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In the paper, the authors introduce a notion "multivariate exponential polynomials" which generalize exponential numbers and polynomials, establish explicit formulas, inversion formulas, and recurrence relations for multivariate exponential polynomials in terms of the Stirling numbers of the first and second kinds with the help of the Faà di Bruno formula, two identities for the Bell polynomials of the second kind, and the inversion theorem for the Stirling numbers of the first and second kinds, construct some determinantal inequalities and product inequalities for multivariate exponential polynomials with the aid of some properties of completely monotonic functions and other known results, derive the logarithmic convexity and logarithmic concavity for multivariate exponential polynomials, and finally find an application of multivariate exponential polynomials to white noise distribution theory by confirming that multivariate exponential polynomials satisfy conditions for sequences required in white noise distribution theory.
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Motivations

In combinatorial mathematics, the Bell numbers B n for n ≥ 0 count the number of ways a set with n elements can be partitioned into disjoint and nonempty subsets.

These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan, but they are named after Eric Temple Bell, a Scottish-born mathematician and science fiction writer, who lived in the United

States for most of his life and wrote about B n in the 1930s. The Bell numbers B n

for n ≥ 0 can be generated by For detailed information on the Bell numbers B n , please refer to [START_REF] Canfield | Engel's inequality for Bell numbers[END_REF][START_REF] Comtet | Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition[END_REF][START_REF] Engel | On the average rank of an element in a filter of the partition lattice[END_REF][START_REF] Guo | An explicit formula for Bell numbers in terms of Stirling numbers and hypergeometric functions[END_REF][START_REF] Qi | An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers[END_REF][START_REF] Qi | Some inequalities for the Bell numbers[END_REF][START_REF] Qi | Expansions of the exponential and the logarithm of power series and applications[END_REF] and plenty of references therein.

e e t -
As a generalization of the Bell numbers B n for n ≥ 0, the Touchard polynomials

T n (x) for n ≥ 0 can be generated by e x(e t -1) = ∞ n=0

T n (x)

t n n! = 1 + xt + 1 2
x(x + 1)t 2 + 1 6

x x 2 + 3x + 1 t 3 + 1 24 x x 3 + 6x 2 + 7x + 1 t 4 + 1 120

x x 4 + 10x 3 + 25x 2 + 15x + 1 t 5 + • • • and the first seven Touchard polynomials T n (x) for 0 ≤ n ≤ 6 are positive integer polynomials 1, x, x(x + 1), x x 2 + 3x + 1 , x x 3 + 6x 2 + 7x + 1 ,

x x 4 + 10x 3 + 25x 2 + 15x + 1 , x x 5 + 15x 4 + 65x 3 + 90x 2 + 31x + 1 .

It is obvious that T n (1) = B n for n ≥ 0. Occasionally the polynomials T n (x) are also called [START_REF] Mirzaee | Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials[END_REF] the Bell polynomials and denoted by B n (x). There have been researches on applications of the Touchard polynomials T n (x) in nonlinear Fredholm-Volterra integral equations [START_REF] Mirzaee | Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials[END_REF] and soliton theory in [START_REF] Ma | Bilinear equations, Bell polynomials and linear superposition principle[END_REF][START_REF] Ma | Bilinear equations and resonant solutions characterized by Bell polynomials[END_REF][START_REF] Ma | Trilinear equations, Bell polynomials, and resonant solutions[END_REF], including connections with bilinear and trilinear forms of nonlinear differential equations which possess soliton solutions. Therefore, applications of the Touchard polynomials T n (x) to integrable nonlinear equations are greatly expected and any amendment on multilinear forms of soliton equations, even on exact solutions, would be beneficial to interested audiences in the community. For more information about the Touchard polynomials T n (x), please refer to [START_REF] Howard | A special class of Bell polynomials[END_REF][START_REF] Qi | Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations[END_REF][START_REF] Qi | Some identities for a sequence of unnamed polynomials connected with the Bell polynomials[END_REF][START_REF] Touchard | Sur les cycles des substitutions[END_REF] and closely related references therein.

For k ≥ 2, let

exp k (t) = k exp(exp(exp • • • exp(exp(t)) • • • )) = ∞ n=0 B k (n) t n n! .
In the papers [1, Section 3, pp. 84-87], [START_REF] Asai | Characterization of test functions in CKS-space[END_REF][START_REF] Asai | General characterization theorems and intrinsic topologies in white noise analysis[END_REF][START_REF] Asai | Roles of log-concavity, log-convexity, and growth order in white noise analysis[END_REF], [START_REF] Cochran | A new class of white noise generalized functions[END_REF]Section 7.3,, and [25, Section 4, pp. 329-334], the quantities

b k (n) = B k (n) exp k (0)
, n ≥ 0 were introduced, were called the Bell numbers of order k ≥ 2 or the kth order Bell's numbers, and were applied as an important example to white noise distribution theory [START_REF] Kuo | White Noise Distribution Theory, Probability and Stochastics Series[END_REF]. The quantities b k (n) satisfy some conditions for sequences required in white noise distribution theory on a CKS-space. For details, please refer to to white noise distribution theory by confirming that the polynomial sequence {Q m,n (x m ), x 1 , . . . , x m-1 ≥ 2, x m ≥ 1} n≥0 satisfies conditions for sequences required in white noise distribution theory.

Multivariate exponential polynomials

Now we generalize exponential numbers B n and exponential polynomials T n (x) by introducing the notion "multivariate exponential polynomial". 

Definition 2.1. For m ∈ N and t, x k ∈ R with 1 ≤ k ≤ m, denote x m = (x 1 , . . . , x m ). Define the quantities Q m,n (x m ) by G(t; x m ) = e x1           e x 2 e • • • x m-1 e xm (e t -1) -1 -1 -1           = ∞ n=0 Q m,n (x m ) t n n! . ( 2 
G(t; x m ) = exp(x 1 [exp(x 2 [exp(• • • x m-1 [exp(x m [exp(t) -1]) -1] • • • ) -1]) -1]) = exp(x 1 g(x 2 g(• • • x m-1 g(x m g(t)) • • • ))) = g(x 1 g(x 2 g(• • • x m-1 g(x m g(t)) • • • ))) + 1. (2.2) 
In other words, the generating function G(t; x m ) = G(t; x 1 , x 2 , . . . , x m ) satisfies G(t; x 1 , x 2 , . . . , x m ) = exp x 1 G(t; x 2 , . . . , x m ) -1 and G(t; x) = e x(e t -1) .

It is easy to see that Q 1,n (1) = B n and Q 1,n (x) = T n (x) for n ≥ 0, G(0; x m ) = 1 and Q m,0 (x m ) = 1 for m ∈ N, and, by virtue of Mathematica,

Q 2,0 (x, y) = 1, Q 2,1 (x, y) = xy, Q 2,2 (x, y) = xy(1 + y + xy), Q 2,3 (x, y) = xy 1 + 3y + y 2 + 3xy + 3xy 2 + x 2 y 2 , Q 3,0 (x, y, z) = 1, Q 3,1 (x, y, z) = xyz, Q 3,2 (x, y, z) = xyz(1 + z + yz + xyz). (2.3) 
All of these are positive integer polynomials of degree m × n.

For conveniently referring to Q m,n (x m ), we recommend the names "multi-order exponential polynomials", "higher order exponential polynomials", "multivariate exponential polynomials", "exponential polynomials of order m", "exponential polynomials of m variables x 1 , x 2 , . . . , x m ", or "m-variate exponential polynomials" alternatively for Q m,n (x m ).

When ), and the inversion theorem for the Stirling numbers of the first and second kinds s(n, k) and S(n, k), we will find explicit formula, an identity, and three recurrence relations for multivariate

x 1 = x 2 = • • • = x m = 1, we denote Q m,n ( 
exponential polynomials Q m,n (x m ).
Roughly judging from those expressions in (2.3), we guess that multivariate exponential polynomials Q m,n (x m ) for m ∈ N and n ≥ 0 should be positive integer polynomials of degree m × n. This guess will be verified by the following theorem. 

Q m,n (x m ) = m q=1 q-1 q =0 m q=1 S( q-1 , q ) m q=1 x m-q+1 q , (3.1) 
where 0 = n and S(n, k) for n ≥ k ≥ 0, which can be generated by

(e x -1) k k! = ∞ n=k S(n, k) x n n! ,
stand for the Stirling numbers of the second kind. Consequently, multi-order exponential numbers Q m,n can be computed explicitly by

Q m,n = m q=1 q-1 q =0 m q=1 S( q-1 , q ) . (3.2)
Proof. In combinatorics, the Bell polynomials of the second kind B n,k (x n-k+1 ) are defined by

B n,k (x n-k+1 ) = 1≤i≤n-k+1 i∈{0}∪N n-k+1 i=1 i i=n n-k+1 i=1 i=k n! n-k+1 i=1 i ! n-k+1 i=1 x i i! i (3.3)
for n ≥ k ≥ 0, see [17, p. 134, Theorem A], and satisfy two identities

B n,k abx 1 , ab 2 x 2 , . . . , ab n-k+1 x n-k+1 = a k b n B n,k (x n-k+1 ) (3.4) and B n,k (1, 1, . . . , 1) = S(n, k) (3.5)
in [17, p. 135], where a and b are any complex numbers. The Faà di Bruno formula for computing higher order derivatives of composite functions can be described in terms of the Bell polynomials of the second kind B n,k (x n-k+1 ) by 

d n d x n f • h(x) = n k=0 f (k) (h(x))B n,k h (x), h (x), . . . , h (n-k+1) (x) , (3.6 
∂ n G(t; x m ) ∂ n t = n 1=0 ∂ 1 G(u 1 ; x m-1 ) ∂ 1 u 1 B n, 1 x m e t , . . . , x m e t = n 1=0 1 2 =0 ∂ 2 G(u 2 ; x m-2 ) ∂ 2 u 2 B 1, 2 x m-1 e u1 , . . . , x m-1 e u1 x 1 m e 1t S(n, 1 ) = n 1=0 1 2 =0 ∂ 2 G(u 2 ; x m-2 ) ∂ 2 u 2 x 2 m-1 e 2u1 S( 1 , 2 )x 1 m e 1t S(n, 1 ) = • • • • • • = n 1=0 1 2=0 • • • m-3 m-2=0 m-2 m-1=0 ∂ m-1 G(u m-1 ; x 1 ) ∂ m-1 u m-1 B m-2, m-1 x 2 e um-2 , . . . , x 2 e um-2 x m-2 3 e m-2 um-3 S( m-3 , m-2 ) • • • x 2 m-1 e 2 u1 S( 1 , 2 )x 1 m e 1t S(n, 1 ) = n 1=0 1 2 =0 • • • m-3 m-2=0 m-2 m-1 =0 m-1 m=0 d m e um d m u m B m-1, m x 1 e um-1 , . . . , x 1 e um-1 × x m-1 2 e m-1um-2 S( m-2 , m-1 )x m-2 3 e m-2um-3 S( m-3 , m-2 ) • • • x 2 m-1 e 2 u1 S( 1 , 2 )x 1 m e 1t S(n, 1 ) = n 1 =0 1 2=0 • • • m-3 m-2=0 m-2 m-1=0 m-1 m =0 e um x m 1 e mum-1 S( m-1 , m ) × x m-1 2 e m-1um-2 S( m-2 , m-1 )x m-2 3 e m-2um-3 S( m-3 , m-2 ) • • • x 2 m-1 e 2u1 S( 1 , 2 )x 1 m e 1t S(n, 1 ) = m q=1 q-1 q =0 e um exp m q=1 q u q-1 m q=1 S( q-1 , q ) m q=1 x m-q+1 q ,
where u 0 = u 0 (t) = t and u q = u q (u q-1 ) = x m-q+1 (e uq-1 -1) for 1 ≤ q ≤ m.

When t → 0, it follows that u q → 0 for all 0 ≤ q ≤ m. As a result, by the definition in (2.1), we have

Q m,n (x m ) = lim t→0 ∂ n G(t; x m ) ∂ n t = m q=1 q-1 q =0 m q=1 S( q-1 , q ) m q=1
x m-q+1 q .

The formula (3.1) is thus proved.

The formula (3.2) follows from taking

x 1 = x 2 = • • • = x m = 1 in (3.1)
. The proof of Theorem 3.1 is complete.

Remark 3.1. When letting m = 1, 2, 3 in (3.1), we can recover and find explicit formulas

T n (x) = n k=0 S(n, k)x k , Q 2,n (x, y) = n 1=0 1 2 =0 S(n, 1 )S( 1 , 2 )x 2 y 1 , (3.7) 
and

Q 3,n (x, y, z) = n 1 =0 1 2=0 2 3=0 S(n, 1 )S( 1 , 2 )S( 2 , 3 )x 3 y 2 z 1 (3.8) 
for n ≥ 0. The first formula in (3. 

Q m,n (x m ) satisfy the identity m q=1 1 x q-1 q q-1 q =0 s( q-1 , q ) Q m, m (x m ) = 1, (3.9) 
where 0 = n and s(n, k) for n ≥ k ≥ 0, which can be generated by

[ln(1 + x)] k k! = ∞ n=k s(n, k) x n n! , |x| < 1,
stand for the Stirling numbers of the first kind. Consequently, multi-order exponential numbers Q m,n satisfy the identity

m q=1 q-1 q =0 s( q-1 , q ) Q m, m = 1. (3.10)
Proof. The formula (3.1) can be rearranged as

Q m,n (x m ) = n 1=0 S(n, 1 )x 1 m 1 2 =0 S( 1 , 2 )x 2 m-1 • • • m-2 m-1=0 S( m-2 , m-1 )x m-1 2 m-1 m=0 S( m-1 , m )x m 1 . (3.11)
In [52, p. 171, Theorem 12.1], it is stated that, if b α and a k are a collection of constants independent of n, then

a n = n α=0 S(n, α)b α if and only if b n = n k=0 s(n, k)a k . (3.12)
Applying this inversion theorem to (3.11) consecutively leads to

n 2 =0 S(n, 2 )x 2 m-1 • • • m-2 m-1 =0 S( m-2 , m-1 )x m-1 2 m-1 m =0 S( m-1 , m )x m 1 = 1 x n m n 1 =0 s(n, 1 )Q m, 1 (x m ), 1 x n m-1 n 2=0 s(n, 2 ) 1 x 2 m 2 1=0 s( 2 , 1 )Q m, 1 (x m ) = n 3=0 S(n, 3 ) • • • m-2 m-1=0 S( m-2 , m-1 )x m-1 2 m-1 m=0 S( m-1 , m )x m 1 ,
and, inductively,

n m-1 s(n, m-1 ) 1 x m-1 3 m-1 m-2 • • • 1 x 3 m-1 3 2=0 s( 3 , 2 ) 1 x 2 m 2 1 =0 s( 2 , 1 )Q m, 1 (x m ) = x n 2 n m =0 S(n, m )x m 1
which can be further rewritten as

x n 1 = n 1=0 s(n, 1 ) x 1 2 1 2=0 s( 1 , 2 ) x 2 3 2 3=0 s( 2 , 3 ) x 3 4 • • • s( m-3 , m-2 ) x m-2 m-1 m-2 m-1=0 s( m-2 , m-1 ) x m-1 m m-1 m=0 s( m-1 , m )Q m, m (x m )
and the identity (3.9).

The identity (3.10) follows from taking

x 1 = x 2 = • • • = x m = 1 in (3.9
). The proof of Theorem 3.2 is complete.

Remark 3.2. When letting m = 1, 2, 3 in (3.9), we can recover and derive

n k=0 s(n, k)T k (x) = x n , n 1 =0 s(n, 1 ) y 1 1 2 =0 s( 1 , 2 )Q 2, 2 (x, y) = x n , (3.13) 
and

n 1 =0 s(n, 1 ) y 1 1 2 =0 s( 1 , 2 ) z 2 2 3=0 s( 2 , 3 )Q 3, 3 (x, y, z) = x n (3.14)
for n ≥ 0. The first identity (3.13) was also obtained in [START_REF] Qi | Some inequalities and an application of exponential polynomials[END_REF]Theorem 3.1]. The second identity in (3.13) for n = 0, 1, 2, 3 and the identity (3.14) for n = 0, 1, 2 can be easily verified by special values in (2.3).

Theorem 3.3. Let m ∈ N and 2 ≤ k ≤ m -1. Then multivariate exponential polynomials Q m,n (x m ) satisfy Q m,n (x m ) = n =0 Q k-1, (x k-1 )x k × B n, (Q m-k,1 (x k+1 , . . . , x m ), . . . , Q m-k,n-+1 (x k+1 , . . . , x m )). (3.15)
Consequently, multi-order exponential numbers Q m,n satisfy

Q m,n = n =0 Q k-1, B n, (Q m-k,1 , . . . , Q m-k,n-+1 ). (3.16) 
Proof. The generating function in (2.1) can be rewritten as

G(t; x 1 , . . . , x k-1 , x k , x k+1 , . . . , x m-1 , x m ) = exp(x 1 g(x 2 g(• • • x k-1 g(x k [exp(x k+1 g(• • • x m-1 g(x m g(t)) • • • )) -1]) • • • ))) = exp(x 1 g(x 2 g(• • • x k-1 g(x k [G(t; x k+1 , . . . , x m-1 , x m ) -1]) • • • ))) = exp(x 1 g(x 2 g(• • • x k-1 [exp(x k [G(t; x k+1 , . . . , x m-1 , x m ) -1]) -1] • • • ))) = exp(x 1 g(x 2 g(• • • x k-1 [exp(v) -1] • • • ))) = G(x k [G(t; x k+1 , . . . , x m-1 , x m ) -1]; x 1 , . . . , x k-1 ), where 2 ≤ k ≤ m -1 and v = v(t) = x k [G(t; x k+1 , . . . , x m ) -1]
. By the definition in (2.1) and the Faà di Bruno formula (3.6), we can obtain

∂ n G(t; x m ) ∂t n = n =0 ∂ G(v; x k-1 ) ∂v B n, v (t), . . . , v (n-+1) (t) , where 
v (p) (t) = x k ∂ p G(t; x k+1 , . . . , x m ) ∂t p , 1 ≤ p ≤ n -+ 1.
Further taking t → 0 yields

lim t→0 ∂ n G(t; x m ) ∂t n = Q m,n (x m ), lim t→0 v (p) (t) = x k Q m-k,p (x k+1 , . . . , x m ), lim t→0 ∂ G(v; x k-1 ) ∂v = lim v→0 ∂ G(v; x k-1 ) ∂v = Q k-1, (x k-1 ),
and, consequently,

Q m,n (x m ) = n =0 Q k-1, (x k-1 )B n, (x k Q m-k,1 (x k+1 , . . . , x m ), . . . , x k Q m-k,n-+1 (x k+1 , . . . , x m )) = n =0 Q k-1, (x k-1 )x k B n, (Q m-k,1 (x k+1 , . . . , x m ), . . . , Q m-k,n-+1 (x k+1 , . . . , x m )),
where in the last step we used the identity (3.4). Hence, the identity (3.15) follows.

The identity (3.16) can be derived from (3.15) by taking

x 1 = x 2 = • • • = x m = 1.
The proof of Theorem 3.3 is complete. 

Q m,n (x m ) = n =0 S(n, )Q m-1, (x m-1 )x m . (3.17) 
Consequently, the explicit formulas (3.1) and (3.9) are valid and

Q m-1,n (x m-1 ) = 1 x n m n =0 s(n, )Q m, (x m ). (3.18)
Proof. The generating function in (2.1) can be rewritten as

G(t; x m ) = G(u; x m-1 ), u = u(t) = x m (e t -1).
Making use of the Faà di Bruno formula (3.6) and the identity (3.4) gives

∂ n G(t; x m ) ∂t n = n =0 ∂ G(u; x m-1 ) ∂u B n, u (t), . . . , u (n-+1) (t) = n =0 ∂ G(u; x m-1 ) ∂u B n, x m e t , . . . , x m e t = n =0 ∂ G(u; x m-1 ) ∂u x m e t B n, 1, . . . , 1 .
Employing the identity

B n,k (1, 1, . . . , 1) = S(n, k)
in [17, p. 135] and letting t → 0 reveal the recurrence relation (3.17).

Using the recurrence relation (3.17) consecutively leads to (3.1).

Applying the inversion theorem (3.12) to (3.17) results in (3.18).

Utilizing the recurrence relation (3.18) inductively arrives at (3.9). The proof of Theorem 3.4 is complete. 

Q m,n = n =0 S(n, )Q m-1, and Q m-1,n = n =0 s(n, )Q m, .

Inequalities for multivariate exponential polynomials

It seems that there have been more identities than inequalities in combinatorial mathematics. In this section, we will construct some determinantal inequalities and product inequalities for multivariate exponential polynomials Q m,n (x m ) and derive the logarithmic convexity and logarithmic concavity for the sequences {Q m,n (x)} n≥0 and Qm,n(x) n! n≥0 respectively.

Theorem 4.1. Let q ≥ 1 be a positive integer, let |e ij | q denote a determinant of order q with elements e ij , and let

x k > 0 for 1 ≤ k ≤ m.
(1) If a i for 1 ≤ i ≤ q are non-negative integers, then (-1) ai+aj Q m,ai+aj (x m ) q ≥ 0 and Q m,ai+aj (x m ) q ≥ 0. (4.1)

(2) If a = (a 1 , a 2 , . . . , a q ) and b = (b 1 , b 2 , . . . , b q ) are non-increasing q-tuples of non-negative integers such that

k i=1 a i ≥ k i=1 b i for 1 ≤ k ≤ q -1 and q i=1 a i = q i=1 b i , then q i=1 Q m,ai (x m ) ≥ q i=1 Q m,bi (x m ). (4.2)
Proof. Recall from [33, Chapter XIII] and [60, Chapter IV] that a function f is said to be absolutely monotonic on an interval I if it has derivatives of all orders and

f (k-1) (t) ≥ 0 for t ∈ I and k ∈ N. Recall from [33, Chapter XIII], [54, Chapter 1],
and [60, Chapter IV] that an infinitely differentiable function f is said to be completely monotonic on an interval

I if it satisfies (-1) k f (k) (x) ≥ 0 on I for all k ≥ 0.
Theorem 2b in [60, p. 145] reads that, if f 1 (x) is absolutely monotonic and f 2 (x) is completely monotonic on their defined intervals, then their composite function

f 1 (f 2 (x)
) is completely monotonic on its defined interval. Therefore, since e t and e -t are respectively absolutely and completely monotonic on [0, ∞), by induction, it follows that, when x 1 , x 2 , . . . , x m > 0, the generating function G(-t; x m ) is completely monotonic with respect to t ∈ [0, ∞). Moreover, by (2.1), it is obvious that

Q m,n (x m ) = (-1) n lim t→0 ∂ n G(-t; x m ) ∂ n t .
In [START_REF] Mitrinović | On two-place completely monotonic functions[END_REF] and [33, p. 367], it was proved that if f (t) is completely monotonic on [0, ∞), then f (ai+aj ) (t) q ≥ 0 and (-1) ai+aj f (ai+aj ) (t) q ≥ 0. (4.3)

Applying f (t) to the generating function G(-t; x m ) in (4.3) and taking the limit

t → 0 + give lim t→0 + G(-t; x m ) (ai+aj ) t q = (-1) ai+aj Q m,ai+aj (x m ) q ≥ 0 and lim t→0 + (-1) ai+aj G(-t; x m ) (ai+aj ) t q = Q m,ai+aj (x m ) q ≥ 0
The determinantal inequalities in (4.1) follow.

In [START_REF] Mitrinović | Classical and New Inequalities in Analysis[END_REF]p. 367,Theorem 2], it was stated that if f (t) is a completely monotonic function on [0, ∞), then

q i=1 (-1) ai f (ai) (t) ≥ q i=1 (-1) bi f (bi) (t) . (4.4)
Applying f (t) to the generating function G(-t; x m ) in (4.4) and taking the limit

t → 0 + result in lim t→0 + q i=1 (-1) ai (G(-t; x m )) (ai) t = q i=1 Q m,ai (x m ) ≥ lim t→0 + q i=1 (-1) bi (G(-t; x m )) (bi) t = q i=1 Q m,bi (x m ).
The product inequality (4.2) follows. The proof of Theorem 4.1 is complete.

Corollary 4.1. Let x k > 0 for 1 ≤ k ≤ m. If ≥ 0 and q ≥ k ≥ 0, then [Q m,q+ (x m )] k [Q m, (x m )] q-k ≥ [Q m,k+ (x m )] q .
Proof. This follows from taking

a = ( k q + , . . . , q + , q-k , . . . , ) and b = (k + , k + , . . . , k + )
in the inequality (4.2). The proof of Corollary 4.1 is complete.

Theorem 4.2. When x ≥ 1, the sequence {T n (x)} n≥0 is logarithmically convex and the sequence Tn(x) n! n≥0 is logarithmically concave; consequently, for p, q ≥ 0 and x ≥ 1,

T p (x)T q (x) ≤ T p+q (x) ≤ p + q p T p (x)T q (x). (4.5) 
When x 1 , . . . , x m-1 ≥ 2 and x m ≥ 1 with m ≥ 2, the sequence {Q m,n (x m )} n≥0 is logarithmically convex and the sequence Qm,n(xm) n! n≥0 is logarithmically concave; consequently, for p, q ≥ 0, when x 1 , . . . , x m-1 ≥ 2 and x m ≥ 1 with m ≥ 2,

Q m,p (x m )Q m,q (x m ) ≤ Q m,p+q (x m ) ≤ p + q p Q m,p (x m )Q m,q (x m ). (4.6) 
Proof. In [33, p. 369] and [35, p. 429, Remark], it was obtained that if f (t) is a completely monotonic function such that f (k) (t) = 0 for k ≥ 0, then the sequence

ln (-1) k-1 f (k-1) (t) , k ≥ 1 (4.7)
is convex. Applying this conclusion to the generating function G(-t; x m ) figures out that the sequence ln (-1) k-1 (G(-t; x m ))

(k-1) t → ln Q m,k-1 (x m ), t → 0 + for k ≥ 1 is convex. Equivalently, the sequence {Q m,n (x m )} n≥0 is logarithmically convex. Alternatively, letting ≥ 1, n = 2, a 1 = + 2, a 2 = , and b 1 = b 2 = + 1 in the inequality (4.2) leads to Q m, (x m )Q m, +2 (x m ) ≥ Q 2 m, +1 (x m )
which means that the sequence {Q m,n (x m )} n≥1 is logarithmically convex.

If {1, X 1 , X 2 , . . . } is a logarithmically concave sequence of nonnegative real numbers and the sequences {A n } n≥0 and {P n } n≥0 are defined by

∞ n=0 A n u n = ∞ n=0 P n n! u n = exp ∞ i=1 X i u i i ,
then it was proved in [7, p. 58, Theorem 1] that the sequence {A n } n≥0 is logarithmically concave and the sequence {P n } n≥0 is logarithmically convex. By definition, we see that

∞ n=0 Q 1,n (x) n! t n = e x(e t -1) = exp ∞ n=1 x (n -1)! t n n .
It is easy to verify that the sequence 1, x (n-1)! n≥1 is logarithmically concave if and only if x ≥ 1. Therefore, when x ≥ 1, the sequence {T n (x)} n≥0 is logarithmically convex and the sequence Tn(x) n! n≥0 is logarithmically concave. Theorem 2 in [START_REF] Asai | Bell numbers, log-concavity, and log-convexity[END_REF] states that (1) if {α n } n≥0 is logarithmically convex with α 0 = 1, then α p α q ≤ α p+q , p, q ≥ 0;

(2) if αn n! n≥0 is logarithmically concave with α 0 = 1, then α p+q ≤ p + q p α p α q , p, q ≥ 0.

Combining this theorem with the logarithmic convexity and logarithmic concavity of the sequences {T n (x), x ≥ 1} n≥0 and Tn(x) n! , x ≥ 1 n≥0 respectively leads to the double inequality (4.5). Lemma 1 in [START_REF] Asai | Bell numbers, log-concavity, and log-convexity[END_REF] reads that, if βn n! n≥0 is a logarithmically concave sequence and r ≥ 0 such that β 2 ≤ rβ 2 1 , then the sequence 1, rβn (n-1)! } n≥1 is logarithmically concave. When applying

β n = Q 1,n (x m ) for x m ≥ 1, we have Q 1,0 (x m ) 0! Q 1,2 (x m ) 2! ≤ Q 1,1 (x m ) 1! 2 which can be simplified as Q 1,2 (x m ) ≤ 2[Q 1,1 (x m )] 2 .
Accordingly, the sequence

(n-1)! , x m ≥ 1, r ≥ 2 n≥1 is logarithmically concave. Combining this with the above mentioned [7, Theorem 1] and the fact that 

∞ n=0 Q 2,n (x m-1 , x m ) t n n! = exp[x m-1 (exp(x m (exp(t) -1)) -1)] = exp x m-1 ∞ n=0 Q 1,n (x m ) t n n! -1 = exp ∞ n=1 x m-1 Q 1,n (x m ) (n -1)! t n n reveals that, when x m ≥ 1 and x m-1 ≥ 2, the sequences {Q 2,n (x m-1 , x m )} n≥0
Theorem 4.3. Let x k > 0 for 1 ≤ k ≤ m. For q ≥ 0 and n ∈ N, we have n =0 Q m,q+2 +1 (x m ) 1/(n+1) ≥ n-1 =0 Q m,q+2 +2 (x m ) 1/n . (4.8)
Proof. If f (t) is a completely monotonic function on (0, ∞), then, by the convexity of the sequence (4.7) and Nanson's inequality listed in [31, p. 205, 3.2.27],

n =0 (-1) q+2 +1 f (q+2 +1) (t) 1/(n+1) ≥ n =1 (-1) q+2 f (q+2 ) (t) 1/n
for q ≥ 0. Replacing f (t) by G(-t; x m ) in the above inequality results in n =0

(-1) q+1 (G(-t; x m ))

(q+2 +1) t 1/(n+1) ≥ n =1 (-1) q (G(-t; x m )) (q+2 ) t 1/n
for q ≥ 0. Letting t → 0 + in the above inequality leads to (4.8). The proof of Theorem 4.3 is complete.

Theorem 4.4. Let x k > 0 for 1 ≤ k ≤ m. If ≥ 0, n ≥ k ≥ q, 2k ≥ n, and 2q ≥ n, then Q m,k+ (x m )Q m,n-k+ (x m ) ≥ Q m,q+ (x m )Q m,n-q+ (x m ). ( 4.9) 
Proof. In [58, p. 397, Theorem D], it was recovered that, if f (t) is a completely monotonic function on (0, ∞) and if n ≥ k ≥ q, k ≥ n -k, and q ≥ n -q, then

(-1) n f (k) (t)f (n-k) (t) ≥ (-1) n f (q) (t)f (n-q) (t).
Replacing f (t) by the function (-1) [G(-t; x m )] ( ) t in the above inequality leads to

(-1) n [G(-t; x m )] (k+ ) t [G(-t; x m )] (n-k+ ) t ≥ (-1) n [G(-t; x m )] (q+ ) t [G(-t; x m )] (n-q+ ) t .
Further taking t → 0 + finds the inequality (4.9). The proof of Theorem 4.4 is complete.

Theorem 4.5. Let x k > 0 for 1 ≤ k ≤ m. For ≥ 0 and q, n ∈ N, let

G m, ,q,n = Q m, +2q+n (x m )[Q m, (x m )] 2 -Q m, +q+n (x m )Q m, +q (x m )Q m, (x m ) -Q m, +n (x m )Q m, +2q (x m )Q m, (x m ) + Q m, +n (x m )[Q m, +q (x m )] 2 , H m, ,q,n = Q m, +2q+n (x m )[Q m, (x m )] 2 -2Q m, +q+n (x m )Q m, +q (x m )Q m, (x m ) + Q m, +n (x m )[Q m, +q (x m )] 2 , I m, ,q,n = Q m, +2q+n (x m )[Q m, (x m )] 2 -2Q m, +n (x m )Q m, +2q (x m )Q m, (x m ) + Q m, +n (x m )[Q m, +q (x m )] 2 .
Then G m, ,q,n ≥ 0, H m, ,q,n ≥ 0, H m, ,q,n G m, ,q,n when q ≶ n, I m, ,q,n ≥ G m, ,q,n ≥ 0 when n ≥ q.

(4.10)

Proof. In [59, Theorem 1 and Remark 2], it was obtained that, if f (t) is completely monotonic on (0, ∞) and

G q,n (t) = (-1) n f (n+2q) (t)f 2 (t) -f (n+q) (t)f (q) (t)f (t) -f (n) (t)f (2q) (t)f (t) + f (n) (t) f (q) (t) 2 ,
and their characterization theorems in white noise distribution theory [START_REF] Kuo | White Noise Distribution Theory, Probability and Stochastics Series[END_REF], the following conditions for the sequence {α n } n≥0 are required:

α 0 = 1, inf n≥0 (α n σ n ) > 0, lim n→∞ α n n! 1/n = 0, lim n→∞ 1 n!α n 1/n = 0, (5.1) lim sup n→∞ n! α n inf x>0 G α (x) x n 1/n < ∞, lim sup n→∞ n!α n inf x>0 G 1/α (x) x n 1/n < ∞, (5.2) 
the sequence αn n! n≥0 is logarithmically concave, ( where σ ≥ 1 is a constant,

G α (x) = ∞ n=0 α n n! x n , G 1/α (x) = ∞ n=0 x n n!α n .
For details, please read [4, Appendix A] and closely related references therein.

Theorem 4.3 in [START_REF] Cochran | A new class of white noise generalized functions[END_REF] proved that the condition (5.3) implies the first one in (5.2).

It is easy to check that the first two conditions in (5.1) implies the fourth one in (5.1). In [START_REF] Asai | Characterization of test functions in CKS-space[END_REF], it was showed that the condition (5.4) implies the second one in (5.2), while (5.5) implies (5.4). In [START_REF] Kubo | White noise analysis on a new space of Hida distributions[END_REF], it was pointed out that the condition (5.8) implies (5.6). In [4, p. 83], it was concluded that the essential conditions for distribution theory on a CKS-space are the first three in (5.1) and the conditions (5.3), 1} n≥0 satisfies all the essential conditions for sequences required in distribution theory on a CKS-space.

More remarks

Finally we would like to list more remarks related to something in this paper.

Remark 6.1. In [START_REF] Qi | Integral representations for multivariate logarithmic polynomials[END_REF][START_REF] Qi | On multivariate logarithmic polynomials and their properties[END_REF], multivariate logarithmic polynomials and their generating function, the inverse of the generating function G(t; x m ), were investigated.

Remark 6.2. On 6 September 2017, Boyadzhiev wrote an e-mail to the first author and clarified the history of the Touchard polynomials T n (x) as follows. The polynomials T n (x) were used as early as 1843 in the works of Grunert (see [START_REF] Boyadzhiev | Close encounters with the Stirling numbers of the second kind[END_REF][START_REF] Boyadzhiev | Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals[END_REF][START_REF] Grunert | wo A eine beliebige constante Größe, An eine beliebige und φ(n) eine ganze rationale algebraische Function der positiven ganzen Zahl n bezeichnet[END_REF]) and possibly could have been used before him. Bell [START_REF] Bell | Exponential numbers[END_REF][START_REF] Bell | Exponential polynomials[END_REF] called them "exponential polynomials", so did Touchard [START_REF] Touchard | Nombres exponentiels et nombres de Bernoulli[END_REF][START_REF] Touchard | Propriétés arithmétiques de certains nombres récurrents[END_REF][START_REF] Touchard | Sur les cycles des substitutions[END_REF]. They were called exponential polynomials also by Rota [START_REF] Rota | Finite Operator Calculus[END_REF] and by Boyadzhiev [8,[START_REF] Boyadzhiev | Close encounters with the Stirling numbers of the second kind[END_REF][START_REF] Boyadzhiev | Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals[END_REF][START_REF] Boyadzhiev | Laguerre polynomials of order negative one, and the nth derivative of exp(1/x)[END_REF][START_REF] Boyadzhiev | Power series with binomial sums and asymptotic expansions[END_REF][START_REF] Boyadzhiev | Geometric polynomials: properties and applications to series with zeta values[END_REF]. Touchard has no much contribution to the theory. Most properties were found by Grunert, Bell, and, for example, in the papers [START_REF] Boyadzhiev | A series transformation formula and related polynomials[END_REF][START_REF] Boyadzhiev | Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals[END_REF][START_REF] Carlitz | Single variable Bell polynomials[END_REF][START_REF] Dil | Investigating geometric and exponential polynomials with Euler-Seidel matrices[END_REF][START_REF] Dil | Polynomials related to harmonic numbers and evaluation of harmonic number series I[END_REF]. Using the name "Touchard polynomials" could be misleading.

Remark 6.3. One of anonymous referees pointed out that the exponential generating functions e x , e e x -1 , and e e e x -1 -1 have some combinatorial meanings. See [21, pp. 99 and 111], for example.

Remark 6.4. This paper is a revised version of the preprints [START_REF] Qi | A unified generalization of the Bell numbers and the Touchard polynomials and its properties[END_REF][START_REF] Qi | Generalizations of the Bell numbers and polynomials and their properties[END_REF][START_REF] Qi | Some properties and an application of multivariate exponential polynomials[END_REF].

  This implies that the first four Bell numbers b 3 (n) of order 3 for 0 ≤ n ≤ 3 are 1, e, e(2 + e), and e 5 + 6e + e 2 , which are not all positive integers. Hence, we can regard that the Bell numbers b k (n) of order k are not a good generalization of the Bell numbers B n = b 2 (n) for n ≥ 0.In this paper, we will introduce a notion "multivariate exponential polynomials", denoted by Q m,n (x m ), which generalize exponential numbers B n and exponential polynomials T n (x), establish explicit formulas, inversion formulas, and recurrence relations for Q m,n (x m ) in terms of the Stirling numbers of the first and second kinds s(n, k) and S(n, k) with the help of the Faà di Bruno formula, two identities for the Bell polynomials of the second kind B n,k (x n-k+1 ), and the inversion theorem for s(n, k) and S(n, k), construct some determinantal inequalities and product inequalities for Q m,n (x m ) with the aid of some properties of completely monotonic functions, derive the logarithmic convexity and logarithmic concavity for the sequences {Q m,n (x m )} n≥0 and Qm,n(xm) n! n≥0 respectively, and finally find an application of multivariate exponential polynomials Q m,n (x m )

Theorem 3 . 1 .

 31 Let m ∈ N and n ≥ 0. Multivariate exponential polynomials Q m,n (x m ) can be computed explicitly by

  7) was also recovered in [39, Theorem 3.1]. The second formula in (3.7) and the formula (3.8) coincide with those special values in (2.3). This convinces us that Theorem 3.1 and its proof in this paper are correct. Theorem 3.2. Let m ∈ N and n ≥ 0. Multivariate exponential polynomials

Remark 3 . 3 .Theorem 3 . 4 .

 3334 In recent years, there have been some literature such as[START_REF] Natalini | Higher order Bell polynomials and the relevant integer sequences[END_REF][START_REF] Qi | Explicit formulas and recurrence relations for higher order Eulerian polynomials[END_REF][START_REF] Qi | Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials[END_REF][START_REF] Qi | Viewing some ordinary differential equations from the angle of derivative polynomials[END_REF][START_REF] Qi | Several formulas for special values of the Bell polynomials of the second kind and applications[END_REF][START_REF] Withers | Moments and cumulants for the complex Wishart[END_REF][START_REF] Withers | Multivariate Bell polynomials[END_REF][START_REF] Withers | Multivariate Bell polynomials, series, chain rules, moments and inversion[END_REF][START_REF] Withers | Multivariate Bell polynomials and their applications to powers and fractionary iterates of vector power series and to partial derivatives of composite vector functions[END_REF] devoted to deep investigation and extensive applications of the Bell polynomials of the second kind B n,k (x n-k+1 ). Let m ∈ N and n ≥ 0. Multivariate exponential polynomials Q m,n (x m ) satisfy the recurrence relation

Remark 3 . 4 .

 34 If taking x 1 = • • • = x m = 1 in Theorem 3.4, we can recover (3.2) and (3.10) and derive recurrence relations

  convex and logarithmically concave respectively. Generally, since∞ n=0 Q k,n (x m-k+1 , . . . , x m ) k+1 Q k-1,n (x m-k+2 , . . . , x m ) (n -1)! t n n for 2 ≤ k ≤ m,by the above mentioned [1, Lemma 1] and [7, Theorem 1], we can inductively conclude that, when x 1 , . . . , x m-1 ≥ 2 and x m ≥ 1, the sequences {Q m,n (x m )} n≥0 and Qm,n(xm) n! n≥0 are logarithmically convex and logarithmically concave respectively. Combining the above mentioned [1, Theorem 2] with the logarithmic convexity and logarithmic concavity of the sequences {Q m,n (x m ), x 1 , . . . , x m-1 ≥ 2, x m ≥ 1, m ≥ 2} n≥0 and Qm,n(xm) n! , x 1 , . . . , x m-1 ≥ 2, x m ≥ 1, m ≥ 2 n≥0 respectively leads to the double inequality (4.6). The proof of Theorem 4.2 is complete.

) the sequence 1 n 3 α

 13 !αn n≥0 is logarithmically concave,(5.4) the sequence {α n } n≥0 is logarithmically convex, (5.5)there exists a constant c 1 such thatα n ≤ c m 1 α m for all n ≤ m,(5.6)there exists a constant c 2 such that α m+n ≤ c m+n 2 α m α n for all m, n ≥ 0, (5.7)there exists a constant c 3 such that α m α n ≤ c m+n m+n for all m, n ≥ 0,(5.8) 

( 5 . 4 )≤ 2

 542 , (5.7), and(5.8).The sequence {Q m,n (x m ), x 1 , . . . , x m-1 ≥ 2, x m ≥ 1} n≥0 clearly satisfies the first two conditions in (5.1). Theorem 4.2 in this paper shows that the sequence {Q m,n (x m ), x 1 , . . . , x m-1 ≥ 2, x m ≥ 1} n≥0 satisfies the conditions (5.3) and (5.5).The left inequalities in (4.5) and (4.6) mean that taking c 3 = 1 in (5.8) is sound.Since p+q p p+q for p, q ≥ 0, the right inequalities in (4.5) and (4.6) imply that the condition (5.7) applied to the sequence {Q m,n (x m ), x 1 , . . . , x m-1 ≥ 2, x m ≥ 1} n≥0 is valid for c 2 = 2. Since the generating function G(t; x m ) of multivariate exponential polynomials Q m,n (x m ) is an entire function of t ∈ C, by the root test, the sequence {Q m,n (x m ), x 1 , . . . , x m-1 ≥ 2, x m ≥ 1} n≥0 satisfies the third condition in (5.1). In conclusion, the sequence {Q m,n (x m ), x 1 , . . . , x m-1 ≥ 2, x m ≥

  1 =

	∞ n=0	B n	t n n!	= 1 + t + t 2 +	5 6	t 3 +	5 8	t 4 +	13 30	t 5 +	203 720	t 6 +	877 5040	t 7 + • • •

and the first twelve Bell numbers B n for 0 ≤ n ≤ 11 are positive integers 1, 1, 2, 5,

15, 52, 203, 877, 4140, 21147, 115975, 678570. 

Table 1 .

 1 The first few Q m,n for 2 ≤ m ≤ 5 and 0 ≤ n ≤ 7

	1, 1, . . . , 1) by Q m,n and call

n,k (x n-k+1
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H q,n (t) = (-1) n f (n+2q) (t)f 2 (t) -2f (n+q) (t)f (q) (t)f (t) + f (n) (t) f (q) (t) 2 , I q,n (t) = (-1) n f (n+2q) (t)f 2 (t) -2f (n) (t)f (2q) (t)f (t) + f (n) (t) f (q) (t)

for n, q ∈ N, then G q,n (t) ≥ 0, H q,n (t) ≥ 0, H q,n (t) G q,n (t) when q ≶ n,

in G q,n (t), H q,n (t), and I q,n (t) and simplifying produce

Further taking t → 0 + reveals lim t→0 + G q,n (t) = G m, ,q,n , lim t→0 + H q,n (t) = H m, ,q,n , lim t→0 + I q,n (t) = I m, ,q,n . Substituting these quantities into (4.11) and simplifying bring about inequalities in (4.10). The proof of Theorem 4.5 is complete.

all results in this section can become conclusions for multi-order exponential numbers Q m,n .

An application to white noise distribution theory

In this section, we finally find an application of multivariate exponential polynomials Q m,n (x m ) to white noise distribution theory by confirming that the polynomial sequence {Q m,n (x m ), x 1 , . . . , x m-1 ≥ 2, x m ≥ 1} n≥0 satisfies conditions for sequences required in white noise distribution theory.

Let {α n } n≥0 be a sequence of positive numbers. In [START_REF] Asai | Bell numbers, log-concavity, and log-convexity[END_REF][START_REF] Asai | General characterization theorems and intrinsic topologies in white noise analysis[END_REF][START_REF] Asai | Roles of log-concavity, log-convexity, and growth order in white noise analysis[END_REF][START_REF] Cochran | A new class of white noise generalized functions[END_REF][START_REF] Kubo | White noise analysis on a new space of Hida distributions[END_REF] and closely related references therein, for studying the spaces of test and generalized functions Conflicts of interest statement. This work does not have any conflicts of interest.