorts the
agents based on decreasing γi, i.e.

γR(1) ≥ γR(2) ≥ · · · ≥ γR(N)

Proposition 2. The cost J∞k (u(tk)) is minimized by the fol-
lowing investment profile

u∗R(i)(k) =


ū if i ≤

⌊
βk

ū

⌋
βk − ū

⌊
βk

ū

⌋
if i =

⌈
βk

ū

⌉
0 otherwise

(17)

Proof. Due to space limitation the proof is omitted.

5.2 Space allocation for long stage duration

In the following we consider that a finite number of marketing
campaigns with a priori fixed budget are scheduled such that
tk+1 − tk is very large for each k ∈ {0, 1, . . . ,M − 1}. In this
case, we can assume that xi(t−k+1) = x∞k for all i ∈ V and
k ∈ {0, 1, . . . ,M − 1}. Under this assumption, we write

xi(t
−
1 ) = x∞0 (u(t0)) =

N∑
i=1

vi(dui(t0) + xi(t
−
0 )(1− ui(tk)))

(18)
for any i ∈ V . Subsequently, we have

x∞k (u(t0), u(t1), . . . , u(tk)) =

N∑
i=1

vi [dui(tk)

+x∞k−1(u(t0), . . . , u(tk−1))(1− ui(tk))
] (19)

for all k ∈ {1, 2, . . . ,M}.
Our objective is to minimize

J∞ =
∣∣x∞M (u(t0), . . . , u(tM ))− d

∣∣
and this can be done using the proposition below. First, let us
define Sk : V → V a bijection such that S0 = R and for all
k ∈ {1, 2, . . . ,M}, Sk gives the agent index after sorting over
vi, i.e.,

vSk(1) ≥ vSk(2) ≥ · · · ≥ vSk(N)

Proposition 3. Let the temporal budget allocation be given by

β = (β0, . . . , βM ) such that
M∑
k=1

βk ≤ B and βk ≤ Nū. Then,

the optimal allocation per agent minimizing the cost J(u) is
given by

u∗Sk(i)(k) =


ū if i ≤

⌊
βk

ū

⌋
βk − ū

⌊
βk

ū

⌋
if i =

⌈
βk

ū

⌉
0 otherwise

(20)

Proof. Due to space limitation the proof is omitted.

6. DISCRETE-ACTION SPACE-TIME CONTROL
STRATEGY

Motivated by the results in Propositions 2 and 3, in this section
we consider that ui(tk) ∈ {0, ū},∀i ∈ V, k ∈ N and B = Kū
with K ∈ N given a priori. The objective is to numerically find
the best space-time control strategy for a given initial state x0

of the network.

6.1 Algorithms

Let us consider in turn the cases of short and long stages. In
the short-stage case, given a time allocation consisting of the
budgets βk = bkū at each stage, Proposition 2 tells us how to
allocate each stage budget optimally across the agents. Denote
all possible budgets at one stage by B = {0, . . . ,min{N,K}}.
A very simple algorithm is then to search in a brute-force
manner all possible time allocations b = (b0, . . . , bM ) ∈
BM+1, subject to the constraint

∑
k bk ≤ K. For each such

vector b, we simulate the system from x0 with dynamics (1)
where the budget bk is allocated with Proposition 2, and we
obtain a final state xF (b) = v>x(tM )1N (the infinite-time



state of the network after the last campaign). We retain a
solution with the best cost:

min
b
|x1,F (b)− d|

where subscript 1 denotes the first agent (recall that the agents
all have the same opinion at infinite time). Note that this cost is
J∞/N ; we do not sum it over all the agents because this version
is easier to interpret as a deviation of each agent from the target
state. Furthermore, the simulation can be done in closed form,
using the fact that x−(tk+1) = e−Lδkx(tk). The complexity of
this search isO(N3(M+1)(min{N,K}+1)M+1), dominated
by the exponential term. Therefore, this approach will only be
feasible for small values of N or K, and especially of M .
Considering now the long-stage case, we could still implement
a similar brute-force search, but using dynamics (19) for inter-
stage propagation and Proposition 3 for allocation over agents.
However, now we can do better by taking advantage of the fact
that for all k > 1, the opinions of all the agents reach identical
values. Using this, we will derive a more efficient, dynamic
programming solution to the optimal control problem:

min
b
|x1,F (b)− d|

where the long-stage dynamics apply but by a slight abuse we
keep it the same as in the previous section.

To obtain the DP algorithm, define for k = 1, . . . ,M,M +
1 =: F a new state signal zk = [yk, rk]> ∈ Z := [0, 1] ×
{0, . . . ,K}. In this signal, yk = x∞k−1, the opinion resulting
from long-term propagation after the k− 1th campaign, and rk
is the remaining budget to apply (we will start from r0 = K).
Here, F is associated with the infinite-time state of the network.
We will compute a value function Vk(zk), representing the best
cost attainable from stage k, if the agent state is yk and budget
rk remains:
VF (zF ) = |xF − d|,∀rF
Vk(zk) = min

min{rk,N}
bk=0 Vk+1(g(zk, bk)), k = M, . . . , 1

Here, the dynamics g : Z × B → Z are given by:
yk+1 = v>x(tk), rk+1 = rk − bk

where xi(tk) = ui(bk)d + (1 − ui(bk))yk is the network state
after campaign k, in which the agent allocations ui(bk) are
computed by distributing budget bk with Proposition 3.

At stage 0, special dynamics g0 : X × B → Z apply, because
the initial state of the network cannot be represented by a single
number:

y1 = v>x(t0), r1 = K − b0
where xi(t0) = ui(b0)d + (1 − ui(b0))xi,0 and – differently
from the other steps – ui(b0) is found with Proposition 2.

Once Vk is available, an optimal solution is found by a forward
pass, as follows:

b∗0 = arg min
min{K,N}
b0=0 V1(g0(x0, b0)), z∗1 = g0(x0, b

∗
0)

b∗k = arg min
min{rk,N}
bk=0 Vk+1(g(z∗k, bk)), z∗k+1 = g(z∗k, b

∗
k)

for k = 1, . . . ,M

and the optimal cost of the overall solution is simply the
minimum value at the first step.

To implement this algorithm in practice, we will discretize
the continuous state y into Y points, and interpolate the value
function on the grid formed by these points, see Buşoniu et al.
(2010) for details. The complexity of the backward pass for
value function computation isO(MY (min{N,K}+1)N) (we

disregard the complexity of the forward pass since it is much
smaller). To develop an intuition, take the case N < K; then
the algorithm is quadratic in N and linear in M and Y . This
allows us to apply the algorithm to much larger problems than
the brute-force search above. Finally, note that in principle we
could develop such a DP algorithm for the short-stage problem,
but there we cannot condense the network state into a single
number. Each agent state would have to be discretized instead,
leading to a memory and time complexity proportional to Y N ,
which makes the algorithm unfeasible for more than a few
agents.

6.2 Numerical results

We begin by evaluating the brute-force algorithm on a small-
scale problem with short stages. Then, we move to the long-
stage case, where for the same network we compare DP and the
brute-force method, confirming that they get the same result.

Consider N = 15 agents connected on the graph from Figure
1, where the size of the node corresponds to its centrality.
There are 4 stages, corresponding to M = 3, and the budget
K = 15 = N . The initial states of the agents are random. For
a short stage length δk = 0.5 ∀k, the brute-force approach gets
the results from Figure 2. The final cost (each individual agent’s
difference from the desired opinion) is 0.2485. Table 1, left
shows the agents influenced at each stage. Reexamining Figure
1, we see that most of these agents have a large centrality,
which is also the reason for which the algorithm selects them.
An exception is agent 6 which has a low centrality, but is still
influenced at many stages as x6(0) ≈ 0.1.

Figure 1. Small-scale graph.

Campaign Agents
0 3,5,6,7,8,14
1 3,6,7
2 3,6,7,9
3 3,9

Campaign Agents
0 3,6,7,8
1 2,3,7,9
2 2,3,7,9
3 2,3,9

Table 1. Agents influenced in each campaign. Left:
short stages. Right: long stages.

We take now the same problem and make a single change: the
stages become long (i.e., tk+1 − tk → ∞). We apply DP,
with a discretization of y into 10 points. The results are in
Figure 3, with the specific agents being controlled shown on
the right side of Table 1. Note the solution is different from the
short-stage case, and the final cost is 0.2553, slightly worse,
which indicates that giving up the fine-grained control of the
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Figure 2. Results for short stages. The bottom plot shows the budget allocated by the
algorithm at each stage. The top plot shows the opinions of the agents, with an
additional, long stage converging to the average opinion (so the last stage duration
is not to scale). The circles indicate the opinions right before applying the control
at each stage; note the discontinuous transitions of the opinions after control.

agents over time leads to some losses, but they are small. To
evaluate the impact of function approximation (interpolation),
we also run the brute-force search, since in this problem it is
still feasible. It gives the same strategy and cost as DP, so we
do not show the result. Note that unlike before, agent 6 is only
influenced at k = 0 as the stage durations are long and its
opinion value plays a role only at the first stage.
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Figure 3. Results for long stages. The continuous opinion dynamics is plotted for
t ∈ [tk, tk + 25) per stage k, which is sufficient to observe the long stage
behavior, i.e., the convergence of opinions of the agents.

7. CONCLUSIONS

In its full generality, the problem of space-time budget alloca-
tion problem over a social network is seen to be non-trivial.
However, it can be solved in several special cases of practical
interest. If for every marketing campaign, the budget is allo-
cated uniformly over the agents, the problem becomes a pure
time budget control and can be solved. On the other hand,
for a given time budget control, the problem becomes a pure
space problem and the optimal way of allocating the budget is
proved to be a water-filling allocation policy. Thirdly, if one
goes for a binary budget allocation i.e., the marketer either
allocates a given amount of budget to an agent or nothing, the
space-time budget allocation problem can be solved by using
dynamic programming-based numerical techniques. Numerical
results illustrate how the available budget should be used by the
marketer to reach its objective in terms of desired opinion for
the network.
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