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SOME PROPERTIES AND AN APPLICATION OF

MULTIVARIATE EXPONENTIAL POLYNOMIALS

FENG QI, DA-WEI NIU, DONGKYU LIM, AND BAI-NI GUO

Abstract. In the paper, the authors introduce a notion “multivariate expo-

nential polynomials” which generalize exponential numbers and polynomials,

establish explicit formulas, inversion formulas, and recurrence relations for

multivariate exponential polynomials in terms of the Stirling numbers of the

first and second kinds with the help of the Faà di Bruno formula, two identities

for the Bell polynomials of the second kind, and the inversion theorem for the

Stirling numbers of the first and second kinds, construct some determinantal

inequalities and product inequalities for multivariate exponential polynomials

with the aid of some properties of completely monotonic functions and other

known results, derive the logarithmic convexity and logarithmic concavity for

multivariate exponential polynomials, and finally find an application of multi-

variate exponential polynomials to white noise distribution theory by confirm-

ing that multivariate exponential polynomials satisfy conditions for sequences

required in white noise distribution theory.
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1. Motivations

In combinatorial mathematics, the Bell numbers Bn for n ≥ 0 count the number

of ways a set with n elements can be partitioned into disjoint and nonempty subsets.

These numbers have been studied by mathematicians since the 19th century, and

their roots go back to medieval Japan, but they are named after Eric Temple Bell,

a Scottish-born mathematician and science fiction writer, who lived in the United

States for most of his life and wrote about Bn in the 1930s. The Bell numbers Bn

for n ≥ 0 can be generated by

ee
t−1 =

∞∑
n=0

Bn
tn

n!
= 1 + t+ t2 +

5

6
t3 +

5

8
t4 +

13

30
t5 +

203

720
t6 +

877

5040
t7 + · · ·

and the first twelve Bell numbers Bn for 0 ≤ n ≤ 11 are positive integers

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570.

For detailed information on the Bell numbers Bn, please refer to [15, 17, 20, 23, 36,

40, 49] and plenty of references therein.

As a generalization of the Bell numbers Bn for n ≥ 0, the Touchard polynomials

Tn(x) for n ≥ 0 can be generated by

ex(e
t−1) =

∞∑
n=0

Tn(x)
tn

n!
= 1 + xt+

1

2
x(x+ 1)t2 +

1

6
x
(
x2 + 3x+ 1

)
t3

+
1

24
x
(
x3 + 6x2 + 7x+ 1

)
t4 +

1

120
x
(
x4 + 10x3 + 25x2 + 15x+ 1

)
t5 + · · ·

and the first seven Touchard polynomials Tn(x) for 0 ≤ n ≤ 6 are positive integer

polynomials

1, x, x(x+ 1), x
(
x2 + 3x+ 1

)
, x

(
x3 + 6x2 + 7x+ 1

)
,

x
(
x4 + 10x3 + 25x2 + 15x+ 1

)
, x

(
x5 + 15x4 + 65x3 + 90x2 + 31x+ 1

)
.

It is obvious that Tn(1) = Bn for n ≥ 0. Occasionally the polynomials Tn(x) are also

called [30] the Bell polynomials and denoted by Bn(x). There have been researches

on applications of the Touchard polynomials Tn(x) in nonlinear Fredholm-Volterra

integral equations [30] and soliton theory in [27, 28, 29], including connections

with bilinear and trilinear forms of nonlinear differential equations which possess

soliton solutions. Therefore, applications of the Touchard polynomials Tn(x) to

integrable nonlinear equations are greatly expected and any amendment on multi-

linear forms of soliton equations, even on exact solutions, would be beneficial to

interested audiences in the community. For more information about the Touchard

polynomials Tn(x), please refer to [24, 44, 45, 57] and closely related references

therein.
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For k ≥ 2, let

expk(t) =

k︷ ︸︸ ︷
exp(exp(exp · · · exp(exp(t)) · · · )) =

∞∑
n=0

Bk(n)
tn

n!
.

In the papers [1, Section 3, pp. 84–87], [2, 3, 4], [16, Section 7.3, pp. 63–66], and [25,

Section 4, pp. 329–334], the quantities

bk(n) =
Bk(n)

expk(0)
, n ≥ 0

were introduced, were called the Bell numbers of order k ≥ 2 or the kth order Bell’s

numbers, and were applied as an important example to white noise distribution

theory [26]. The quantities bk(n) satisfy some conditions for sequences required

in white noise distribution theory on a CKS-space. For details, please refer to

Section 5 in this paper. Since b2(n) = Bn, the quantities bk(n) are a generalization

of the Bell numbers Bn. By virtue of the software Mathematica, we can obtain

the power series

exp3(t) = ee + e1+et+
1

2
e1+e(2 + e)t2 +

1

6
e1+e

(
5 + 6e+ e2

)
t3 + · · · .

This implies that the first four Bell numbers b3(n) of order 3 for 0 ≤ n ≤ 3 are 1,

e, e(2 + e), and e
(
5 + 6e + e2

)
, which are not all positive integers. Hence, we can

regard that the Bell numbers bk(n) of order k are not a good generalization of the

Bell numbers Bn = b2(n) for n ≥ 0.

In this paper, we will introduce a notion “multivariate exponential polynomi-

als”, denoted by Qm,n(xm), which generalize exponential numbers Bn and ex-

ponential polynomials Tn(x), establish explicit formulas, inversion formulas, and

recurrence relations for Qm,n(xm) in terms of the Stirling numbers of the first

and second kinds s(n, k) and S(n, k) with the help of the Faà di Bruno formula,

two identities for the Bell polynomials of the second kind Bn,k(xn−k+1), and the

inversion theorem for s(n, k) and S(n, k), construct some determinantal inequal-

ities and product inequalities for Qm,n(xm) with the aid of some properties of

completely monotonic functions, derive the logarithmic convexity and logarith-

mic concavity for the sequences {Qm,n(xm)}n≥0 and
{Qm,n(xm)

n!

}
n≥0 respectively,

and finally find an application of multivariate exponential polynomials Qm,n(xm)

to white noise distribution theory by confirming that the polynomial sequence

{Qm,n(xm), x1, . . . , xm−1 ≥ 2, xm ≥ 1}n≥0 satisfies conditions for sequences re-

quired in white noise distribution theory.

2. Multivariate exponential polynomials

Now we generalize exponential numbers Bn and exponential polynomials Tn(x)

by introducing the notion “multivariate exponential polynomial”.



4 F. QI, D.-W. NIU, D. LIM, AND B.-N. GUO

Definition 2.1. For m ∈ N and t, xk ∈ R with 1 ≤ k ≤ m, denote xm =

(x1, . . . , xm). Define the quantities Qm,n(xm) by

G(t;xm) = e

x1


e

x2

(
e·

··
xm−1

(
exm(et−1)−1

)
−1

)
−1


=

∞∑
n=0

Qm,n(xm)
tn

n!
. (2.1)

Let g(t) = et − 1 for t ∈ R. Then the generating function G(t;xm) of the

quantities Qm,n(xm) for n ≥ 0 is an m-time self-composite function of g(t) in the

manner

G(t;xm) = exp(x1[exp(x2[exp(· · ·xm−1[exp(xm[exp(t)− 1])− 1] · · · )− 1])− 1])

= exp(x1g(x2g(· · ·xm−1g(xmg(t)) · · · )))

= g(x1g(x2g(· · ·xm−1g(xmg(t)) · · · ))) + 1.
(2.2)

In other words, the generating function G(t;xm) = G(t;x1, x2, . . . , xm) satisfies

G(t;x1, x2, . . . , xm) = exp
(
x1G(t;x2, . . . , xm)− 1

)
and G(t;x) = ex(e

t−1).

It is easy to see that Q1,n(1) = Bn and Q1,n(x) = Tn(x) for n ≥ 0, G(0;xm) = 1

and Qm,0(xm) = 1 for m ∈ N, and, by virtue of Mathematica,

Q2,0(x, y) = 1, Q2,1(x, y) = xy, Q2,2(x, y) = xy(1 + y + xy),

Q2,3(x, y) = xy
(
1 + 3y + y2 + 3xy + 3xy2 + x2y2

)
, Q3,0(x, y, z) = 1,

Q3,1(x, y, z) = xyz, Q3,2(x, y, z) = xyz(1 + z + yz + xyz).

(2.3)

All of these are positive integer polynomials of degree m× n.

For conveniently referring to Qm,n(xm), we recommend the names “multi-order

exponential polynomials”, “higher order exponential polynomials”, “multivariate

exponential polynomials”, “exponential polynomials of orderm”, “exponential poly-

nomials of m variables x1, x2, . . . , xm”, or “m-variate exponential polynomials” al-

ternatively for Qm,n(xm).

When x1 = x2 = · · · = xm = 1, we denote Qm,n(1, 1, . . . , 1) by Qm,n and call

them “higher order exponential numbers”, “multi-order exponential numbers”, or

“exponential numbers of order m” alternatively. By Mathematica, we can obtain

the first thirty-two exponential numbers Qm,n for 2 ≤ m ≤ 5 and 0 ≤ n ≤ 7, all of

which are positive integers, listed in Table 1.

On 24 October 2017, we found in [34, Section 5] two tables in which concrete

numbers Qm,n for 2 ≤ m ≤ 5 and 1 ≤ n ≤ 21 are listed.
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Table 1. The first few Qm,n for 2 ≤ m ≤ 5 and 0 ≤ n ≤ 7

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
m = 2 1 1 3 12 60 358 2471 19302
m = 3 1 1 4 22 154 1304 12915 146115
m = 4 1 1 5 35 315 3455 44590 660665
m = 5 1 1 6 51 561 7556 120196 2201856

3. An explicit formula, an identity, and three recurrence relations

for multivariate exponential polynomials

In this section, by virtue of the Faà di Bruno formula, two identities of the

Bell polynomials of the second kind Bn,k(xn−k+1), and the inversion theorem for

the Stirling numbers of the first and second kinds s(n, k) and S(n, k), we will

find explicit formula, an identity, and three recurrence relations for multivariate

exponential polynomials Qm,n(xm).

Roughly judging from those expressions in (2.3), we guess that multivariate

exponential polynomials Qm,n(xm) for m ∈ N and n ≥ 0 should be positive integer

polynomials of degree m× n. This guess will be verified by the following theorem.

Theorem 3.1. Let m ∈ N and n ≥ 0. Multivariate exponential polynomials

Qm,n(xm) can be computed explicitly by

Qm,n(xm) =

(
m∏
q=1

`q−1∑
`q=0

)[
m∏
q=1

S(`q−1, `q)

](
m∏
q=1

x`m−q+1
q

)
, (3.1)

where `0 = n and S(n, k) for n ≥ k ≥ 0, which can be generated by

(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!
,

stand for the Stirling numbers of the second kind. Consequently, multi-order expo-

nential numbers Qm,n can be computed explicitly by

Qm,n =

(
m∏
q=1

`q−1∑
`q=0

)[
m∏
q=1

S(`q−1, `q)

]
. (3.2)

Proof. In combinatorics, the Bell polynomials of the second kind Bn,k(xn−k+1) are

defined by

Bn,k(xn−k+1) =
∑

1≤i≤n−k+1
`i∈{0}∪N∑n−k+1
i=1 i`i=n∑n−k+1
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
(3.3)
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for n ≥ k ≥ 0, see [17, p. 134, Theorem A], and satisfy two identities

Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(xn−k+1) (3.4)

and

Bn,k(1, 1, . . . , 1) = S(n, k) (3.5)

in [17, p. 135], where a and b are any complex numbers. The Faà di Bruno formula

for computing higher order derivatives of composite functions can be described in

terms of the Bell polynomials of the second kind Bn,k(xn−k+1) by

dn

dxn
f ◦ h(x) =

n∑
k=0

f (k)(h(x))Bn,k
(
h′(x), h′′(x), . . . , h(n−k+1)(x)

)
, (3.6)

see [17, p. 139, Theorem C] or [51, Section 2]. Therefore, making use of (3.6), (3.4),

and (3.5) in sequence and considering the composite relation (2.2) inductively yield

∂nG(t;xm)

∂nt
=

n∑
`1=0

∂`1G(u1;xm−1)

∂`1u1
Bn,`1

(
xme

t, . . . , xme
t
)

=

n∑
`1=0

`1∑
`2=0

∂`2G(u2;xm−2)

∂`2u2
B`1,`2

(
xm−1e

u1 , . . . , xm−1e
u1
)
x`1me

`1tS(n, `1)

=

n∑
`1=0

`1∑
`2=0

∂`2G(u2;xm−2)

∂`2u2
x`2m−1e

`2u1S(`1, `2)x`1me
`1tS(n, `1)

= · · · · · ·

=

n∑
`1=0

`1∑
`2=0

· · ·
`m−3∑
`m−2=0

`m−2∑
`m−1=0

∂`m−1G(um−1;x1)

∂`m−1um−1
B`m−2,`m−1

(
x2e

um−2 , . . . ,

x2e
um−2

)
x
`m−2

3 e`m−2um−3S(`m−3, `m−2) · · ·x`2m−1e`2u1S(`1, `2)x`1me
`1tS(n, `1)

=

n∑
`1=0

`1∑
`2=0

· · ·
`m−3∑
`m−2=0

`m−2∑
`m−1=0

`m−1∑
`m=0

d`m eum

d`m um
B`m−1,`m

(
x1e

um−1 , . . . , x1e
um−1

)
× x`m−1

2 e`m−1um−2S(`m−2, `m−1)x
`m−2

3 e`m−2um−3S(`m−3, `m−2)

· · ·x`2m−1e`2u1S(`1, `2)x`1me
`1tS(n, `1)

=

n∑
`1=0

`1∑
`2=0

· · ·
`m−3∑
`m−2=0

`m−2∑
`m−1=0

`m−1∑
`m=0

eumx`m1 e`mum−1S(`m−1, `m)

× x`m−1

2 e`m−1um−2S(`m−2, `m−1)x
`m−2

3 e`m−2um−3S(`m−3, `m−2)

· · ·x`2m−1e`2u1S(`1, `2)x`1me
`1tS(n, `1)

=

(
m∏
q=1

`q−1∑
`q=0

)
eum exp

(
m∑
q=1

`quq−1

)[
m∏
q=1

S(`q−1, `q)

](
m∏
q=1

x`m−q+1
q

)
,
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where u0 = u0(t) = t and uq = uq(uq−1) = xm−q+1(euq−1 − 1) for 1 ≤ q ≤ m.

When t→ 0, it follows that uq → 0 for all 0 ≤ q ≤ m. As a result, by the definition

in (2.1), we have

Qm,n(xm) = lim
t→0

∂nG(t;xm)

∂nt
=

(
m∏
q=1

`q−1∑
`q=0

)[
m∏
q=1

S(`q−1, `q)

](
m∏
q=1

x`m−q+1
q

)
.

The formula (3.1) is thus proved.

The formula (3.2) follows from taking x1 = x2 = · · · = xm = 1 in (3.1). The

proof of Theorem 3.1 is complete. �

Remark 3.1. When letting m = 1, 2, 3 in (3.1), we can recover and find explicit

formulas

Tn(x) =

n∑
k=0

S(n, k)xk, Q2,n(x, y) =

n∑
`1=0

`1∑
`2=0

S(n, `1)S(`1, `2)x`2y`1 , (3.7)

and

Q3,n(x, y, z) =

n∑
`1=0

`1∑
`2=0

`2∑
`3=0

S(n, `1)S(`1, `2)S(`2, `3)x`3y`2z`1 (3.8)

for n ≥ 0. The first formula in (3.7) was also recovered in [39, Theorem 3.1]. The

second formula in (3.7) and the formula (3.8) coincide with those special values

in (2.3). This convinces us that Theorem 3.1 and its proof in this paper are correct.

Theorem 3.2. Let m ∈ N and n ≥ 0. Multivariate exponential polynomials

Qm,n(xm) satisfy the identity(
m∏
q=1

[
1

x
`q−1
q

`q−1∑
`q=0

s(`q−1, `q)

])
Qm,`m(xm) = 1, (3.9)

where `0 = n and s(n, k) for n ≥ k ≥ 0, which can be generated by

[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x| < 1,

stand for the Stirling numbers of the first kind. Consequently, multi-order exponen-

tial numbers Qm,n satisfy the identity(
m∏
q=1

[
`q−1∑
`q=0

s(`q−1, `q)

])
Qm,`m = 1. (3.10)

Proof. The formula (3.1) can be rearranged as

Qm,n(xm) =

n∑
`1=0

S(n, `1)x`1m

`1∑
`2=0

S(`1, `2)x`2m−1
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· · ·
`m−2∑
`m−1=0

S(`m−2, `m−1)x
`m−1

2

`m−1∑
`m=0

S(`m−1, `m)x`m1 . (3.11)

In [52, p. 171, Theorem 12.1], it is stated that, if bα and ak are a collection of

constants independent of n, then

an =

n∑
α=0

S(n, α)bα if and only if bn =

n∑
k=0

s(n, k)ak. (3.12)

Applying this inversion theorem to (3.11) consecutively leads to

n∑
`2=0

S(n, `2)x`2m−1 · · ·
`m−2∑
`m−1=0

S(`m−2, `m−1)x
`m−1

2

`m−1∑
`m=0

S(`m−1, `m)x`m1

=
1

xnm

n∑
`1=0

s(n, `1)Qm,`1(xm),

1

xnm−1

n∑
`2=0

s(n, `2)
1

x`2m

`2∑
`1=0

s(`2, `1)Qm,`1(xm)

=

n∑
`3=0

S(n, `3) · · ·
`m−2∑
`m−1=0

S(`m−2, `m−1)x
`m−1

2

`m−1∑
`m=0

S(`m−1, `m)x`m1 ,

and, inductively,

n∑
`m−1

s(n, `m−1)
1

x
`m−1

3

`m−1∑
`m−2

· · · 1

x`3m−1

`3∑
`2=0

s(`3, `2)
1

x`2m

`2∑
`1=0

s(`2, `1)Qm,`1(xm)

= xn2

n∑
`m=0

S(n, `m)x`m1

which can be further rewritten as

xn1 =

n∑
`1=0

s(n, `1)

x`12

`1∑
`2=0

s(`1, `2)

x`23

`2∑
`3=0

s(`2, `3)

x`34

· · · s(`m−3, `m−2)

x
`m−2

m−1

`m−2∑
`m−1=0

s(`m−2, `m−1)

x
`m−1
m

`m−1∑
`m=0

s(`m−1, `m)Qm,`m(xm)

and the identity (3.9).

The identity (3.10) follows from taking x1 = x2 = · · · = xm = 1 in (3.9). The

proof of Theorem 3.2 is complete. �

Remark 3.2. When letting m = 1, 2, 3 in (3.9), we can recover and derive

n∑
k=0

s(n, k)Tk(x) = xn,

n∑
`1=0

s(n, `1)

y`1

`1∑
`2=0

s(`1, `2)Q2,`2(x, y) = xn, (3.13)
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and
n∑

`1=0

s(n, `1)

y`1

`1∑
`2=0

s(`1, `2)

z`2

`2∑
`3=0

s(`2, `3)Q3,`3(x, y, z) = xn (3.14)

for n ≥ 0. The first identity (3.13) was also obtained in [39, Theorem 3.1]. The

second identity in (3.13) for n = 0, 1, 2, 3 and the identity (3.14) for n = 0, 1, 2 can

be easily verified by special values in (2.3).

Theorem 3.3. Let m ∈ N and 2 ≤ k ≤ m − 1. Then multivariate exponential

polynomials Qm,n(xm) satisfy

Qm,n(xm) =

n∑
`=0

Qk−1,`(xk−1)x`k

× Bn,`(Qm−k,1(xk+1, . . . , xm), . . . , Qm−k,n−`+1(xk+1, . . . , xm)). (3.15)

Consequently, multi-order exponential numbers Qm,n satisfy

Qm,n =

n∑
`=0

Qk−1,`Bn,`(Qm−k,1, . . . , Qm−k,n−`+1). (3.16)

Proof. The generating function in (2.1) can be rewritten as

G(t;x1, . . . , xk−1, xk, xk+1, . . . , xm−1, xm)

= exp(x1g(x2g(· · ·xk−1g(xk[exp(xk+1g(· · ·xm−1g(xmg(t)) · · · ))− 1]) · · · )))

= exp(x1g(x2g(· · ·xk−1g(xk[G(t;xk+1, . . . , xm−1, xm)− 1]) · · · )))

= exp(x1g(x2g(· · ·xk−1[exp(xk[G(t;xk+1, . . . , xm−1, xm)− 1])− 1] · · · )))

= exp(x1g(x2g(· · ·xk−1[exp(v)− 1] · · · )))

= G(xk[G(t;xk+1, . . . , xm−1, xm)− 1];x1, . . . , xk−1),

where 2 ≤ k ≤ m− 1 and v = v(t) = xk[G(t;xk+1, . . . , xm)− 1]. By the definition

in (2.1) and the Faà di Bruno formula (3.6), we can obtain

∂nG(t;xm)

∂tn
=

n∑
`=0

∂`G(v;xk−1)

∂v`
Bn,`

(
v′(t), . . . , v(n−`+1)(t)

)
,

where

v(p)(t) = xk
∂pG(t;xk+1, . . . , xm)

∂tp
, 1 ≤ p ≤ n− `+ 1.

Further taking t→ 0 yields

lim
t→0

∂nG(t;xm)

∂tn
= Qm,n(xm), lim

t→0
v(p)(t) = xkQm−k,p(xk+1, . . . , xm),

lim
t→0

∂`G(v;xk−1)

∂v`
= lim
v→0

∂`G(v;xk−1)

∂v`
= Qk−1,`(xk−1),
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and, consequently,

Qm,n(xm) =

n∑
`=0

Qk−1,`(xk−1)Bn,`(xkQm−k,1(xk+1, . . . , xm), . . . ,

xkQm−k,n−`+1(xk+1, . . . , xm))

=

n∑
`=0

Qk−1,`(xk−1)x`kBn,`(Qm−k,1(xk+1, . . . , xm),

. . . , Qm−k,n−`+1(xk+1, . . . , xm)),

where in the last step we used the identity (3.4). Hence, the identity (3.15) follows.

The identity (3.16) can be derived from (3.15) by taking x1 = x2 = · · · = xm = 1.

The proof of Theorem 3.3 is complete. �

Remark 3.3. In recent years, there have been some literature such as [34, 41, 42,

43, 50, 61, 62, 63, 64] devoted to deep investigation and extensive applications of

the Bell polynomials of the second kind Bn,k(xn−k+1).

Theorem 3.4. Let m ∈ N and n ≥ 0. Multivariate exponential polynomials

Qm,n(xm) satisfy the recurrence relation

Qm,n(xm) =

n∑
`=0

S(n, `)Qm−1,`(xm−1)x`m. (3.17)

Consequently, the explicit formulas (3.1) and (3.9) are valid and

Qm−1,n(xm−1) =
1

xnm

n∑
`=0

s(n, `)Qm,`(xm). (3.18)

Proof. The generating function in (2.1) can be rewritten as

G(t;xm) = G(u;xm−1), u = u(t) = xm(et − 1).

Making use of the Faà di Bruno formula (3.6) and the identity (3.4) gives

∂nG(t;xm)

∂tn
=

n∑
`=0

∂`G(u;xm−1)

∂u`
Bn,`

(
u′(t), . . . , u(n−`+1)(t)

)
=

n∑
`=0

∂`G(u;xm−1)

∂u`
Bn,`

(
xme

t, . . . , xme
t
)

=

n∑
`=0

∂`G(u;xm−1)

∂u`
x`me

`tBn,`
(
1, . . . , 1

)
.

Employing the identity

Bn,k(1, 1, . . . , 1) = S(n, k)

in [17, p. 135] and letting t→ 0 reveal the recurrence relation (3.17).

Using the recurrence relation (3.17) consecutively leads to (3.1).
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Applying the inversion theorem (3.12) to (3.17) results in (3.18).

Utilizing the recurrence relation (3.18) inductively arrives at (3.9). The proof of

Theorem 3.4 is complete. �

Remark 3.4. If taking x1 = · · · = xm = 1 in Theorem 3.4, we can recover (3.2)

and (3.10) and derive recurrence relations

Qm,n =

n∑
`=0

S(n, `)Qm−1,` and Qm−1,n =

n∑
`=0

s(n, `)Qm,`.

4. Inequalities for multivariate exponential polynomials

It seems that there have been more identities than inequalities in combinato-

rial mathematics. In this section, we will construct some determinantal inequal-

ities and product inequalities for multivariate exponential polynomials Qm,n(xm)

and derive the logarithmic convexity and logarithmic concavity for the sequences

{Qm,n(x)}n≥0 and
{Qm,n(x)

n!

}
n≥0 respectively.

Theorem 4.1. Let q ≥ 1 be a positive integer, let |eij |q denote a determinant of

order q with elements eij, and let xk > 0 for 1 ≤ k ≤ m.

(1) If ai for 1 ≤ i ≤ q are non-negative integers, then∣∣(−1)ai+ajQm,ai+aj (xm)
∣∣
q
≥ 0 and

∣∣Qm,ai+aj (xm)
∣∣
q
≥ 0. (4.1)

(2) If a = (a1, a2, . . . , aq) and b = (b1, b2, . . . , bq) are non-increasing q-tuples of

non-negative integers such that
∑k
i=1 ai ≥

∑k
i=1 bi for 1 ≤ k ≤ q − 1 and∑q

i=1 ai =
∑q
i=1 bi, then

q∏
i=1

Qm,ai(xm) ≥
q∏
i=1

Qm,bi(xm). (4.2)

Proof. Recall from [33, Chapter XIII] and [60, Chapter IV] that a function f is said

to be absolutely monotonic on an interval I if it has derivatives of all orders and

f (k−1)(t) ≥ 0 for t ∈ I and k ∈ N. Recall from [33, Chapter XIII], [54, Chapter 1],

and [60, Chapter IV] that an infinitely differentiable function f is said to be com-

pletely monotonic on an interval I if it satisfies (−1)kf (k)(x) ≥ 0 on I for all k ≥ 0.

Theorem 2b in [60, p. 145] reads that, if f1(x) is absolutely monotonic and f2(x)

is completely monotonic on their defined intervals, then their composite function

f1(f2(x)) is completely monotonic on its defined interval. Therefore, since et and

e−t are respectively absolutely and completely monotonic on [0,∞), by induction,

it follows that, when x1, x2, . . . , xm > 0, the generating function G(−t;xm) is com-

pletely monotonic with respect to t ∈ [0,∞). Moreover, by (2.1), it is obvious

that

Qm,n(xm) = (−1)n lim
t→0

∂nG(−t;xm)

∂nt
.
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In [32] and [33, p. 367], it was proved that if f(t) is completely monotonic on

[0,∞), then ∣∣f (ai+aj)(t)∣∣
q
≥ 0 and

∣∣(−1)ai+ajf (ai+aj)(t)
∣∣
q
≥ 0. (4.3)

Applying f(t) to the generating function G(−t;xm) in (4.3) and taking the limit

t→ 0+ give

lim
t→0+

∣∣∣[G(−t;xm)
](ai+aj)
t

∣∣∣
q

=
∣∣(−1)ai+ajQm,ai+aj (xm)

∣∣
q
≥ 0

and

lim
t→0+

∣∣∣(−1)ai+aj
[
G(−t;xm)

](ai+aj)
t

∣∣∣
q

=
∣∣Qm,ai+aj (xm)

∣∣
q
≥ 0

The determinantal inequalities in (4.1) follow.

In [33, p. 367, Theorem 2], it was stated that if f(t) is a completely monotonic

function on [0,∞), then

q∏
i=1

[
(−1)aif (ai)(t)

]
≥

q∏
i=1

[
(−1)bif (bi)(t)

]
. (4.4)

Applying f(t) to the generating function G(−t;xm) in (4.4) and taking the limit

t→ 0+ result in

lim
t→0+

q∏
i=1

[
(−1)ai(G(−t;xm))

(ai)
t

]
=

q∏
i=1

Qm,ai(xm)

≥ lim
t→0+

q∏
i=1

[
(−1)bi(G(−t;xm))

(bi)
t

]
=

q∏
i=1

Qm,bi(xm).

The product inequality (4.2) follows. The proof of Theorem 4.1 is complete. �

Corollary 4.1. Let xk > 0 for 1 ≤ k ≤ m. If ` ≥ 0 and q ≥ k ≥ 0, then

[Qm,q+`(xm)]k[Qm,`(xm)]q−k ≥ [Qm,k+`(xm)]q.

Proof. This follows from taking

a = (

k︷ ︸︸ ︷
q + `, . . . , q + `,

q−k︷ ︸︸ ︷
`, . . . , `) and b = (k + `, k + `, . . . , k + `)

in the inequality (4.2). The proof of Corollary 4.1 is complete. �

Theorem 4.2. When x ≥ 1, the sequence {Tn(x)}n≥0 is logarithmically convex

and the sequence
{Tn(x)

n!

}
n≥0 is logarithmically concave; consequently, for p, q ≥ 0

and x ≥ 1,

Tp(x)Tq(x) ≤ Tp+q(x) ≤
(
p+ q

p

)
Tp(x)Tq(x). (4.5)

When x1, . . . , xm−1 ≥ 2 and xm ≥ 1 with m ≥ 2, the sequence {Qm,n(xm)}n≥0 is

logarithmically convex and the sequence
{Qm,n(xm)

n!

}
n≥0 is logarithmically concave;
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consequently, for p, q ≥ 0, when x1, . . . , xm−1 ≥ 2 and xm ≥ 1 with m ≥ 2,

Qm,p(xm)Qm,q(xm) ≤ Qm,p+q(xm) ≤
(
p+ q

p

)
Qm,p(xm)Qm,q(xm). (4.6)

Proof. In [33, p. 369] and [35, p. 429, Remark], it was obtained that if f(t) is a

completely monotonic function such that f (k)(t) 6= 0 for k ≥ 0, then the sequence

ln
[
(−1)k−1f (k−1)(t)

]
, k ≥ 1 (4.7)

is convex. Applying this conclusion to the generating function G(−t;xm) figures

out that the sequence

ln
[
(−1)k−1(G(−t;xm))

(k−1)
t

]
→ lnQm,k−1(xm), t→ 0+

for k ≥ 1 is convex. Equivalently, the sequence {Qm,n(xm)}n≥0 is logarithmically

convex.

Alternatively, letting ` ≥ 1, n = 2, a1 = `+ 2, a2 = `, and b1 = b2 = `+ 1 in the

inequality (4.2) leads to

Qm,`(xm)Qm,`+2(xm) ≥ Q2
m,`+1(xm)

which means that the sequence {Qm,n(xm)}n≥1 is logarithmically convex.

If {1, X1, X2, . . . } is a logarithmically concave sequence of nonnegative real num-

bers and the sequences {An}n≥0 and {Pn}n≥0 are defined by

∞∑
n=0

Anu
n =

∞∑
n=0

Pn
n!
un = exp

( ∞∑
i=1

Xi
ui

i

)
,

then it was proved in [7, p. 58, Theorem 1] that the sequence {An}n≥0 is logarith-

mically concave and the sequence {Pn}n≥0 is logarithmically convex. By definition,

we see that
∞∑
n=0

Q1,n(x)

n!
tn = ex(e

t−1) = exp

[ ∞∑
n=1

x

(n− 1)!

tn

n

]
.

It is easy to verify that the sequence
{

1, x
(n−1)!

}
n≥1 is logarithmically concave if and

only if x ≥ 1. Therefore, when x ≥ 1, the sequence {Tn(x)}n≥0 is logarithmically

convex and the sequence
{Tn(x)

n!

}
n≥0 is logarithmically concave.

Theorem 2 in [1] states that

(1) if {αn}n≥0 is logarithmically convex with α0 = 1, then

αpαq ≤ αp+q, p, q ≥ 0;

(2) if
{
αn

n!

}
n≥0 is logarithmically concave with α0 = 1, then

αp+q ≤
(
p+ q

p

)
αpαq, p, q ≥ 0.
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Combining this theorem with the logarithmic convexity and logarithmic concavity

of the sequences {Tn(x), x ≥ 1}n≥0 and
{Tn(x)

n! , x ≥ 1
}
n≥0 respectively leads to the

double inequality (4.5).

Lemma 1 in [1] reads that, if
{
βn

n!

}
n≥0 is a logarithmically concave sequence

and r ≥ 0 such that β2 ≤ rβ2
1 , then the sequence

{
1, rβn

(n−1)!}n≥1 is logarithmically

concave. When applying βn = Q1,n(xm) for xm ≥ 1, we have

Q1,0(xm)

0!

Q1,2(xm)

2!
≤
[
Q1,1(xm)

1!

]2
which can be simplified as Q1,2(xm) ≤ 2[Q1,1(xm)]2. Accordingly, the sequence{

1,
rQ1,n(xm)

(n−1)! , xm ≥ 1, r ≥ 2
}
n≥1 is logarithmically concave. Combining this with

the above mentioned [7, Theorem 1] and the fact that

∞∑
n=0

Q2,n(xm−1, xm)
tn

n!
= exp[xm−1(exp(xm(exp(t)− 1))− 1)]

= exp

[
xm−1

( ∞∑
n=0

Q1,n(xm)
tn

n!
− 1

)]
= exp

[ ∞∑
n=1

xm−1Q1,n(xm)

(n− 1)!

tn

n

]
reveals that, when xm ≥ 1 and xm−1 ≥ 2, the sequences {Q2,n(xm−1, xm)}n≥0
and

{Q2,n(xm−1,xm)
n!

}
n≥0 are logarithmically convex and logarithmically concave

respectively. Generally, since

∞∑
n=0

Qk,n(xm−k+1, . . . , xm)
tn

n!
= exp

[ ∞∑
n=1

xm−k+1Qk−1,n(xm−k+2, . . . , xm)

(n− 1)!

tn

n

]
for 2 ≤ k ≤ m, by the above mentioned [1, Lemma 1] and [7, Theorem 1], we

can inductively conclude that, when x1, . . . , xm−1 ≥ 2 and xm ≥ 1, the sequences

{Qm,n(xm)}n≥0 and
{Qm,n(xm)

n!

}
n≥0 are logarithmically convex and logarithmically

concave respectively.

Combining the above mentioned [1, Theorem 2] with the logarithmic convexity

and logarithmic concavity of the sequences {Qm,n(xm), x1, . . . , xm−1 ≥ 2, xm ≥
1,m ≥ 2}n≥0 and

{Qm,n(xm)
n! , x1, . . . , xm−1 ≥ 2, xm ≥ 1,m ≥ 2

}
n≥0 respectively

leads to the double inequality (4.6). The proof of Theorem 4.2 is complete. �

Theorem 4.3. Let xk > 0 for 1 ≤ k ≤ m. For q ≥ 0 and n ∈ N, we have[
n∏
`=0

Qm,q+2`+1(xm)

]1/(n+1)

≥

[
n−1∏
`=0

Qm,q+2`+2(xm)

]1/n
. (4.8)

Proof. If f(t) is a completely monotonic function on (0,∞), then, by the convexity

of the sequence (4.7) and Nanson’s inequality listed in [31, p. 205, 3.2.27],[
n∏
`=0

(−1)q+2`+1f (q+2`+1)(t)

]1/(n+1)

≥

[
n∏
`=1

(−1)q+2`f (q+2`)(t)

]1/n
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for q ≥ 0. Replacing f(t) by G(−t;xm) in the above inequality results in[
n∏
`=0

(−1)q+1(G(−t;xm))
(q+2`+1)
t

]1/(n+1)

≥

[
n∏
`=1

(−1)q(G(−t;xm))
(q+2`)
t

]1/n
for q ≥ 0. Letting t → 0+ in the above inequality leads to (4.8). The proof of

Theorem 4.3 is complete. �

Theorem 4.4. Let xk > 0 for 1 ≤ k ≤ m. If ` ≥ 0, n ≥ k ≥ q, 2k ≥ n, and

2q ≥ n, then

Qm,k+`(xm)Qm,n−k+`(xm) ≥ Qm,q+`(xm)Qm,n−q+`(xm). (4.9)

Proof. In [58, p. 397, Theorem D], it was recovered that, if f(t) is a completely

monotonic function on (0,∞) and if n ≥ k ≥ q, k ≥ n− k, and q ≥ n− q, then

(−1)nf (k)(t)f (n−k)(t) ≥ (−1)nf (q)(t)f (n−q)(t).

Replacing f(t) by the function (−1)`[G(−t;xm)]
(`)
t in the above inequality leads to

(−1)n[G(−t;xm)]
(k+`)
t [G(−t;xm)]

(n−k+`)
t

≥ (−1)n[G(−t;xm)]
(q+`)
t [G(−t;xm)]

(n−q+`)
t .

Further taking t → 0+ finds the inequality (4.9). The proof of Theorem 4.4 is

complete. �

Theorem 4.5. Let xk > 0 for 1 ≤ k ≤ m. For ` ≥ 0 and q, n ∈ N, let

Gm,`,q,n = Qm,`+2q+n(xm)[Qm,`(xm)]2 −Qm,`+q+n(xm)Qm,`+q(xm)Qm,`(xm)

−Qm,`+n(xm)Qm,`+2q(xm)Qm,`(xm) +Qm,`+n(xm)[Qm,`+q(xm)]2,

Hm,`,q,n = Qm,`+2q+n(xm)[Qm,`(xm)]2 − 2Qm,`+q+n(xm)Qm,`+q(xm)Qm,`(xm)

+Qm,`+n(xm)[Qm,`+q(xm)]2,

Im,`,q,n = Qm,`+2q+n(xm)[Qm,`(xm)]2 − 2Qm,`+n(xm)Qm,`+2q(xm)Qm,`(xm)

+Qm,`+n(xm)[Qm,`+q(xm)]2.

Then
Gm,`,q,n ≥ 0, Hm,`,q,n ≥ 0,

Hm,`,q,n Q Gm,`,q,n when q ≶ n,

Im,`,q,n ≥ Gm,`,q,n ≥ 0 when n ≥ q.

(4.10)

Proof. In [59, Theorem 1 and Remark 2], it was obtained that, if f(t) is completely

monotonic on (0,∞) and

Gq,n(t) = (−1)n
{
f (n+2q)(t)f2(t)− f (n+q)(t)f (q)(t)f(t)

− f (n)(t)f (2q)(t)f(t) + f (n)(t)
[
f (q)(t)

]2}
,
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Hq,n(t) = (−1)n
{
f (n+2q)(t)f2(t)− 2f (n+q)(t)f (q)(t)f(t) + f (n)(t)

[
f (q)(t)

]2}
,

Iq,n(t) = (−1)n
{
f (n+2q)(t)f2(t)− 2f (n)(t)f (2q)(t)f(t) + f (n)(t)

[
f (q)(t)

]2}
for n, q ∈ N, then

Gq,n(t) ≥ 0, Hq,n(t) ≥ 0,

Hq,n(t) Q Gq,n(t) when q ≶ n,

Iq,n(t) ≥ Gq,n(t) ≥ 0 when n ≥ q.

(4.11)

Replacing f(t) by (−1)`[G(−t;xm)]
(`)
t in Gq,n(t), Hq,n(t), and Iq,n(t) and simpli-

fying produce

Gq,n(t) = (−1)`+n
{

[G(−t;xm)]
(`+2q+n)
t

[
[G(−t;xm)]

(`)
t

]2
− [G(−t;xm)]

(`+q+n)
t [G(−t;xm)]

(`+q)
t [G(−t;xm)]

(`)
t

− [G(−t;xm)]
(`+n)
t [G(−t;xm)]

(`+2q)
t [G(−t;xm)]

(`)
t

+ [G(−t;xm)]
(`+n)
t

[
[G(−t;xm)]

(`+q)
t

]2}
,

Hq,n(t) = (−1)`+n
{

[G(−t;xm)]
(`+2q+n)
t

[
[G(−t;xm)]

(`)
t

]2
− 2[G(−t;xm)]

(`+q+n)
t [G(−t;xm)]

(`+q)
t [G(−t;xm)]

(`)
t

+ [G(−t;xm)]
(`+n)
t

[
[G(−t;xm)]

(`+q)
t

]2}
,

Iq,n(t) = (−1)`+n
{

[G(−t;xm)]
(`+2q+n)
t

[
[G(−t;xm)]

(`)
t

]2
− 2[G(−t;xm)]

(`+n)
t [G(−t;xm)]

(`+2q)
t [G(−t;xm)]

(`)
t

+ [G(−t;xm)]
(`+n)
t

[
[G(−t;xm)]

(`+q)
t

]2}
.

Further taking t→ 0+ reveals

lim
t→0+

Gq,n(t) = Gm,`,q,n, lim
t→0+

Hq,n(t) = Hm,`,q,n, lim
t→0+

Iq,n(t) = Im,`,q,n.

Substituting these quantities into (4.11) and simplifying bring about inequalities

in (4.10). The proof of Theorem 4.5 is complete. �

Remark 4.1. When taking x1 = · · · = xm = 1, all results in this section can become

conclusions for multi-order exponential numbers Qm,n.

5. An application to white noise distribution theory

In this section, we finally find an application of multivariate exponential poly-

nomials Qm,n(xm) to white noise distribution theory by confirming that the poly-

nomial sequence {Qm,n(xm), x1, . . . , xm−1 ≥ 2, xm ≥ 1}n≥0 satisfies conditions for

sequences required in white noise distribution theory.

Let {αn}n≥0 be a sequence of positive numbers. In [1, 3, 4, 16, 25] and closely

related references therein, for studying the spaces of test and generalized functions
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and their characterization theorems in white noise distribution theory [26], the

following conditions for the sequence {αn}n≥0 are required:

α0 = 1, inf
n≥0

(αnσ
n) > 0, lim

n→∞

(
αn
n!

)1/n

= 0, lim
n→∞

(
1

n!αn

)1/n

= 0, (5.1)

lim sup
n→∞

[
n!

αn
inf
x>0

Gα(x)

xn

]1/n
<∞, lim sup

n→∞

[
n!αn inf

x>0

G1/α(x)

xn

]1/n
<∞, (5.2)

the sequence
{
αn

n!

}
n≥0 is logarithmically concave, (5.3)

the sequence
{

1
n!αn

}
n≥0 is logarithmically concave, (5.4)

the sequence {αn}n≥0 is logarithmically convex, (5.5)

there exists a constant c1 such that αn ≤ cm1 αm for all n ≤ m, (5.6)

there exists a constant c2 such that αm+n ≤ cm+n
2 αmαn for all m,n ≥ 0, (5.7)

there exists a constant c3 such that αmαn ≤ cm+n
3 αm+n for all m,n ≥ 0, (5.8)

where σ ≥ 1 is a constant,

Gα(x) =

∞∑
n=0

αn
n!
xn, G1/α(x) =

∞∑
n=0

xn

n!αn
.

For details, please read [4, Appendix A] and closely related references therein.

Theorem 4.3 in [16] proved that the condition (5.3) implies the first one in (5.2).

It is easy to check that the first two conditions in (5.1) implies the fourth one

in (5.1). In [2], it was showed that the condition (5.4) implies the second one

in (5.2), while (5.5) implies (5.4). In [25], it was pointed out that the condition (5.8)

implies (5.6). In [4, p. 83], it was concluded that the essential conditions for distri-

bution theory on a CKS-space are the first three in (5.1) and the conditions (5.3),

(5.4), (5.7), and (5.8).

The sequence {Qm,n(xm), x1, . . . , xm−1 ≥ 2, xm ≥ 1}n≥0 clearly satisfies the

first two conditions in (5.1). Theorem 4.2 in this paper shows that the sequence

{Qm,n(xm), x1, . . . , xm−1 ≥ 2, xm ≥ 1}n≥0 satisfies the conditions (5.3) and (5.5).

The left inequalities in (4.5) and (4.6) mean that taking c3 = 1 in (5.8) is sound.

Since
(
p+q
p

)
≤ 2p+q for p, q ≥ 0, the right inequalities in (4.5) and (4.6) imply that

the condition (5.7) applied to the sequence {Qm,n(xm), x1, . . . , xm−1 ≥ 2, xm ≥
1}n≥0 is valid for c2 = 2. Since the generating function G(t;xm) of multivariate

exponential polynomials Qm,n(xm) is an entire function of t ∈ C, by the root

test, the sequence {Qm,n(xm), x1, . . . , xm−1 ≥ 2, xm ≥ 1}n≥0 satisfies the third

condition in (5.1). In conclusion, the sequence {Qm,n(xm), x1, . . . , xm−1 ≥ 2, xm ≥
1}n≥0 satisfies all the essential conditions for sequences required in distribution

theory on a CKS-space.
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6. More remarks

Finally we would like to list more remarks related to something in this paper.

Remark 6.1. In [37, 38], multivariate logarithmic polynomials and their generating

function, the inverse of the generating function G(t;xm), were investigated.

Remark 6.2. On 6 September 2017, Boyadzhiev wrote an e-mail to the first author

and clarified the history of the Touchard polynomials Tn(x) as follows. The polyno-

mials Tn(x) were used as early as 1843 in the works of Grunert (see [9, 10, 22]) and

possibly could have been used before him. Bell [5, 6] called them “exponential poly-

nomials”, so did Touchard [55, 56, 57]. They were called exponential polynomials

also by Rota [53] and by Boyadzhiev [8, 9, 10, 11, 12, 13]. Touchard has no much

contribution to the theory. Most properties were found by Grunert, Bell, and, for

example, in the papers [8, 10, 14, 18, 19]. Using the name “Touchard polynomials”

could be misleading.

Remark 6.3. One of anonymous referees pointed out that the exponential generating

functions ex, ee
x−1, and ee

ex−1−1 have some combinatorial meanings. See [21, pp. 99

and 111], for example.

Remark 6.4. This paper is a revised version of the preprints [46, 47, 48].
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