
HAL Id: hal-01745165
https://hal.science/hal-01745165

Submitted on 16 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concurrent computation of topological watershed on
shared memory parallel machines

Ramzi Mahmoudi, Mohamed Akil, Mohamed Hedi Bedoui

To cite this version:
Ramzi Mahmoudi, Mohamed Akil, Mohamed Hedi Bedoui. Concurrent computation of topologi-
cal watershed on shared memory parallel machines. Parallel Computing, 2017, 69, pp.78 - 97.
�10.1016/j.parco.2017.08.010�. �hal-01745165�

https://hal.science/hal-01745165
https://hal.archives-ouvertes.fr

 1

CONCURRENT COMPUTATION OF TOPOLOGICAL WATERSHED ON SHARED MEMORY

PARALLEL MACHINES

Ramzi MAHMOUDI1, Mohamed AKIL1, Mohamed Hédi BEDOUI2

1Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI

ESIEE Paris - Cité Descartes, BP99, 93162 Noisy Le Grand, France

2Université Monastir, Laboratoire Technologie et Imagerie Médicale

Faculté de Médecine de Monastir, Rue Ibn Sina - 5019 Monastir, Tunisie

{mahmoudr, akilm}@esiee.fr, medhedi.bedoui@fmm.rnu.tn

Abstract:

The watershed transform is considered as the most appropriate method for image segmentation in the field of mathematical

morphology. In the following paper, we present an adapted topological watershed algorithm suited for a rapid and
effective implementation on Shared Memory Parallel Machine (SMPM). The introduced algorithm allows a parallel watershed

computing while preserving the given topology. No prior minima extraction is needed, nor the use of any sorting step or hierarchical

queue. The strategy that guides the parallel watershed computing, labeled SDM-Strategy (equivalent to Split-Distributes and Merge), is
also presented. Experimental analyses such as execution time, performance enhancement, cache consumption, efficiency and scalability

are also presented and discussed.

Keywords: Watershed transform; Parallel computing; Image Processing; Parallelization strategy; Computing methodologies,

Enhancement ;Parallel algorithms, mathematical morphology.

Introduction

The watershed was extensively studied during the 19th century by J.C. Maxwell [1] and C. Jordan [2] among others.

One hundred years later, the watershed transform was introduced by S. Beucher and C. Lantuéjoul[3] for image

segmentation, and is now used as a fundamental step in many powerful segmentation procedures[4, 5]. Figure 1 gives

a very symbolic description of the mentioned approach. In fact, it shows trends that use watershed transform for image

processing.

In order to explain the concept of watershed, let us consider a grayscale image as a topographic surface: the gray level

of a pixel becomes the elevation of a point, the basins and valleys of the topographic surface correspond to dark areas,

whereas the mountains and crest lines correspond to the light areas. If the topographic relief is flooded by water,

watersheds will be the divide lines of the domains of attraction of rain falling over the region [6] or sources of water

springing from reliefs’ peaks. Another synopsis that has shown consistency is when that topographic surface is

immersed in a lake with holes pierced in local minima. Catchment basins will fill up with water starting at these local

minima, and, at points where water coming from different basins would meet, dams are built. As a result, the

topographic surface is partitioned into different basins separated by dams, called watershed lines.

To simulate these approaches, several techniques are deployed. The oldest one starts by finding basins, then

watersheds by taking a set of complements. Other techniques use a boundary detection to rebuild watersheds. But the

most innovative technique is proposed by our team [7, 8]; it allows to define rigorously the notion of a watershed in a

discrete space and to prove important properties that are not guaranteed by most watershed algorithms [9]. This

technique consists in lowering the values of the grayscale image - seen as a map - while preserving some topological

properties, namely, the number of connected components of each lower cross-section. In this case, the watershed

division is the set of points that are not in any regional minimum of the transformed map. It is important to note that

our main interest here is for digital images that provide more rigors to define watersheds. Since, there is no unique

definition of the path that a drop of water would follow in the discrete case. In general, three large classes of

algorithms to compute watershed transform can be figured out. The first one is based on the flooding approach [10],

the second is based on the topographical approach [11] and finally a third class is based on the topological approach

[7].

An essential difficulty lies in the fact that the watershed transform is not a local concept. The decision whether a pixel

belongs to a basin cannot be based on purely local considerations. Some algorithms’ results depend also on the order in

which pixels are treated during the execution. In the sequential case, this can be resolved by fixing the scanning order,

and then a deterministic result is obtained. In a parallel implementation this is no longer true since the outcome

depends on the relative time instants at which different processors treat pixels, and this is unpredictable in the case of

asynchronous processors. Task becomes even more complicated if one wishes to parallelize algorithms of the

topological class. The question is how to preserve the number of connected components of each lower cross-section

despite asynchronous nature of the given threads. We must not fail to deal with this problem, which represents

the true challenge of this work.

 2

Figure 1: Watershed applications 1979-2015 (a) Cleavage fractures in steel, (b) contour of (a) the obtained truth

watershed definition introduced by Beusher et al. [3] in 1979, (c) Maximum intensity projection of the original human

lower limb (d) Bone tissue removed using mask extended with 3D watershed transform introduced by Straka et

al.[12] in 2003, (e) original dental X-ray image (f) segment line obtained trough watershed transform introduced by

Hui Li et al. [13] in 2012, (g) Original MRI brain image (h) Brain tumor extraction using a marker based Watershed

algorithm introduced by Benson et al . [14] in 2015.

In this paper, we propose an adapted algorithm to compute a watershed. The introduced algorithm that is parallel

preserves the topology of the input image. It does not need any prior minima extraction, and does not require any

sorting step nor the use of any hierarchical queue. It is also suited for a rapid and effective implementation on Shared

Memory Parallel Machine (SMPM).

We also present a tailored parallelization approach, called SD&M (Split Distribute and Merge) strategy that guides the

parallel watershed computing. In fact, the splitting step is applied directly on an input graph when selecting sources.

Unlike the conventional technique of division such as pixel division, or block division, the source selection is

completely random. The associated stream computing is fully parallel (read mode data accesses). Then the distribution

depends only on the available processors. This flexibility in data manipulation allowed us to obtain very good results

especially in terms of efficiency without using the 'Basic-NPS' scheduler. Finally, the merging step allows the fusion

of streams, two by two, to build the watershed.

To ensure an objective ranking among other watershed transforms, we propose a qualitative and quantitative study of

Parallel Topological (PT) watershed. Experimental analyses such as execution time, performance enhancement, cache

consumption, efficiency and scalability are also presented and discussed.

This paper is organized as follows: In section 2, we begin by identifying the global parallelization process to

be pursued throughout this work. Performance indicators such as efficiency, scalability and portability of the

introduced strategy are presented in a formal way. In section 3, the PT-watershed algorithm is put forward. In section

4, an overall assessment of the proposed algorithm is discussed. Finally, we conclude with a summary and a future

work in section 5.

Global parallelization process

In this section, we begin by highlighting the real need for a common parallelization strategy of topological operators.

After introducing the basic foundation for any successful parallelization, we will focus on Split Distribute and Merge

(SD&M) strategy that we will attempt to classify over all existing strategies. Then we will put forward its detailed

conception.

Lack of common parallelization strategy for topological operators

Bertrand [15] introduced connectivity numbers for the grayscale image. These numbers locally describe (in a

neighborhood of 3*3) the topology of a point. According to this description, any point can be characterized following

its topological characteristics. He also introduced some elementary operations able to modify the gray level of a point

without modifying the image topology. These elementary operations of point characterization present the fundamental

link of large classes of topological operators including, mainly, skeletonization and crest restoring algorithms [16].

This class can also be extended, under some conditions, to homotopic kernel and leveling kernel transformation [17],

topological 2D and 3D object smoothing algorithm [18] and topological watershed algorithm [8] which is the focus of

this article. All the mentioned algorithms do have also many algorithmic structure similarities. In fact, associated

characterization procedures evolve until stability, which induce common recursively between different algorithms.

Also the grey level of any point can be lowered or enhanced more than once. Finally, all the mentioned algorithms get

a pixels’ array as input and output data structure. It is important to mention that, to date, this class has not been

efficiently parallelized like other classes as connected filter of morphological operator, as shown in Wilkinson’s work

[19]. Hence the need of a common parallelization strategy for topological operators that offers an adapted algorithm

structure in a design space. The chosen algorithm structure patterns to be used in the design must be suitable for the

SMP machines.

 Fundamental basis for parallelization

Before defining the stages of parallelization of any sequential problem, it is essential to link the spectacular evolution

of the parallel architectures and the parallel processing. In reality, if the parallelization strategies are so valuable, it is

thanks to the substantial improvements in the multiprocessing systems and also to the rise of multi-core processors. In

terms of feasibility, it will be easier to design architecture with a single fast processor (clock speed over 3 GHz) than

another with many slow processors (clock speed around 1.5 GHz) with the same throughput. But during the last five

years the clock speed of processors in multi-core architectures has increased by almost two and the associated cache

http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Multi-core
http://en.wikipedia.org/wiki/Throughput

 3

size has increased tenfold with the addition of a third cache level L3 which ensures an optimal L2 access speed while

increasing the total cache. These twin barriers have flipped the equation, making multiprocessing practical even for

small systems.

Generally five steps are necessary to move from a sequential algorithm running on single core architecture to a parallel

algorithm that runs with a better performance on a multi-core architecture. G. Mattson et al., see [20], present the first

four steps for parallel programming: Finding concurrency, algorithm structure, support structure and implementation

mechanisms. In the following, we define the entire steps. We also focus on performance evaluation. A particular

attention will be lavished to the second and the third phases which present a basis for our strategy.

(Def.1) - Finding Concurrency Design Space is the first analysis of the sequential algorithm to determinate the

potential concurrency in terms of tasks and groups of tasks, shared data and task-local data.

After analyzing the original problem to identify exploitable concurrency, usually by using the patterns of Finding

Concurrency Design Space (Def. 1), information about existing concurrent tasks, associated input data and

dependencies are figured out. These elements are necessary to move to the Algorithm Structure Design Space (Def.2).

G. Mattson et al. propose three possible organizations: organization by tasks, organization by data decomposition, and

an organization by flow of data. To remain in the conceptual framework of this section, we limit our self to grassroots

organization involving tasks and data.

(Def.2) - Algorithm Design Space is the set of all possible algorithm designs and algorithm design parameters that

represent how the extracted concurrency can be mapped onto elementary preprocessors.

In several cases, the problem can be decomposed to a finite set of tasks. Tasks can be grouped according to

several criteria such as nature of the operation to achieve required operands, action-zone or returned results then

groups of tasks can be defined. The way that the tasks within their group interact is the major feature of the

concurrency. If the final solution is obtained after a single execution of all tasks and the tasks’ dependency is null or

quasi-null (temporary access to shared variables or messages exchange for synchronization), we can define the parallel

task design. If processing is recursive, the problem can be solved by recursively dividing it into sub-problems, solving

each sub-problem independently, and then recombining the sub-solutions into a solution to the original problem. This

is the well know pattern of divide and conquer. It’s important to note that the application of this principle cannot be

independent from the type of the algorithm [21]. In other cases, global processing comes down to a continuous

updating of a data structure. Thus it is better to think in terms of organizing data. G. Mattson et al. go further in this

classification. He distinguishes between two particular cases: if the organization focuses on the distribution of data

between elementary processors, then it’s a simple data decomposition pattern. However, if the organization is the

distribution of data between tasks’ groups: it is a data flow decomposition pattern. More details will be given about

this pattern in SD&M strategy classification (see section 2.3).

(Def.3) - Architecture Design Space describes the set of platform that support the extension of parallel programming.

Pisces of information about how instructions are executed and how memory is managed are presented in this design.

Before a moving to coding, it is important to find out the most appropriate architecture to support the parallel

algorithm using parallel architecture design space (Def. 3). This design presents a standard classification of parallel

computer systems [22]. There are four types: SISD, SIMD, MISD and MIMD. The most significant structure

encountered in the parallel application [23] is MIMD (Multiple Instruction, Multiple Data). In a MIMD machines the

processors can execute different operations using their own data. Parallel processing via the application of MIMD

machines promises a high performance, and experience with parallel processing is accumulating rapidly. In [24],

Buzbee shows, through different examples, that a rapid progress is being made in the application of MIMD machines

and that parallel processing can yield a high performance. We distinguish between two types of MIMD computers:

Shared Memory MIMD machines and Distributed Memory MIMD machines. In the case of distributed memory

machines, each processor has its own memory but this does not prevent its access to the memories of other processors

if necessary.

(Def .4) - Parallel Implementation mechanisms are a set of tools used to write parallel programs. They are able to

manage threads (or processes). Thread’s synchronization and communication must also be guaranteed.

In contrast, in shared memory parallel machines, all processors share the same memory. Although the cost of an inter-

processor or memory communication can be high, SMPM design still very efficient. In fact, this cost can be reduced

by using the right mechanisms for parallel programming (Def. 4) such as Locality-Aware Page Table mechanism to

enable thread and data mapping [25]. This mechanism detects the locality of memory accesses in the given hardware,

and performs the mappings in the software. Other mechanisms allow a better exploitation of the target architecture

through the use of threads. The most used tools within this framework are: MPI [26], OpenMP [27] and TBB [28].

Introduced as an open standard, OpenCL is also designed for programming heterogeneous parallel systems. Some

 4

extensions exist [29] to enable the average OpenCL programmer to focus on the algorithm design rather than

scheduling and to automatically gain performance without sacrificing programmability. After coding and running

programs, it’s important to evaluate the efficiency, the scalability and the portability of the code by using performance

metrics for parallel programs (Def. 5). These concepts will be listed in details in the last part of this section.

(Def.5) - Performance metrics of parallel programs are a set of measurements that quantifies the parallel code such

as efficiency, scalability and portability.

 Classification of SD&M Strategy

As mentioned in section (2.1), the chosen algorithm structure patterns to be used in the design must be suitable for

SMP machines. In reality, although the cost of communication (Memory-processor and inter-processors) is high

enough, shared memory architectures meet our needs for different reasons: (i) These architectures have the advantage

of allowing immediate sharing of data which is very helpful in the conception of any parallelization strategy (ii) They

are from a non-dedicated architecture using a standard component that is economically reliable (iii) They also offer

some flexibility in use for many application areas, particularly image processing.

Figure 2: Parallelization strategy approach - (a) Decision tree of algorithm structure design space (b) SD&M

strategy design

In practice the most effective parallel algorithm design might make use of multiple algorithm structures thus the

proposed strategy is a combination of the divide and conquer patterns and event-based coordination patterns (fig. 2.a).

Hence the name that we have assigned is the SD&M (Split Distribute and Merge) strategy. Not to be confused with the

famous approach of mixed-parallelism (combining data-parallelism and task-parallelism [30]), it is important to

mention that our strategy (i) represents the last stitch in the decomposition chain of algorithm design patterns and it

provides a fine-grained description of topological operators’ parallelization while the mixed-parallelism strategy

provides a coarse-grained description without specifying the target algorithm. (ii) It only covers the case of recursive

algorithms, while mixed-parallelization strategy is effective only in the linear case. (iii) It is especially designed for the

shared memory architecture with a uniform access.

SDM Strategy Conception

A parallelization strategy did not aim to optimize a single metric such as speedup. Other than improved performance in

terms of execution time, a good strategy has to provide a balance between efficiency, scalability, and portability to

dissolve all conflicts that exist between these three forces.

Actually, any strategy is facing two major barriers. First, the conflict between efficiency and portability: making a

program efficient almost requires that the code takes into account the characteristics of the specific system on which it

is intended to run, which limits portability. A design uses special features of a particular programming environment (as

multi-thread environment) may lead to an efficient program for that particular environment, but it might be unusable

for a different platform. Second, the conflict between scalability and portability: Improving the scalability is based on a

good distribution of work over a finite number of processors for a better exploitation of the P processors’ potential.

This distribution limits the portability of the program since the number of processor is increased.

(Def. 6) - Divide and Conquer pattern is based on a multi-branched recursion. It solves the problem by recursively

dividing it into sub-problems. After solving each sub-problem independently, it recombines the sub-solutions into a

solution to the original problem.

The relative importance of these diverse metrics will vary according to the nature of the problem at hand. In our case

we are dealing with a class of topological operators with common features, as it is shown in (section 2.1). Shared

memory parallel architectures turned out to be the best suited for our needs (section 2.3). Therefore, Split Distribute

and Merge strategy, that we propose, combine two patterns (see fig. 2.b): Divide and Conquer patterns (Def. 6) and

Event-Based Coordination (Def. 7).

(Def. 7) - Event-Based coordination is used when dealing with an irregular, dynamic or unpredictable data flow.

The splitting phase

The Divide and Conquer pattern is applied first by recursively breaking down a problem into two or more sub-

problems of the same type, until these become simple enough to be solved directly. Splitting the original problem takes

into account, in addition to the original algorithm’s characteristics (mainly topology preservation), the mechanisms by

which data are generated, stored, transmitted over networks (processor-processor or memory-processor), and passed

between different stages of computation.

http://en.wikipedia.org/wiki/Recursion

 5

(Def. 8) - Scalability)',(PP is a property which exhibits a performance linearly and proportionally to the number

of processors employed.

This first stage of division will primarily affect the rate of scalability (Def. 8) of our program. To mount it, we propose

the following formalization. Since speedup is the most commonly used metrics for parallel programming, it seems to

be a natural choice to begin with. So we assume that every program is made up of two parts, sequential and parallel, to

establish the following definitions:

st

Processing time of the serial part of a program using one processor.

)(Pt p

Processing time of the parallel part of a program using P processors

with 1P .

)()(PttPt psT 

Total processing time of the serial and parallel part of the program

using P processors with 1P .

)(
)(

Ptt

t
P

ps

s




Scaled percentage of the serial part of the program using P processors

with 1P .

)(

)(
))(1()(

Ptt

Pt
PP

ps

p


 

Scaled percentage of the parallel part of the program using P
processors with 1P .

Now we can formalize the fixed-size speedup, which fixes the problem size and emphasizes how fast a problem can be

solved. First, the theoretical approach speedup can be seen as the ratio of a quantity of works by a period of time:

(Def. 9) - Speedup =
Time

Work
=

T

W

A second formal definition can be given by applying Amdahl’s law [31] so the speedup can be defined by the ratio of

the total processing time of the serial and the parallel part of the program using one processor by the total processing

time of the same parts using P processors.

Speedup=
)(

)1(

Pt

t

T

T
 =























P

t
t

tt

p

s

ps

)1(

)1(

This formula can be written differently using a non-scaled percentage)1( previously defined:

(Def. 10) - Speedup =




















P

)1(1
)1(

1




An alternative formulation referred to as Gustafson’s law [32] exists. This formulation calibrates the serial percentage

according to the total parallel time using P processors.

))(1()()(PPPtT  

))(1()()1(PPPtT  

Thus, we can define the speedup as follows:

(Def. 11) - Speedup= 








)(

)1(

Pt

t

T

T =  ))(1()(PPP   =  )()1(PPP 

 6

To show the work partition influence on the scalability rate)',(PP , suppose that an algorithm runs on a first

architecture using P processors with
P efficiency. The shared amount of work is

PW . The same program runs on a

second architecture using 'P processor with
'P efficient. Shared amount of work is

'PW .

We recall that the efficiency is considered as the ratio of speedup by the number of processors (More details about

efficiency will be given in the next section). Ideally, an algorithm should be effective on a wide range of numbers of

processing elements, from two up to a decade. So if
P and

'P represent the optimal efficiency rate, we can draw

the following equation using (Def. 9):

If 'PP   '

)'()(

P

PSpeedup

P

PSpeedup


)'('*)(*

'

PtP

W

PtP

W

T

P

T

P )',(
*

'*

)'(

)(

'

PP
PW

PW

Pt

Pt

P

P

T

T 

Thus, it follows that the only parameter that provides a linear performance in proportion to the number of processors

(Def. 8) is the ratio 








'P

P

W

W
, hence the importance of the splitting step. Unfortunately such an impact cannot be shown

simply by applying Gustafson approach (Def. 11).

Scalability will be expressed only in terms of the number of processors.

If 'PP  

'

)'()1'(')()1(

P

PPP

P

PPP  





    )'()1'(')()1(' PPPPPPPP  

    )'()1'('*)()1(''* PPPPPPPPPP  

   )'()1'()()1(' PPPPPP  































)'(
)1'(

)(
)1('

Ptt

t
PP

Ptt

t
PP

ps

s

ps

s



































)'(

)1'(

)(

)1'(

Ptt

tPP

Ptt

tPP

ps

s

ps

s



































)'(

)'(

)(

)''(

Ptt

tPPP

Ptt

tPPP

ps

s

ps

s



































)'(

)1'(*

)(

)1'*(

Ptt

PP

Ptt

PP

psps

 






 








 


)'(

)1'(*

)(

)1'*(

Pt

PP

Pt

PP

TT

)',(
)1'(*

)1'*(

)'(

)(
PP

PP

PP

Pt

Pt

T

T 






















Distribution phase

We attach a great importance to work distribution because it is a fundamental step to ensure a perfect exploitation of

multi-cores architecture’s potential. We'll start by briefly recalling some basic notions of distribution techniques then

we will introduce our minimal synchronization approach that is particularly suitable for topological recursive

algorithms where a simple point characterization is necessary. Our approach is general and applicable to shared

memory parallel machines.

 7

The main challenge when performing parallel operations on a simple point characterization is the dynamic nature of

work distribution. Since the workload is not known a priori, assigning work units to different cores in advance is

impossible. In the literature, there are two main approaches for multi-core work distribution: the first one, called work

queues approach, consists on using a shared work queue in main memory and controls the access to it via primitive

synchronization. The second approach is work stealing. In this case, every core has a separate work queue which is

still accessible to other processors. Cores can steal work units from others’ queues whenever their own queue is empty.

However, all these techniques do not currently work well on new architectures as Xeon for many reasons. Primarily,

work-stealing has also been known to be cache-unfriendly for some applications due to the randomized stealing [33].

For tasks that share the same memory footprints, the randomized locality of the oblivious work-stealing schedulers

does nothing to ensure the scheduling of these tasks on workers that share a cache.

(Def. 12) - Efficiency is the cost of what is actually produced or performed with what can be achieved with the same

consumption of resources (processor frequency, memory size, surface, etc.). It is an important factor in the

determination of productivity.

This significantly limits, not only scalability, but also efficiency (Def. 12) for some memory-bandwidth bounded

applications on machines that have separate caches.

Efficiency =
P = 









P

Speedup
 = 







 

P

PPP)()1(
according to (Def. 11)

= 








TPt

W
according to (Def. 10)

It is also important to mention that using memory fence operations, consistency can be enforced, but with a relatively

high overhead. Even if memory consistency was not a problem, busy waiting such as by spinning on a lock variable is

relatively inefficient on architecture with high memory latency and multi-threaded hardware execution can also lead to

priority inversion and prevent other threads on the same core from performing a useful work.

Figure 3: Auto-supplying task system design

The main idea of our approach is an auto-supplying task system. Keeping the local queues filled will be our major

goal (see fig. 3). Local threads should never have to be broadcast over processors because of an empty queue. They

should always find something in their local queues due to an auto-supplying task system that allows an automatic

check of different queues then a permanent redistribution of tasks to maintain a certain balance between all processors.

Let’s consider a distributed job list where no jobs are duplicated anywhere so each processor local list is unique and

exclusive and jobs can be moved between processor only before they go into the "executing" status. Despite that each

processor balances itself by requesting or stealing work units from others queues whenever its own queue is empty, we

design an auto-supplying system using a shared work queue located in the principal memory that supplies the

processor shortage of work. The system maintains a minimum level of work in its queue by importing extra work from

other processors queues. This is the automatic load balancing feature that keeps all processors busy. It is important to

note that the system does not need to predict in advance which machine must have the most work. Thus there is no

burdening; a single system will automatically decide when to move tasks from one queue to another.

(Def.13) - Portability is a property which assures that parallel programs are both code portable and performance

portable to various parallel machines.

Despite the centralized aspect, our design does not depend on the number of processors, or the minimum load of

processors which makes our approach more generic and our parallelization strategy more portable. In fact portability is

increasingly cited as a desirable goal in parallelization strategy conception.

Portability: %100*)(
b

P

t

Pk

P
S

S
tb  =

 
 

%100*
)()1(

)()1(
bS

tS

PPP

PPP









Despite the disagreement about the exact meaning of “Portability”, we can consider (Def. 13) as an accurate definition.

According to James D. Mooney [34] the primary goal of portability is to facilitate the activity of moving an application

from an environment in which it currently operates to a new or target environment. This activity has two major

http://www.investorwords.com/994/comparison.html
http://www.businessdictionary.com/definition/consumption.html
http://www.businessdictionary.com/definition/resource.html
http://www.businessdictionary.com/definition/money.html
http://www.businessdictionary.com/definition/productivity.html

 8

aspects: (i) transportation - physical movement of the program's instructions and data to the new environment and (ii)

adaptation - modification of the information as necessary to work satisfactorily in the new environment.

We skip “Adaptation” which involves higher level modifications that might be necessary to adjust the program to work

with aspects of the new environment that are intentionally or unavoidably different from the old one. We focus on the

physical transportation which includes the use of compatible media or communication channels between processors,

and interpreting and translating file formats, character codes, data representations and processor designs. Standard

languages and portable compilers bridge the gap between programs and the variety of the CPU interfaces that exists in

target environments.

However, many of these mechanisms still define only a part of the environment interface that many applications need.

Elements such as file structures, device control, memory management, asynchronous event handling, or the user

interface are not adequately defined by most language standards or library specifications. When requirements for

communication, concurrency, or timing constraints exist, conventional languages are clearly insufficient.

The Merging phase

The key problem of each parallelization is the merging obtained results. Normally this phase is performed at the

end of the process when all results are returned by all threads which usually mean that only one output variable

is declared and shared between all threads. But as we mentioned in section 2.2, we are dealing with a dynamic

evolution so we can plan the following: After two threads are finished, they directly merge and a new thread is

created. This implies the creation of some shared FIFO queue containing all inserted neighbors by both two

parent threads. Only one shared data structure will contain pixels lowered by all threads. In the merging threads,

there is no hierarchical order; the only criterion is finish time. It is also important to mention that only newly

created threads can modify the created FIFO queue and one neighbor cannot be inserted twice. It is a precaution

in order to minimize the consumed cache.

Construction of parallel topological watershed

In this section, we start by introducing some basic definitions of the stream notion which is crucial to the

flooding paradigm. Then, we introduce in details our parallel topological watershed. An illustration of a parallel

computation process is given. Execution time and cache consumption are performed and analyzed. Efficiency

and scalability are also presented and discussed.

 Basic notions and definitions

Based on the Cousty’s approach [35], we define and illustrate the stream notion. For the sake of simplicity, we

restrict ourselves to the minimal set of notions that will be useful for our purpose.

We denote by V an edge-weighted graph. Let L V . We say that L

is a stream if, for any two points x and

y of L , there exists, in L , either a path from x to y or from y to x , with the steepest descent for F .

Now, let’s consider a stream L , we say that x L is a top of L if the altitude of x is greater than, or equal to

the altitude of any y L . If the altitude of x is less than the altitude of any y , then x is considered as a

bottom of L .

Let’s consider two disjoint streams 1L and 2L , with 1 2L L   . Let L be the union of both streams with

1 2L L L  .We say that 1L is under 2L , written 1 2L Lp , if there exist a top x of 1L and a bottom y of

2L , and there is a path L from y to x , with the steepest decent for F . If 1 2L Lp then L is considered as

a stream. If there is no stream under L , L is considered as an streamp . Now, any stream L which contains

streamsp is itself an streamsp .

Figure 4: Stream notion illustration - following Cousty’s approach.

A Basic illustration of stream notion is given by (fig. 4): (a) the red superimposed graphs are the minima of

corresponding functions. Let us consider G and F as associated graph and depicted function, (b) the sets

 , , ,L a b e i and  , ,j m n are two examples of streams, (c) the set  ' , ,L i j k is not a stream since there is

no path in
'L , between i and k , with a steepest descent for F .

 9

Note that the sets  ,a b and  b are respectively the set of bottoms and tops of L . Here the sets L is under the

stream  , ,j m n and thus  , , , , , ,a b e i j m n is also a stream. There is no stream under , , ,a b e i and

 , , , , , ,a b e i j m n . They are considered as two streamsp and they contain the set ,a b which is the vertex

set of minimum of F .

Streams extracted by Cousty function are streamsp . In the following we recall the link that exist between

streamsp and minima. Let L be a stream. If L is streamp then L contains the vertex set of minimum of

F and for any \y V L adjacent to a bottom x of L , ({ , }) ()F x y F x . Actually, if L is an streamsp ,

then the set of all bottoms 1 2{ , ,..., }nb b b L constitutes the vertex set of a minimum of F . A subset L of

V is considered as the vertex set of a minimum of F if and only if it is an streamsp minimal for the

inclusion relationship. We will now move on to define the flow family notions. Actually the vertices of a graph

can be arranged in the following manner with the aim of partitioning the vertex set of G from streamsp of

F . Let 1{ ,..., }nL L  be a set of n streamsp .  is said to be a flow family if

{ | {1,..., }}i i n V   and for any two families 1L and 2L in  , if 1 2L L   , then 1 2L L is the

vertex set of a minimum of F .

Figure 5: Watershed computing principal - (a) Input image (b) Associated weighted graph (c) Output watershed

Now, we can more formally define the watershed-cut. Let L be a flow family. Let us denote by 1M ,…, nM the

minima of F . Let  be the map from V to {1,..., }n which associates to each vertex x of V , the label i such

that iM is the unique minimum of F included in an streamp of L which contains x ; we say that  is a

flow mapping of F . In that case, the set {{ , } | () ()}S x y E x y    can be considered as a flow cut for

F . As a result, the set S E is considered as a watershed of F if and only if S is a flow cut for F .

In order to compute a watershed, we will go through this relationship established by Jean Cousty, and we propose a

new one, that is based on the parallel extraction of streams. That is able to produce a flow-cut hence a watershed. A

general illustration is given by (fig.5).

 Parallel stream computing

For that purpose, following an algorithm that will assign, in a parallel way, a label to each point of the graph. Actually,

from each non-labeled point x , a stream L composed of non-labeled points and whose top is x is computed. It is

important to mention that streams computing at this level are completely independent then streams can be completely

computed in parallel, see (fig. 6). For N point (x1, x2… xn), their associated flows are simultaneously extracted: (L1,

L2… Ln).

Figure 6: Flow computation - (a) Partition of input image (b) Parallel stream computation

Each flow ‘Li’ is composed of a point not yet labeled and whose source is xi. The stream function proposed by

Cousty, pleaded in line 5 (Alg. 1), is launched N times. It allows the extraction of Li1,2,3…n. Intuitively, it

explores the path of a greatest slope, by mixing iterations first in-depth and width of the approaches. The main

invariants of this function are the set ‘L’, for each iteration, a stream (flow) and the set L' (line 2 - stream

function) include all wells of L not yet explored.

 10

Algorithm 1 : Parallel Topological Watershed [Mahmoudi et al.]

Input : (V, E, F) : Edge-weighted graphs;

Output :  : Flow partition of F

foreach x  V do (x)  No-Label ; // No data dependency - FULL PARALLELISM

nb_labs  0 ; // Global shared attributed label

i 0 ; treated stream

foreach (x  V) such as ((x) = = No-Label) do // launch N process in parallel

 [Li,labi]  Stream (V, E, F, ,xi) ; // to get associated stream for each xi

nb-fusion = i ;

while (nb_fusion != 1)

 for (j =0 ; j <= nb_fusion ; j+=2) do // launch (nb_fusion/2) process at once

 if (Lj  Lj+1) =  then s-labeling ([Lj,labj] , nb_labs) ;

 s-labeling ([Lj+1,labj+1] , nb_labs) ;

 else f-labeling ([Lj,labj] , [Lj+1,labj+1] , nb_labs) ;

nb-fusion = nb-fusion / 2 ;

The stream function (Alg. 2) halts at line 16 when all bottoms of L have been explored or, at line 8, if a point z

already labeled is found. In the former case, the returned set L is an streamp . In the latter case, the label lab of

z is also returned and there exists a bottom y of L such that ,y z is a path with the steepest descent.

Algorithm 2: Stream function [Cousty et al.]

Input : (V,E,F) : Edge-weighted graphs;  : a label of V; x : point of V;

Output: [L, lab] : L is a flow obtained from x (source of L) ; lab is the associated label to an flux included in L or (–1).

L {x}

L’{x} // the set of sources not yet explored of L

While there exists (y  L’) do

 L’  L’ \ {y};

 breadth_first  TRUE ;

 While (breadth_first) and ( {y,z}  E / z L and F({y,z})= F(y)) do

 If ((z)  No_label) then

 return [L,(z)] // exist an flow L already labeled

 Else if (()F z
< ()F y

) then

 L  L  {z}; // z is the only well of L

 L’  {z}; // switch the in-depth exploration first

 breadth_first  FALSE

 Else

 L  L  {z}; // therefore z is a well of L

 L’  L’  {z}; // continue exploration in width first

return [L,-1]

Thus, there is an streamp 1L , under L , included in the set of all vertices labeled lab. Remark that, in stream

function, the use of breadth-first iterations is required to ensure that produced set L is always an streamp .

Otherwise, if only depth-first iterations were used, the stream could be stuck on plateaus (connected sub-graphs of G

with constant altitude) since some bottoms of L would never be explored.

At the end of flow the function executing, a family , of N streams (L1, L2… Ln) whose elements must be labeled is

generated. The initial procedure [in the iterative case] is to assign a new label (nb_labs) to each ‘Li’ element if the

latter is a streamp . If it is not the case, the old returned label lab, of the streamp ‘Hi’, included in ‘Li’, is

assigned to the different elements of ‘Li’. Now if we want to launch this procedure in a parallel manner, N/2 flows can

be treated at once.

The procedure, in the parallel case, is based on the idea of labeling and merging two obtained flows at once. If two

flows (to merge) ‘Li’ and ‘Li+1’ contain no common summit, (Li  Li+1)=, meaning there are no common wells

 11

between the two sources ‘xi’ and ‘xi+1’, in this case the merging is simple, for each flow ‘Li’ and ‘Li+1’, see (fig 7.a).

Note that s-labeling function (Algo. 3) launches only the initial procedure [used previously in the iterative case].

Figure 7: Stream merging - (a) Merging streams without common wells (b) Merging streams with common

wells

If the two flows (to merge) ‘Li’ and ‘Li +1’ contain a common summit, (Li  Li+1) ≠ , meaning there are

common wells between the two sources ‘xi’ and ‘xi +1’, see (fig 7.b), in this case, merging is more complicated.

We developed f-labeling procedure (Algo. 4) that is able to make a fusion in the following special cases: (i) ‘Li’

and ‘Li +1’are two streamsp , (ii) ‘Li’ and ‘Li +1’are two streams including two streamsp , (iii) ‘Li’ is

an streamp and ‘Li +1’ is a stream including an streamp .

Algorithm 3 : Function s-labeling [Mahmoudi et al.]

Input: (L, lab, nb_labs)

if (lab = -1) then // L is streamp

 nb_labs ++ ;

 foreach (y  L) do (y)  nb_labs ;

else

 foreach (y  L) do (y)  lab ;

return NULL

The major problem in concurrent merging of multiple flows is summed up in labels’ assignment. If two streams share

the same well, which label should be given to involved pixels? Our proposed solution is inspired from the flooding

paradigm. Indeed, we started by studying all possible cases of merging two water streams gushing from different

sources, see (fig. 8). Our goal is to identify which stream will be the first to reach the well. This latter will mark the

well by its own label. The starting point is the steepest descent approach with the following conditions: (i) Water flow

rate is identical for all sources, (ii) Flow surface is perfectly smooth and (iii) Runoff velocity is uniform for each flow.

If these conditions are fully met, three factors come into play to determine the flow velocity: the source altitude,

distance between source and sink, and finally the slope. In fact, the topographic slope particularly influences the

runoff. The inclination of the slope is surely the most important topographical aspect. Normally, its impact is limited

on a short slope. It is more visible on a longer slope even if runoff needs a certain distance to reach its maximum

velocity. The Mathematic formulation of a flow medium speed can be is given by the Chezy formula:

 
1/2

*cV c h s that was introduced in 1769. ‘C’ refers to the roughness coefficient of Chezy. ‘S’ refers to the

slope, and ‘h’ refers to the altitude of the source.

Figure 8: Merging techniques approach

If we draw the truth table with these three factors (d: distance, s: slope, a: altitude), by varying one parameter each

time, we can identify only five possible cases: The two streams have the same altitude, slope and distances that

separate sources from the well. In the 2nd case, both flows traverse the same distance but slopes and sources altitudes

are different. In the 3rd case, the two streams run down the same slope but they travel different distances since sources

altitudes are different. In the 4th case, the altitude is the same for both sources, but traveled distances and slopes are

different. Finally, the altitude of the sources, the distances separating them from the well and the slopes of the followed

paths are different for the two streams.

 12

Algorithm 4 : Function f-labeling [Mahmoudi et al.]

Input: (La, laba, Lb, labb, nb_labs)

// La AND Lb ARE two streamp

if (laba = -1)  (labb = -1) then

 nb_labs ++ ;

 Attrib_lab(La,Lb,nb_lab) ;

// La OR Lb INCLUDES an streamp already labeled

else if ((laba  -1)  (labb = -1))

 Attrib_lab(La,Lb,laba) ;

 else if ((laba = -1)  (labb  -1))

 Attrib_lab(La,Lb,labb) ;

 // La AND Lb INCLUDE two streamp already labeled

 else if (AVspeed(La)> AVspeed(Lb))

 Attrib_lab(La,Lb,laba) ;

 else Attrib_lab(La,Lb,labb) ;

Return NULL

Function Attrib_lab(L1,L2,lab) :

 foreach (z  {L1  L2}) do (z)  lab ;

 foreach (x  L1) such as ((x) = = No-Label) do (x) lab;

 foreach (y  L2) such as ((y) = = No-Label) do (y) lab;

Return Null

The question now is: does one of these five situations necessarily appear when merging? If we are dealing with two

streamp , this problem does not arise because we are forced to generate a new label for the identified wells (line

1, Algo. 4). Also, if one of the two streams includes an streamp , it means there exists one label what is already

generated that we can assign to the common wells (line 5, Algo. 4). Finally, if both streams include streamp

then, two labels already exist. In order to decide which one to assign, we compute approximately the flow’s average

speed using Chezy formula. It is important to mention that the gray level of a pixel represent its altitude. Altitude

refers to vertices values in the graph. Slope and distance between sources and wells can be computed through pixels’

coordination. According to fixed conditions, roughness coefficient is equal to one.

Results and discussion

The main objective of this session is to present a qualitative and quantitative analysis of the parallel topological (PT)

watershed transform introduced in this paper.

We start by including comparisons with previous studies. We will learn from different syntheses presented in Roerdink

[36] and Audigier [37] works. We will also recall our analysis [38] of watershed transform (WT) in the discrete case

about WT based on flooding, WT based on path-cost minimization, WT based on topology preservation, WT based on

local conditions and WT based on a minimum spanning forest.

The following table summarizes comparison criteria between different algorithms. Selected criteria are justified by our

objective to identify a ranking for the proposed algorithm.

Table 1 : Comparison between main watersheds’ transformation

The starting point is the definition space; we note that IFT-Watershed, MSF-Watershed and PT-Watershed definitions

are limited to the discrete space while the other watersheds definitions are spread into a continuous space.

IFT-Watershed, MSF-watershed, LC-Watershed and PT-watershed belong to a region based watershed transform

family since pixels are assigned to basins. Flooding-Watershed, TD-Watershed and Topological-Watershed form the

line based watershed family since some pixels are labeled as watershed. Only Topological-Watershed defines lines that

consistently separate basins while Flooding-Watershed and TD-Watershed merely swing between thick and

disconnected watershed lines.

 13

Through definitions, only Flooding-Watershed and TD-Watershed return a unique solution while all other definitions

return multiple solutions. Note that a set of solutions returned by the IFT-Watershed can be unified by creating

litigious zones when solutions differ [37].

All algorithms, that do not exactly include their definitions, return unique solution but do not preserve the number of

connected components of the original input image. Actually, Vincent-Soille, Meyer and Lin’s algorithms do not

preserve important topological features. Only IFT-Watershed, Topological-Watershed, MSF-Watershed and PT-

watershed are correct from this point of view.

Taking into consideration the computing process, only Flooding-Watershed needs pixels’ sorting while other

transformation will pass this costly step. But this does not preclude associated algorithms to use hierarchical structures

when being implemented. Except MSF-watershed and PT-watershed transformations that do not need any hierarchical

queue. Vincent and Meyer’s algorithms impose also a prior minima computation, which is not the case of the others.

In terms of complexity, we observe that Vincent and Soille algorithm runs in a linear time with respect to the number

N of pixels in the image which is processed. In most current situations of image analysis, where the number of possible

values for priority function is limited and the number of neighbors of a point is a small constant, Couprie’s algorithm

runs also in a linear time with O(n+m) complexity. IFT-Watershed, MSF-Watershed and PT-Watershed algorithms run

also in linear time. Cousty’s algorithm is executed at most O(|E|) times as well as the proposed algorithm.

Trough this analysis, MSF-Watershed and PT-Watershed algorithms hold best characteristics. The fact that the sorting

step is not required, the hierarchical queue is not used and minima are not computed and they are top ranked. To go

further in this analysis, we turn to a quantitative assessment. A preliminary comparison between IFT-Watershed,

Flooding-watershed, MSF-watershed and PT-watershed, in terms of execution time, is given by the following figure. It

is important to mention that we are programming with tcl/tk using the Ubuntu operating system.

Figure 9: Global watershed transformation profiling - (a) Execution time of IFT-Watershed, Flooding-watershed,

MSF-watershed and PT-watershed (b) Execution time of MSF-watershed and PT-watershed (c) Execution time

of PT-watershed

It perfectly shows that PT-watershed transform has the best execution time. Indeed, the performance of the proposed

algorithm becomes visible when the image size exceeds 640*640 pixels. These preliminary assessments were made on

a single processor. For a deeper assessment to prove the adequacy between our algorithm and the SMP architecture

which is main interest of this article, we move to a performance evaluation through the SDM strategy metrics already

introduced. We begin by presenting test conditions. Then, the obtained results in terms of execution time and cache use

are presented and discussed using variable architectures. Based on these results, we compute efficiency and scalability

of our implementation. We enhance our discussion on scalability by computing the amount of work required to reach

the average speed. Unfortunately, portability will not be assessed for purely technical reasons.

Table 2: Standard tested images

For profiling, we used a microscopic view of a cross-section of a uranium oxide ceramics (see fig. 14.a). To choose the

right size, we compared the number of streams’ intersections during the merging step for each image. The obtained

results (see table 2) show that the cut-size (640*640) is the most appropriate for profiling. Indeed, for cuts with a less

size, number of full intersections (which means that some common wells are detected) is very low compared to the

number of empty intersections (which is the ideal case - labeling is done in parallel with new labels). Concerning big

size cuts, the total intersection number is very high which may cause much confusion when cache profiling

(Determinate instructions’ number).

Table 3: Used processors features

Wall-clock execution times for numbers of threads equal to 1, 2, 4, 8, 16 and 32 were determined. We considered a

commonly used Intel processor configuration. The number of processors varies from one to eight. The frequency

varies between 1,73 GHz and 3,4 GHz as shown in table 3. The L1 caches have at least a 32-byte block size, while the

capacity vary between 16 Kbytes and 32 Kbytes, and for the associativity, only eight ways are considered. The L2

caches have at least a 64-byte block size, while capacities varies between 512 Kbytes and 8 Mbytes, and the

associativity varies between two and sixteen ways. The minimum value of two timings was taken as the most

indicative of algorithms’ speed. The results of implementation on the different architectures are shown in the following

table.

 14

Table 4: Wall clock (ms)

We note that the execution time drops from an average of 4636 ms with a single thread on one CPU down to 713 ms

with 8 threads on 8 CPUs. The speed up was computed using formula Ts/Tp with Ts for 1 CPU = 4360 ms. A

remarkable result about speedup is also shown in table 5.

In fact, speed-up increases as we increase the number of threads beyond the number of processors in our machines. In

the first implementation, using two CPUs, the speedup at 2 threads is 1.37±0.01. However, for the second

implementation, using 8 CPUs, the speedup has increased to 6.11±0.01.

Another common result between different architectures is the stability of execution time on each p-core machine since

the code uses n or more threads. For a better illustration, we establish the execution time and the speedup curve (see

fig.10).

Table 5: Performance improvement

Figure 10: Overlap time - (a) Execution time (b) Performance

In the following we present our experimental analysis of caches. As a result of this experiment, (fig. 11.a), we found

that two performance regions are clearly evident: In the leftmost region, as long as the cache capacity can effectively

serve the growing number of threads. Increasing the number of threads improves the performance, as more processors

are utilized. This area is generally identified as cache-efficiency zone. Balanced workloads offer a higher locality and a

better exploitation of cache and hence expand the cache efficiency zone to the right and up. An outstanding example is

given by table 6 which summarizes the number of instructions, L1 and L2 data misses on four architectures using SMP

scheduling policy. We note that the number of instructions increases from an average of (34x10
6
) instr. on 1 CPU to

(790x10
6
) instr. on 8 CPUs.

To highlight the cache performance, we compute also the waiting status which refers to the delay experienced by the

processor when accessing the external L2 caches each time that information is missing in L1. Since L1miss is followed

either by an L2hit (success) or L2miss, the waiting status can be computed by following the given formula: the sum of

L2hit and L2miss. We suppose that L2 access time is estimated at 10 cycles (in hit case) and 100 cycles (in miss case).

((1 2)*10) (2 *100)cmWS D miss L Dmiss L dmiss   .

Figure 11: Cache profiling - (a) Number of instructions (b) L1d Miss (c) L2d Miss (d) Evaluation of wait status

To estimate the lost time during the memory access, we simply multiply the waiting status by P4 660 frequency (3.6

GHz) and E5405 frequency (2 GHz). Thus we realize that the estimated lost time on 8CPU is insignificant compared

to the lost time on 1CPU. This result is very visible on the E8400 and E5335 architectures. For the E5405 architecture,

the result is less visible due to the cache structure: While E5405 is considered as eight CPUs architectural, but

physically they are two Quads on the same chip (L2 = 2x4Mb).

Table 6: Cache memory consumption

In the sequel, we turn to efficiency evaluation, using Def. 12 (with ts = 360ms), in order to describe the exploitation

degree of each processor in used SMP machines. As introduced in [42], this profiling will highlight the limitations

introduced by the parallel watershed implementation on SMP machines. Indeed, the efficiency decreases by 30%

when switching from mono core architecture to a dual core one. Despite a slight increase on quad core architecture, the

efficiency is 20% lower than that measured with the 1CPU. More details are shown in table 7, see also fig. 12.

Table 7: Efficiency values

The causes for losses of efficiency can be explained by the following reasons, partially introduced in [42] as parallel

computing delays: (i) I/0 delays due to the need to distribute parallel data across local PE data stores. (ii)

Communication delays, due to the need for PES to access data which are not located in their local data stores. (iii) Set-

up delays due to the set-up of control and the processing logic and the network for inter-PE communication.

Figure 12: Efficiency improvement

 15

With a further evaluation, we extend the speedup profiling of parallel watershed computing into a scalability analysis.

According to Fruehe theoretic study [43], a very high scalability can be achieved on a multi-core architecture. For

instance, a dual-core architecture offers a scalability of roughly 80% for the second processor, depending on the OS,

application, compiler, and other factors. That mean that the first processor may deliver 100% of its processing power,

but the second processor typically suffers from some overhead from multiprocessing activities. As a result, the two

processors do not scale linearly. Thus, a dual-processor system does not achieve a 200% performance increase over a

mono-core architecture, but instead it provides approximately 180% of the performance that a single-processor system

provides.

In our evaluation framework, we first introduce the average unit speed. This parameter, seen as the ratio between the

achieved speedup and the number of processors, will be very useful to determinate the scalability. We can also extend

this definition into the maximum average speed which is defined as a ratio of maximum achieved speedup by the

number of processors..  
P

A
AvMax

speed

us

)max(
 The obtained results are introduced in the following table:

Table 8: Maximum Average Unit Speed

The concerning scalability, see Def. 8, it can be written as  
'

'
',

WP

WP
PP




 . In this formula, W refers to the amount

of work of our algorithm when P processors are employed and
'W refers to amount of work of our algorithm when 'P

processors are employed to maintain the average speed. In an ideal situation,
'W is equivalent to

P

WP'

thus  ', PP is

equal to 1. Unfortunately, this never happens in a real situation, actually
P

WP
W




'
' , thus   1', PP .

To calculate the different values of efficiency foreach architecture, we must first determine the necessary amount of

work
'W , as shown in Table 9, to reach the Average Speed Unit usAv . Note that the chosen Average Unit Speed is

0,787 on 4 CPUs using 4 Threads (Associated W = 334.020.732).

Table 9: Average speed Unit - using 4 and 8 CPUs

The scalability results for the parallel watershed processing are shown in table 10. Our experiments demonstrate a very

good scalability across all tested architectures.

Table 10: Scalability profiling

As the number of threads increases, a linear speedup has been observed (see fig. 13). Also, the speedup improves as

the problems’ size increases. Note that when number of threads exceeds the number of cores, the total execution time

is dramatically reduced. The difference between each efficiency curve with the ideal curve (constant efficiency equal

to 1) decreases as the number of threads increases.

Figure 13: Scalability improvement

Conclusion

In this paper, we have presented an adapted algorithm to compute a watershed (see fig. 14) that is parallel, preserves

the topology of the input image, does not need a prior minima extraction and suited for SMP machines. Considered as

major contribution of this work, Parallel Topological (PT)-Watershed does not require any sorting step, or the use of

any hierarchical queue.

The second contribution concerns an adequate parallelization approach that guides the parallel watershed computing.

In fact, splitting step is applied directly on an input graph when selecting sources. Unlike the conventional technique of

division such as pixel division, or block division, the source selection is completely random. The associated stream

computing is fully parallel (read mode data accesses). Then the distribution depends only on the available processors.

This flexibility in data manipulation allowed us to obtain very good results especially in terms of efficiency without

using 'Basic-NPS' scheduler. Finally, the merging step allows two by two streams fusion to build a final watershed.

The emphasis is mostly on the fundamental bases for a successful parallelization on a Shared Memory Parallel

Machine (SMPM).

 16

Figure 14: PT-watershed illustration - (a) Cross-section of a uranium oxide ceramics (b) Output image using

PT-Watershed Transform

The third contribution concerns a qualitative and quantitative study of the PT-watershed algorithm in order to

guarantee an objective ranking among other watershed transforms. Experimental analyzes such as execution time,

performance enhancement, cache consumption, efficiency and scalability are also presented and discussed.

Note that our algorithm cannot be applied directly over a grayscale image. Actually three major steps are needed: the

passage from grayscale image to edge-weighted graphs, then the application of the parallel watersheds-cut algorithm

on the plot and finally the visualization of the graph in the Khalimsky space [44, 45].

References

1. J. Maxwell, On hills and dales, Philosophical Magazine vol. 4/40 (1870) 421-427.

2. C. Jordan, Nouvelles observations sur les lignes de faite et de thalweg , Comptes Rendus des Séances de
l'Académie des Sciences vol. 75 (1872) 1023-1025.

3. S. Beucher, C. Lantuéjoul, Use of watersheds in contour detection, Int. Workshop on Image Processing
Real-Time Edge and Motion Detection/ Estimation (1979) 17-21.

4. F. Meyer, S. Beucher, Morphological segmentation, Journal of Visual Communication and Image
Representation vol. 1 (1990) 21-46.

5. S. Beucher, F. Meyer, The morphological approach to segmentation: the watershed transformation, In
Dougherty ed. Mathematical Morphology in Image Processing Marcel Decker (1993) 433-481.

6. J. Serra, Image Analysis and Mathematical Morphology, Academic Press Inc., Orlando, FL, USA (1982).

7. M. Couprie, G. Bertrand, Topological grayscale watershed transform, SPIE Vision Geometry 5 Vol. 3168
(1997) 136-146.

8. G. Bertrand, On topological watersheds, Journal of Mathematical Imaging and Vision Vol. 22 (2005)
217-230.

9. M. Couprie, L. Najman, G. Bertrand, Quasi-linear algorithms for the topological watershed, Journal of
Mathematical Imaging and Vision Vol. 22 (2005) 231-249.

10. P. Soille, Morphological Image Analysis, Springer-Verlag New York, Inc. Secaucus, NJ, USA (1999).

11. F. Meyer, Topographic distance and watershed lines, Signal Processing Journal Special issue on
mathematical morphology and its applications to signal processing Vol. 38 (1993) 113-125.

12. M. Straka, A. Cruz, A. Köchl, M. Šrámek, E. Gröller, D. Fleischmann, 3D Watershed Transform Combined
with a Probabilistic Atlas for Medical Image Segmentation, Journal of Medical Informatics and
Technologies (2003) 1-10.

 17

13. H. Li, G. Sun, H. Sun, W. Liu, Watershed algorithm based on morphology for dental X-ray images
segmentation, IEEE 11th International Conference on Signal Processing (2012) 877-880.

14. C.C. Benson, V. L. Lajish, K. Rajamani, Brain tumor extraction from MRI brain images using marker
based watershed algorithm, International Conference on Advances in Computing, Communications and
Informatics (2015) 318-323.

15. G. Bertrand, J. C. Everat, M. Couprie, Topological approach to image segmentation, SPIE Vision
Geometry V, Vol. 2826 (1996) 65-76.

16. M. Couprie, F. N. Bezerra, G. Bertrand, Topological operators for grayscale image processing, Journal of
Electronic Imaging Vol. 10 (2001) 1003-1015.

17. G. Bertrand, J. C. Everat, M. Couprie, Image segmentation through operators based on topology, Journal
of Electronic Imaging (1997) 395-405.

18. M. Couprie, G. Bertrand, Topology preserving alternating sequential filter for smoothing 2D and 3D
objects, Journal of Electronic Imaging Vol. 13 (2004) 720-730.

19. M.H.F. Wilkinson, H. Gao, W.H. Hesselink, J.E. Jonker, A. Meijster, Concurrent Computation of Attribute
Filters on Shared Memory Parallel Machines, IEEE Transactions on Pattern Analysis and Machine
Intelligence (2008) 1800-1813.

20. T. G. Mattson, B. A. Sanders, B. Massingill, Patterns for parallel programming, Addison-Wesley
Professional, Boston, USA (2004).

21. L. Wangqing, S. Mingren, P. Ogunbona, A New Divide and Conquer Algorithm for Graph-based Image
and Video Segmentation, IEEE 7th Multimedia Signal Processing Conf. (2005) 1-4.

22. M. J. Quinn, Parallel Computing : Theory and practice, McGraw-Hill Series in Computer Science, New
York, USA (1994).

23. Ad. J. Van Der Steen, Overview of recent supercomputers, Report, NCF/HPC Research, The Netherlands
(2008).

24. B. L. Buzbee, Applications of MIMD machines, In Computer Physics Communications Vol. 37 (1985) 1-
5.

25. E. H.M. Cruz, M. Diener, M. A. Z. Alves, L. L. Pilla, P. O.A. Navaux, LAPT: A locality-aware page table for
thread and data mapping, In Parallel Computing Journal Vol. 54 (2016) 59–71.

26. Foster, Designing and Building Parallel Programs, Addison Wesley, 1st Edition, Boston, USA (1995).

27. R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald, Parallel Programming in OpenMP,
Morgan Kaufmann, 1st Edition, Massachusetts, USA (2000).

28. J. Reinders, Intel Threading Building Blocks, O'Reilly Media Inc. CA, USA (2007).

29. M. Aji, A. Peña, P. Balajic, W. Fengd, MultiCL: Enabling automatic scheduling for task-parallel workloads
in OpenCL, Parallel Computing Journal Vol. 58 (2016) 37–55.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hui%20Li.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Guoxia%20Sun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Huiqiang%20Sun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wei%20Liu.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6483173
http://www.citeulike.org/user/asderina/author/Couprie
http://www.citeulike.org/user/asderina/author/Bertrand
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
http://adsabs.harvard.edu/cgi-bin/author_form?author=Buzbee,+B&fullauthor=Buzbee,%20B.%20L.&charset=UTF-8&db_key=PHY
http://www.sciencedirect.com/science/journal/00104655/37/1
http://www.sciencedirect.com/science/journal/01678191
http://www.sciencedirect.com/science/journal/01678191/54/supp/C
https://www.google.tn/search?biw=1366&bih=662&q=Burlington+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LSz9U3MDKrKik3V-IEsQ1zjXILtTQyyq30k_NzclKTSzLz8_Tzi9IT8zKrEkGcYqv0xKKizGKgcEYhAFo8vFpDAAAA&sa=X&ved=0ahUKEwjJ4-aimKrUAhWKaRQKHXbCCacQmxMIhQEoATAO
https://www.google.tn/search?biw=1366&bih=662&q=Sebastopol+Californie&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEwrskxS4gAx85LN07S0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQBepOAGQwAAAA&sa=X&sqi=2&ved=0ahUKEwjU6ra6mKrUAhXCwxQKHTyIDKUQmxMIlQEoATAO
http://www.sciencedirect.com/science/article/pii/S0167819116300357
http://www.sciencedirect.com/science/article/pii/S0167819116300357
http://www.sciencedirect.com/science/article/pii/S0167819116300357
http://www.sciencedirect.com/science/article/pii/S0167819116300357
http://www.sciencedirect.com/science/article/pii/S0167819116300357
http://www.sciencedirect.com/science/article/pii/S0167819116300357
http://www.sciencedirect.com/science/journal/01678191
http://www.sciencedirect.com/science/journal/01678191/58/supp/C

 18

30. S. Ramaswamy, S. Sapatnekar, P. Banerjee, A framework for exploiting task and data parallelism on
distributed memory multicomputers, IEEE Transactions on Parallel and Distributed Systems Vol. 8
(1997) 1098-1116.

31. G. M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale Computing
Capabilities, AFIPS Conference Proceedings Vol. 30 (1967) 483–485.

32. J. L. Gustafson, Reevaluating Amdahl's Law, Communications of the ACM 31(5) (1988) 532-533.

33. U. A. Acar, G. E. Blelloch, R. D. Blumofe, The data locality of work stealing, Proceedings of the twelfth
annual ACM symposium on Parallel algorithms and architectures (2000) 1-12.

34. D. Mooney James, Strategies for Supporting Application Portability, in Computer, Vol. 23 (11) (1990)
59-70.

35. J. Cousty, G. Bertrand, L. Najman, M. Couprie, Watershed Cuts: Minimum Spanning Forests and the Drop
of Water Principle, IEEE Trans. Pattern Anal. Mach. Intell. (2009) 1362-1374.

36. J.B. T.M. Roerdink, A. Meijster, The watershed transform: Definitions, algorithms and parallelization
strategies, Fundamenta Informaticae, Vol. 41 (2001) 187-228.

37. R. Audigier, R. A. Lotufo, Watershed by image foresting transform, tie-zone, and theoretical
relationship with other watershed definitions, In Mathematical Morphology and its Applications to
Signal and Image Processing (2007) 277–288.

38. R. Mahmoudi, M. Akil, Analyses of the Watershed Transform, In International Journal Of Image
Processing (IJIP) Vol. 5 Issue 5 (2011) 521-541.

39. L. Vincent, P. Soille, Watersheds in digital spaces : An efficient algorithm based on immersion
simulations, In IEEE Trans. Pattern Analysis and Machine Intelligence Vol. 13 (1991) 583-598.

40. R. A. Lotufo, A. X. Falcão, The Ordered Queue and the Optimality of the Watershed Approaches, 5th
International Symposium on Mathematical Morphology (2000) 341-350.

41. Y.C. Lin, Y.P. Tsai, Y.P. Hung, Z.C. Shih, Comparison Between Immersion-Based and Toboggan-Based
Watershed Image Segmentation, 15th IEEE Transactions on Image Processing Vol. 3 (2006) 632-640.

42. H.T. Kumm, R.M. Lea, Parallel Computing Efficiency: Climbing the Learning Curve, 10's Ninth Annual
International Conference on Frontiers of Computer Technology (1994) 728-732.

43. J. Fruehe, Planning Considerations for Multicore Processor Technology, Dell Power Solutions (2005).

44. E. Khalimsky, Topological graph theory foundations of design and control in multidimensional discrete
systems, IEEE international conference on System, Man, and cybernetics (1994) 1628-1933.

45. E. Khalimsky, Topological structures in computer science, Journal of Appl. Math. Simulation Vol. 1 (1)
(1987) 25-40.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.6348
http://en.wikipedia.org/wiki/Communications_of_the_ACM
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=2978
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=2978

 19

Watershed applications 1979-2015

Parallelization strategy approach

 20

Auto-supplying task system design

Stream notion illustration

 21

Watershed computing principal

Flow computation

Stream merging

 22

Merging techniques approach

Global watershed transform profiling

 23

Overlap time

Cache profiling

Efficiency improvement

 24

Scalability improvement

PT-watershed illustration

 25

Comparison between main watersheds transforms

Standard tested images

 26

Used processors features

Wall clock (ms)

 27

Performance improvement

Cache memory consumption

Efficiency values

 28

Maximum Average Unit Speed

Average speed Unit - using 4 and 8 CPUs

Scalability profiling

