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2 I2M, Aix Marseille Université, 39 rue Joliot Curie, 13453 Marseille

Abstract We focus here on a three-phase flow model in order to represent complex
flows involving liquid metal droplets, liquid water, and its vapour. The governing
equations and its main properties are given, and focus is given on the pressure-
velocity relaxation process on the one hand, and on the structure of solutions of the
one-dimensional Riemann problem associated with pure convective effects. A frac-
tional step method that computes successively the convective part and the relaxation
effects is used to obtain approximate solutions on unstructured meshes. Details of
algorithms are provided, and it is shown that the numerical method preserves posi-
tive values of statistical fractions and partial masses. Verification and validation test
cases are presented, and some perspectives are eventually drawn.
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1 Introduction

The modeling and the accurate simulation of steam explosion is actually an open
topic; it is indeed important for nuclear safety analysis, and it deserves relevant and
meaningful models, and also appropriate numerical methods, to get decent approx-
imations of pressure waves acting on solid structures. The steam explosion may oc-
cur when some very hot liquid metal flows down in a quiet liquid component such as
water. In that case the heat transfer towards the water component depends on the lo-
cal structure of liquid metal droplets. The liquid water surrounding the liquid metal
droplet is suddenly changed into steam, and this, in turn, can modify the process,
since the thin layer of steam in the vicinity of the metal droplet can inhibit the heat
transfer between the two components. Afterwards, pressure waves may propagate,
and change the topology of the flow, because droplets are sheared and dislocated
when high relative velocities are involved. The break-up of liquid metal droplets
thus increases the interfacial area between droplets and liquid water, so that the heat
transfer may again develop and feed-up the whole chain. Different phenomenologi-
cal scenarios have been proposed in the literature to predict these flow patterns. We
refer the reader to [4] and references therein in order to have a better understanding
of that problem, and also to the recent paper [28].

An important point to quote at once is that the sudden increase of vapour concen-
tration results in huge pressure waves including shock and rarefaction waves. An-
other feature is that the three fields (liquid metal droplets, liquid water and steam)
are immiscible; moreover, mass transfer may only happen within the water com-
ponent, more precisely between the liquid water and its vapour phase. Some mul-
tiphase flow models have been proposed in the past, which mainly rely on the in-
stantaneous pressure relaxation assumption. However, as it is well known for stan-
dard two-phase flow models, one straightforward drawback is that associated sets
of PDEs are not hyperbolic. Even more, jump relations through -expected- shock
waves are not defined. This may not only result in several difficulties when tackling
the steam explosion description, in order to estimate the amplitude of shock waves
on wall boundaries, since we need to compute an initial-value problem, but it also
renders the estimation of the pressure shock waves questionable.

Hence the work presented herein aims at providing some original preliminary
results in the direction of steam explosion modeling. For that purpose, we first need
to define adequate sets of PDEs, so that the following requirements arise:

• the whole model must comply with hyperbolicity requirements;
• some physical entropy inequality is needed;
• unique jump conditions are mandatory;

and of course, schemes should provide convergent approximations of pressure shock
waves.
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Obviously, there are several difficulties on the way to such a correct and phys-
ically relevant description. In order to simplify a little bit the whole approach, we
will focus in this work on barotropic situations, thus neglecting heat transfer. One
basic reason is that one needs to get some estimation of the interfacial area, since
this seems to be one of the key points on the way to pave towards a correct mod-
eling of steam explosion. However, we emphasize that extensions of the barotropic
three-phase model that will be considered here [21] already exist (see [20]), which
means that the sequel of the present framework is indeed clear, at least from a
global point of view. In other words, the current barotropic model [21] may be
seen as a rough version of model [20]. It is also worth noting that the latter models
[21, 20] are actually quite similar to the classical two-phase flow models arising
from [3, 5, 25, 16, 9].

Hence, the present paper will be organized as follows. We will first present the
governing set of equations for the basic barotropic three-phase flow model, and
then give a slight extension in order to account for the interfacial area. Afterwards,
we will give the main properties of both of these, while focusing on solutions of
the one-dimensional Riemann problem. This enables to extract meaningful analyti-
cal test cases including shock waves, rarefaction waves and contact discontinuities.
Next, we will briefly discuss the inner pressure-velocity relaxation processes, and
comment the whole. The second part will be devoted to the presentation of a frac-
tional step method that treats separately convective effects and source terms. In this
paper, we will only consider a rough Finite Volume scheme to cope with the con-
vective part, and postpone the derivation of more accurate -though stable- approx-
imate Riemann solvers to a future work; this will enable us to concentrate on the
numerical treatment of velocity and pressure relaxation effects. The first section in
the last part will provide some approximate solutions of analytical test cases, in-
cluding the measure of the L1 norm of the error. Eventually, we will show some
results corresponding to the propagation of a shock wave through a cloud of liquid
droplets, which corresponds to the experimental setup of the paper [8]. One crucial
point is that the latter configuration is very similar to what happens in the steam ex-
plosion setup, and meanwhile, this will give some good confidence with respect to
the modeling of the break-up phenomenon. The conclusion will highlight the main
directions of progress towards a complete simulation of steam explosion.
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2 Governing equations and main properties of the
two-dimensional three-phase flow model

2.1 Governing equations

Throughout the paper, αk ∈ [0,1], ρk, mk = αkρk, Uk, will denote the mean statis-
tical fraction, the mean density, the partial mass and the mean velocity of phase k
Statistical fractions are such that:

α1 +α2 +α3 = 1 (1)

The mean pressure Pk(ρk) is an increasing function which is such that:

lim
x→∞

Pk(x) = +∞ ; lim
x→0

Pk(x) = 0 (2)

and we introduce the phasic speed of sound waves ck such that : c2
k = P′k(ρk).

The state variable W will denote the following vector:

W = (α2,α3,m1,m2,m3,m1U1,m2U2,m3U3)t

The set of governing equations for the three-phase flow model will read ([21]):

∂αk
∂ t +Vi(W)∇αk = φk(W) ;

∂mk
∂ t +∇.(mkUk) = 0 ;

∂mkUk
∂ t +∇.(mkUk×Uk +αkPkId)+Σ 3

l=1,l 6=kΠkl(W)∇αl = mkSk(W) .

(3)

Source terms should be such that:

Σ
3
k=1mkSk(W) = 0

and:
Σ

3
k=1φk(W) = 0

since they only take into account transfers between the different phases.

Moreover, a similar constraint holds for the Πkl(W) since:

Σ
3
k=1

(
Σ

3
l=1,l 6=kΠkl(W)∇αl

)
= 0

and of course, owing to (1), the three quantities ∇αl are in agreement with:
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Σ
3
k=1∇αk = 0

The first and second equations provide the evolution of the statistical fraction and
mass fraction within phase k, while the third equation stands for the momentum
balance equation. The interface velocity Vi(W) and the interfacial pressures Πkl(W)
are not unknown. Actually the interface pressures are uniquely defined as functions
of the interface velocity. More precisely, if Vi(W) denotes a convex combination of
the phasic velocities, that is :

Vi(W) = a1(W)U1 +a2(W)U2 +a3(W)U3

where all ak(W) lie in [0,1], with the constraint: a1(W)+a2(W)+a3(W) = 1, then
all interfacial pressures should be such that:

Π12(W) = (1−a1(W))P1 +a1(W)P2 ;
Π21(W) = a2(W)P1 +(1−a2(W))P2 ;
Π13(W) = (1−a1(W))P1 +a1(W)P3 ;
Π31(W) = a3(W)P1 +(1−a3(W))P3 ;
Π23(W) = (1−a2(W))P2 +a2(W)P3 ;
Π32(W) = a3(W)P2 +(1−a3(W))P3 ;

(4)

These closure laws, together with a correct choice of the right hand side contri-
butions φk(W) and Sk(W), will ensure that smooth solutions of system (3) would
comply with a relevant entropy balance.

Closure laws to account for drag effects between phases k, l are simply chosen
as:

mkSk(W) = Σ
3
l=1ekl(W)(Ul−Uk) (5)

where the symetric positive functions ekl(W) = elk(W) are chosen in agreement
with the two-phase flow literature.

Meanwhile, we define:

φk(W) = Σ
3
l=1dkl(W)(Pk−Pl) (6)

where the symetric positive functions dkl(W) = dlk(W), which involve presssure
relaxation time scales, will be taken from [15].

2.2 Main properties of the three-phase flow model

We introduce ψk(ρk) such that ψ ′
k(ρk) = Pk(ρk)

ρ2
k

, and define the mixture entropy

η(W) and the entropy flux fη(W) as:
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η(W) = Σ 3

k=1mk (|Uk.Uk|/2+ψk(ρk))
fη(W) = Σ 3

k=1mk

(
|Uk.Uk|/2+ψk(ρk)+ Pk

ρk

)
Uk

(7)

Owing to the closure laws (5) and (6), the following property holds for smooth so-
lutions of (3):

Property 1:
Smooth solutions of (3) comply with the following entropy inequality:

∂η(W)
∂ t

+∇.(fη(W))≤ 0. (8)

(see [21]).

Now, using invariance under frame rotation of system (3), introducing two nor-
mal vectors n = (nx,ny) and τ = (−ny,nx) in R2, such that: n2

x +n2
y = 1, and rewrit-

ing (3) in the (n,τ) frame, we may consider the one-dimensional homogeneous sys-
tem in the n direction obtained by neglecting transverse variations ∂g

∂τ
with respect

to τ , whatever g is. Thus we get:



∂αk
∂ t +Vi(W).n ∂αk

∂n = 0 ;

∂mk
∂ t + ∂mkUk.n

∂n = 0 ;

∂mkUk.n
∂ t + ∂mk(Uk.n)2+αkPk

∂n +Σ 3
l=1,l 6=kΠkl(W) ∂αl

∂n = 0 ;

∂mkUk.τ
∂ t + ∂mk(Uk.n)(Uk.τ)

∂n = 0 .

(9)

A straightforward consequence is the following:

Property 2:
System (9) is hyperbolic. It admits the following real eigenvalues:

λ0,1(W) = Vi(W).n ; λ2−7(W) = Uk.n± ck ; λ8−10(W) = Uk.n (10)

and associated right-eigenvectors span the whole space IR11 unless:

(Vi(W)−Uk).n =±ck. (11)

The proof is classical and left to the reader.

In the sequel of the paper, we will focus on the following closure law:

Vi(W) = U1.
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which implies : {
Π12(W) = Π21(W) = Π23(W) = P2 ;
Π13(W) = Π31(W) = Π32(W) = P3 .

(12)

owing to (4). We note at a glance that this is in fact the straightforward counterpart
of the Baer-Nunziato closure laws in a two-phase framework ([3]).

2.3 Some additional results in the one-dimensional framework

In a pure one-dimensional framework, we may focus on the structure of the latter
fields. More precisely, if we consider:

∂αk
∂ t +Vi(W ) ∂αk

∂x = 0 ;

∂mk
∂ t + ∂mkuk

∂x = 0 ;

∂mkuk
∂ t + ∂mku2

k+αkPk
∂x +Σ 3

l=1,l 6=kΠkl(W) ∂αl
∂x = 0 .

(13)

we may set : X = (α2,α3,m1,m2,m3,m1u1,m2u2,m3u3), and we get at once:

Property 3:

• The convective subset (13) admits eight real eigenvalues which read:

λ0,1(X) = u1 ; λ2−7(X) = uk± ck. (14)

The field associated with eigenvalues λ0,1(X) is linearly degenerate. Meanwhile,
fields associated with λ2−7(X) are genuinely non linear.

• The six Riemann invariants in the 0−1 coupling wave write:

I1
0,1(X) = u1 ; I2

0,1(X) = m2(u2−u1) ; I3
0,1(X) = m3(u3−u1);

I4
0,1(X) =

(u1−u2)2

2
+

∫
ρ2

0

c2
2(x)
x

dx ; I5
0,1(X) =

(u1−u3)2

2
+

∫
ρ3

0

c2
3(x)
x

dx;

I6
0,1(X) = Σ

3
k=1(αkPk)+m2(u2−u1)2 +m3(u3−u1)2.

• Within each isolated GNL wave, unique jump conditions between Xl ,Xr states
arise:
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[αk]rl = 0 ;

−σ [mk]rl +[mkuk]rl = 0 ;

−σ [mkuk]rl +[mku2
k +αkPk]rl = 0 ;

(15)

where σ denotes the speed of the discontinuity separating states Xl ,Xr.

• Within the GNL wave associated with λ2(X) = u1− c1 (resp. λ3(X) = u1 + c1) ,
Riemann invariants connecting Xl ,Xr states are (α2,α3,ρ2,ρ3,u2,u3) and: u1 +∫ c1(ρ1)

ρ1
dρ1 (resp. u1−

∫ c1(ρ1)
ρ1

dρ1). Similar results hold for 4−5 and 6−7 fields.

The latter Riemann invariants and jump conditions will enable us to construct ex-
act solutions in order to check the true convergence of algorithms (see for instance
the first two test cases in section 4). Again, the latter property is the straightfor-
ward counterpart of what occurs when focusing on the two-phase barotropic Baer-
Nunziato model (see [3]).

Actually, if Xl denotes the state on the left-hand side of the 0−1 coupling wave,
and if we assume that (α2)r,(α3)r are also given, we may compute the right state
Xr by enforcing:

Im
0,1(Xr) = Im

0,1(Xl)

where the left state is given. We only need to compute x2 = (ρ2)r solution of the
scalar equation g2(x2) = 0 where:

g2(x2) =
(I2

0,1(Xl))2

2((α2)rx2)2 +
∫ x2

0

c2
2(x)
x

dx− I4
0,1(Xl)

and in a similar way x3 = (ρ3)r solution of the scalar equation g3(x3) = 0 where:

g3(x3) =
(I3

0,1(Xl))2

2((α3)rx3)2 +
∫ x3

0

c2
3(x)
x

dx− I5
0,1(Xl)

Once these two scalar quantities have been calculated, we may update (u2)r and
(u3)r using the following equalities:

(u2)r = (u1)l +
I2
0,1(Xl)
(m2)r

and also:

(u3)r = (u1)l +
I3
0,1(Xl)
(m3)r

The last unknown x1 = (ρ1)r is found by solving :

I6
0,1(x1) = I6

0,1(Xl)
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with some abuse of notation.
�
We also note that the form of the function gk(x) is similar to the one encountered
in the shallow-water framework, when the ”bottom of the lake” is not uniform. The
latter results will be used in section 4.1. Other technical results on the convexity of
the entropy and on the symmetric form of the system can be found in [23].

2.4 A slightly modified three-phase flow model

For some practical purposes, we will need some enrichment of the latter three-phase
flow model (3), in order to account for interfacial area modeling. Actually this will
be used in order to compute situations where droplets of liquid phase 1 are sheared
and dislocated.

Hence, if A denotes some -positive- function standing for the interfacial area, we
introduce some extension of the latter three-phase flow model (3), which reads:

∂A
∂ t +∇.(AU1) = g(A,W) ;

∂αk
∂ t +Vi(W)∇αk = φk(W) ;

∂mk
∂ t +∇.(mkUk) = 0 ;

∂mkUk
∂ t +∇.(mkUk×Uk +αkPkId)+Σ 3

l=1,l 6=kΠkl(W)∇αl = mkSA
k (A,W) .

(16)
or in a more condensed form:

∂A
∂ t +∇.(AU1) = g(A,W) ;

∂W
∂ t +∇.(F(W))+Σ 3

l=1Gl(W)∇αl = r(A,W) .

(17)

where the non-negative function g(A,W), which takes dislocation effects of phase
1 droplets into account, will be described in detail afterwards. The first governing
equation for A is taken from [28, 30]. Actually, the closure laws for Πkl(W) interfa-
cial terms still agree with (4). Furthermore, we assume that we still have:

mkSA
k (A,W) = Σ

3
l=1eA

kl(A,W)(Ul−Uk) (18)

where the positive functions eA
kl(A,W) = eA

lk(A,W) are directly deduced from the
latter ekl(W).
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Then, if we choose the combination a1 = 1, a2 = a3 = 0, we get the following
result:

Proposition 1:

• The homogeneous convective part of system (17) admits real eigenvalues; it is
hyperbolic unless:

|(U1−Uk).n|= ck

• Smooth solutions of (17) comply with :

∂η(W)
∂ t

+∇.(fη(W)) = RHSη(W)≤ 0. (19)

Proof: the computation of eigenvalues is classical. Turning to the entropy inequal-
ity, the only difference with the former three-phase flow model (3) in section 2.1
concerns the exact form of the right hand side, which reads now:

RHSη(W) = ∇W η(W).r(A,W)

or:

RHSη(W) =−Σ
3
k=1Σ

3
l=1

(
eA

kl(A,W)|Ul−Uk|2 +dkl(W)(Pk−Pl)2)/2

�

Remark 1:

We may introduce ψA = A/m1, and some positive function h(ψA) such that
h′(ψA)≤ 0 and 0 ≤ h′′(ψA). We also note :

ηA(A,W) = η(W)+m1k2
0h(ψA)

with k0 ∈R, and :

fη ,A(A,W) = fη(W)+m1k2
0h(ψA)U1

Then regular solutions of (17) agree with

∂ηA(A,W)
∂ t

+∇.
(
fη ,A(A,W)

)
≤ 0.

Proof: starting from the balance equation for A and using the mass balance equation
for phase 1, we get:

∂ψA

∂ t
+U1.∇ψA = g(A,W)/m1 (20)

Thus, using the mass balance equation of phase 1 once more:
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∂m1h(ψA)
∂ t

+∇.(m1U1h(ψA)) = g(A,W)h′(ψA) (21)

Meanwhile, we have:

∂η(W)
∂ t

+∇.(fη(W)) = ∇W η(W).r(A,W)≤ 0 (22)

which, after summation, ends up with:

∂ηA(A,W)
∂ t

+∇.
(
fη ,A(A,W)

)
= ∇W η(W).r(A,W)+ k2

0g(A,W)h′(ψA) (23)

This enables to conclude since h′(ψA)≤ 0. �

It is indeed useful to go back to the pure one-dimensional framework in order to
examine some particularities of the modified three-phase flow model. Thus, if we
focus on the pure 1D model that writes:

∂m1ψA
∂ t + ∂m1u1ψA

∂x = 0 ;

∂αk
∂ t +u1

∂αk
∂x = 0 ;

∂mk
∂ t + ∂mkuk

∂x = 0 ;

∂mkuk
∂ t + ∂mku2

k+αkPk
∂x +Σ 3

l=1,l 6=kΠkl(W) ∂αl
∂x = 0 .

(24)

We may introduce the non-conservative state vector Y such that:

YT = (ψA,XT)

Then, for regular solutions, the homogeneous convective part of system (24) reads:
∂ψA
∂ t +u1

∂ψA
∂x = 0 ;

∂X
∂ t +C(X) ∂X

∂x = 0 ;
(25)

which may also be written in a more compact form:

∂Y
∂ t

+C (Y)
∂Y
∂x

= 0. (26)

We get at once:

Proposition 2:
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• The convective subset (24) admits nine real eigenvalues which read:

λ0,1,2(Y) = u1 ; λ3−8(Y) = uk± ck. (27)

The field associated with eigenvalues λ0,1,2(Y) is linearly degenerate. Fields as-
sociated with λ3−8(Y) are genuinely non linear.

• ψA is a Riemann inavariant within each GNL field.

• The structure of the coupling wave is unchanged, since the six Riemann invari-
ants in the 0−1−2 coupling wave write:

I1
0,1,2(Y) = u1 ; I2

0,1,2(Y) = m2(u2−u1) ; I3
0,1,2(Y) = m3(u3−u1);

I4
0,1,2(Y)=

(u1−u2)2

2
+

∫
ρ2

0
(

c2
2(x)
x

dx) ; I5
0,1,2(Y)=

(u1−u3)2

2
+

∫
ρ3

0
(

c2
3(x)
x

dx);

I6
0,1,2(Y) = Σ

3
k=1(αkPk)+m2(u2−u1)2 +m3(u3−u1)2.

• If σ denotes the speed of the discontinuity separating Yl ,Yr states in an isolated
GNL wave, jump conditions between Yl ,Yr states are:

[αk]rl = [ψA]rl = 0 ;

[ρk(uk−σ)]rl = 0 ;

[ρk(uk−σ)2 +Pk]rl = 0 ;

(28)

Proof: if r0(X),r1(X) denote the two right-eigenvectors associated with the double
eigenvalue λ0,1(X) = u1 of matrix C(X), we define:

R0(Y)T = (1,OT )

and, for k = 1,2:
Rk(Y)T = (0,rk−1(X)T )

Now, we may compute, for m = 1−6:

∇Y (Im
0,1,2(Y)).R0(Y) = (0,∇X (Im

0,1(X))T ).(1,OT )T = 0

and, for k = 1,2:

∇Y (Im
0,1,2(Y)).Rk(Y)= (0,∇X (Im

0,1,2(Y))T )(0,rk−1(X)T )T = ∇X (Im
0,1(X))).rk−1(X)= 0

owing to property 3. Evenmore, defining Rk(Y)T = (0,rk−1(X)T ), for k = 3− 8,
where rk−1(X) stands for the (k−1)-th right-eigenvector of C(X), we end up with:
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∇Y (ψA).Rk(Y) = (1,0T )(0,rk−1(X)T )T = 0

Furthermore, if we turn to jump conditions within an isolated GNL field, we have:
−σ [m1ψA]rl +[m1ψAu1]rl = 0 ;

−σ [m1]rl +[m1u1]rl = 0 ; (29)

and thus:
m1(u1−σ)lr[ψA]rl = 0

with the classical notation ψ lr = (ψl +ψr)/2, or equivalently:

m1(u1−σ)[ψA]rl = 0

�
Remark 2:

Using the above jump conditions in the GNL field associated with eigenvalue u1±c1
within phase 1 we note that:

[A]rl = [m1ψA]rl = ψA[m1]rl = ψAα1[ρ1]rl

This means that for the weakly compressible liquid within phase 1, we may expect
slight variations of the interfacial area A through phase 1 shock waves, though α1
does not vary through the latter field.

Remark 3:
The function g(A,W ) that will be used in practical computations will only take
breakup phenomenum into account, and effects of coalescence will be neglected,
which means that A will always be non-decreasing. Of course other forms are avail-
able in the litterature, in order to account for coalescence (see [17, 31, 32, 37] among
others, and also numerous references therein), and alternative closure laws for the
breakup can also be found in the latter references. We emphasize that other convec-
tive patterns are also proposed in [24, 37] for the interfacial area A, which are not
under conservative form. This of course would raise the problem of how to close
jump conditions associated with A.

2.5 Some comments on the pressure-velocity relaxation process

We turn now to some aspects related to the pressure-velocity relaxation process
involved in the latter three-phase flow models. For readers interested in theoretical
aspects in relaxation processes occuring in two phase flow models, we refer for
instance to [14]. Now, some specificities immediately arise for three-phase flows,
which are mainly due to the fact that three one-to-one connections are present in
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the whole interfacial transfer. In [21], a few results were given when restricting to
”isotropic” relaxation time scales. Hence the system of interest is :

∂αk
∂ t = φk(W) ;

∂mk
∂ t = 0 ;

∂mkUk
∂ t = mkSk(W) .

(30)

and we define the quantities: ak = ρkc2
k/αk. We also introduce:

∆P21 = P2−P1 ; ∆P23 = P2−P3

and:
Yp = (∆P21,∆P23)T . (31)

Owing to the fact that the partial mass remains constant, we get first :

∂Pk

∂ t
=−ak

∂αk

∂ t

Thus it comes:
∂Yp

∂ t
=−Ua

∂ (α2,α3)T

∂ t
The 2×2 matrix Ua has real coefficients :

(Ua)11 = a1 +a2; (Ua)12 = a1; (Ua)21 = a2; (Ua)22 =−a3

Its determinant reads:

δa =−(a1a3 +a2a3 +a1a2) < 0

Now we may also get the evolution of α2 and α3, so that:

∂ (α2,α3)T

∂ t
= UbYp

where the 2×2 matrix Ub is such that :

(Ub)11 = d12; (Ub)12 = d23; (Ub)21 = d13; (Ub)22 =−d13−d23

Ub determinant is:

δb =−(d12d13 +d12d23 +d13d23) < 0

Hence we get:
∂Yp

∂ t
=−UaUbYp =−U Yp (32)
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If µ1,µ2 denote the two eigenvalues of U , straightforward calculations give: µ1µ2 = det(U ) = δaδb > 0 ;

µ1 + µ2 = trace(U ) = d12(a1 +a2)+d13(a1 +a3)+d23(a2 +a3) > 0 .
(33)

If we note ∆U = (trace(U ))2−4det(U ), we end up with:

µ1,2 =
(

trace(U )± (∆U )1/2
)

/2

We may conclude now that, unlike in the two-phase flow framework, the decay in
the pressure relaxation process is not necessarily uniform, since the sign of ∆U is
unknown in the general case. This means in practice that some oscillations might
arise in some regions. The algorithm used in the next section will take advantage of
the present analysis. Eventually, we note that a formal integration yields:

Yp(t) = exp
(
−

∫ t

O
(U )(t)dt

)
Yp(0)

Though not detailed here, the velocity relaxation process is quite similar to the
pressure relaxation process, but it is indeed more straightforward. If :

Yu = (∆U21,∆U23)T (34)

denotes the two independent relative velocities, setting :

∆U21 = U2−U1 ; ∆U23 = U2−U3

then the following holds:
∂Yu

∂ t
=−V Yu (35)

where the 2×2 matrix V is given by:{
(V )11 = E12 +E21 +E13 ; (V )12 = E23−E13 ;

(V )21 = E21−E31 ; (V )22 = E23 +E31 +E32 .
(36)

where :  m1E12 = m2E21 = e12 ;
m1E13 = m3E31 = e13 ;
m2E23 = m3E32 = e23 .

(37)

The trace and the determinant of matrix V respectively read:

trace(V ) = e12(
1

m1
+

1
m2

)+ e13(
1

m1
+

1
m3

)+ e23(
1

m2
+

1
m3

) > 0

and:
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det(V ) = (e12e13 + e12e23 + e13e23)(
1

m1m2
+

1
m1m3

+
1

m2m3
) > 0

Hence we have the same kind of behaviour: the velocity relaxation process may be
monotone if: ∆V = (trace(V ))2− 4det(V ) is positive, whereas it is not when ∆V

is negative.

The numerical method that will be used for computational applications is pre-
sented and discussed below. It is actually the straightforward counterpart of the one
used in [22, 11] for two-phase flow models.
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3 Numerical method

Owing to the former results, the temptation is great to introduce a fractional step
method in order to compute approximate solutions of (3). Actually this one will
guarantee positive values of discrete statistical fractions and partial masses, given a
classical constraint on the time step. Moreover, by construction, it will be in agree-
ment with the inner pressure-velocity relaxation processes. We will explain at the
end of the section how to account for the additional interfacial area A.

We consider a classical Finite Volume formulation. The computational domain is
meshed using unstructured cells Ωi, the surface of which is noted ωi ; Si j stands for
the length of the i j interface. At each interface separating cells Ωi and Ω j, we define
the unit outward normal vector ni j pointing from cell Ωi towards Ω j. We define ∆ tn
the time step at time such that: tn+1 = tn + ∆ tn. More over, V (i) will refer to the
neighbouring cells of Ωi.

3.1 Fractional step method

The time scheme is the following:

• Step 1 : Evolution step:
For a given initial condition Wn

i , compute an approximate solution of W at time
t−n+1, namely Wn+1,−, by solving:

∂αk
∂ t +Vi(W)∇αk = 0 ;

∂mk
∂ t +∇.(mkUk) = 0 ;

∂mkUk
∂ t +∇.(mkUk×Uk +αkPkId)+Σ 3

l=1,l 6=kΠkl(W)∇αl = 0 .

(38)

• Step 2 : Relaxation step:
Starting with Wn+1,−, compute an approximation Wn+1 of the solution of:

∂αk
∂ t = φk(W) ;

∂mk
∂ t = 0 ;

∂mkUk
∂ t = mkSk(W) .

(39)
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3.2 Computing the relaxation step

3.2.1 Pressure relaxation

Within each cell Ωi, starting with W∗
i , we compute the following sequence:

• Initialize : yn
p = Yp(W∗

i ), where Yp is defined in (31);
• Compute the exact solution yn+1

p of the linear ODE:

∂yp

∂ t
=−U (W∗

i )yp (40)

at time t = ∆ tn, using the initial condition yn
p, where the 2×2 matrix U is defined

in (32) ;
• Find the pressure x = (P1)n+1

i solution of the scalar equation gp(x) = 1:

gp(x) =
(m1)∗i
ρ1(x)

+
(m2)∗i

ρ2(x+(∆P)n+1
21 )

+
(m3)∗i

ρ3(x+(∆P)n+1
21 − (∆P)n+1

23 )
(41)

• Update (P2)n+1
i and (P3)n+1

i , setting:

(P2)n+1
i = x+(∆P)n+1

21 ; (P3)n+1
i = x+(∆P)n+1

21 − (∆P)n+1
23

• Update (αk)n+1
i for : k ∈ 1,2,3, setting:

(αk)n+1
i =

(mk)∗i
ρk((Pk)n+1

i )

We now have the following result:

Proposition 3:
• We assume that EOS comply with the constraints (2). Then there exists a unique

solution x of (41) in the admissible range.
• Statistical fractions (αk)n+1

i lie in [0,1], and partial masses remain positive.

Proof: we define xmin = max(0,−(∆P)n+1
21 ,(∆P)n+1

23 − (∆P)n+1
21 ). Since c2

k > 0,
the function gp(x) is decreasing for x ∈ [xmin,+∞[. Moreover :

lim
x→+∞

gp(x) = 0, and : lim
x→xmin

gp(x) = +∞.

Thus there exists a unique solution to gp(x) = 1. Evenmore, this equation per-
fectly matches the condition:

(α1)n+1
i +(α2)n+1

i +(α3)n+1
i = 1

since (mk)∗i = (mk)n+1
i . This completes the proof.

�
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By the way, we note that for long time behaviours, the solution x to gp(x) = 1 will
exactly coincide with the equilibrium pressure. We may now examine the velocity
relaxation step.

We also note that another implicit scheme, which is based on the initial algorithm
[22], might also be used (see appendix A).

3.2.2 Velocity relaxation

Again, in each cell Ωi, starting with W∗
i , we compute the sequence:

• Initialize : yn
u = Yu(W∗

i ), where Yu is defined in (34);
• Compute the exact solution yn+1

u of the linear ODE:

∂yu

∂ t
=−V (W∗

i )yu (42)

at time t = ∆ tn, using the initial condition yn
u, where the 2×2 matrix V is defined

in (35) ;
• Compute: (U1)n+1

i as follows:

(U1)n+1
i = (Ueq)n+1

i −
((m2)∗i +(m3)∗i )(∆U)n+1

21 − (m3)∗i (∆U)n+1
23

(m1)∗i +(m2)∗i +(m3)∗i
(43)

where (Ueq)n+1
i denotes the equilibrium velocity:

(Ueq)n+1
i =

(m1)∗i (U1)∗i +(m2)∗i (U2)∗i +(m3)∗i (U3)∗i
(m1)∗i +(m2)∗i +(m3)∗i

• Update: (U2)n+1
i and (U3)n+1

i , while setting:

(U2)n+1
i = (U1)n+1

i +(∆U)n+1
21 ; (U3)n+1

i = (U1)n+1
i +(∆U)n+1

21 − (∆U)n+1
23

Again, we note that for large time steps, the three updated velocities will tend
towards (Ueq)n+1

i . By construction, this scheme preserves the conservation of the
total momentum.

3.3 Computing the evolution step

The scheme that is used in the sequel in order to compute the evolution step is
nothing but the Rusanov scheme [35]. Thus, at each interface i j separating cells Ωi
and Ω j, we define numerical normal fluxes :
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F αk

n (W,nij) = 0 ;
F mk

n (W,nij) = mkUk.nij ;
F Qk

n (W,nij) = mkUk.nijUk +αkPknij ;
(44)

and:
2G αk

n (Wi,Wj,nij) =−ri j((αk) j − (αk)i) ;

2G mk
n (Wi,Wj,nij) = F mk

n (Wi,nij)+F mk
n (Wj,nij)− ri j((mk) j − (mk)i) ;

2G Qk
n (Wi,Wj,nij) = F Qk

n (Wi,nij)+F Qk
n (Wj,nij)− ri j((mkUk) j − (mkUk)i)

(45)
where the quantity ri j is defined by:

ri j = maxk=1−3
(
(|Uk.nij|+ ck)i,(|Uk.nij|+ ck) j

)
Whatever φ is, we also use the standard notation:

φ i j = (φi +φ j)/2

Hence the solution is updated through the evolution step computing:



ωi((αk)
n+1,−
i − (αk)n

i )+∆ tn
(

Σ j∈V (i)G
αk
n (Wn

i ,W
n
j ,nij)Si j

)
+∆ tn(U1)n

i .
(

Σ j∈V (i)(αk)n
i jnijSi j

)
= 0 ;

ωi((mk)
n+1,−
i − (mk)n

i )+∆ tn
(

Σ j∈V (i)G
mk
n (Wn

i ,W
n
j ,nij)Si j

)
= 0 ;

ωi((mkUk)
n+1,−
i − (mkUk)n

i )+∆ tn
(

Σ j∈V (i)G
Qk
n (Wn

i ,W
n
j ,nij)Si j

)
+∆ tnΣ 3

l=1,l 6=kΠkl(W)n
i

(
Σ j∈V (i)(α l)n

i jnijSi j

)
= 0

(46)

and we have the expected result:

Proposition 4:
The evolution step guarantees positive values of partial masses and statistical frac-
tions if the time step complies with the constraint:

∆ tn (
Σ j∈V (i)ri jSi j

)
≤ 2ωi (47)

Proof: it is classical and omitted. Actually, the condition (47) is necessary and
sufficient in order to rewrite (αk)

n+1,−
i (respectively (mk)

n+1,−
i ) as a convex combi-

nation of the (αk)n
j (respectively (mk)n

j ) for j ∈V (i).
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3.4 Computing the interfacial area

We take the interfacial area into account in a very simple manner. Owing to the
particular form of its governing equation:

∂A
∂ t

+∇.(AU1) = g(A,W)

we compute convective fluxes in the evolution step:

∂A
∂ t

+∇.(AU1) = 0

and then update A by computing approximate solutions of the ODE:

∂A
∂ t

= g(A,W)

Before going further on, we detail the form of g(A,W), which reads:

g(A,W) = C0
A2

6α1

(
ρp

ρ1

)1/2

||U1−Up|| f (We)

where p (resp. 1) stands for the index of the liquid water (resp. liquid metal droplets),
C0 = 0.245, We = ρ1||U1−Up||2d1/σ denotes the Weber number, and the function
f (We) is null unless:

f (We) = 1 if: We > Wecrit

d1 and σ respectively denote the diameter of liquid metal droplets and the surface
tension. In practice, the critical Weber number Wecrit needs to be given ; the value
Wecrit = 12 will be used in the computations below.

Thus, if we define F A
n (W,nij) = AU1.nij and :

2G A
n (Wi,Wj,nij) = F A

n (Wi,nij)+F A
n (Wj,nij)− ri j(A j −Ai)

the approximate solution is advanced in time as follows:

ωi(A
n+1,−
i −An

i )+∆ tn (
Σ j∈V (i)G

A
n (Wn

i ,W
n
j ,nij)Si j

)
= 0.

Then it is updated in order to account for the dislocation term g(A,W). Starting with
cell values An+1,−

i , we compute :

An+1
i = An+1,−

i exp(∆ th(An+1,−
i ,Wn+1))

where: h(A,W) = C0
A

6α1

(
ρp
ρ1

)1/2
||U1−Up|| f (We).
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Starting with positive values for the An
j in all cells, then positive values of An+1

i
are guaranteed, using the above algorithm, as soon as the time step complies with
(47).
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4 Numerical Results

In the first subsection, we will examine three different Riemann problems in order to
verify the numerical schemes. A first test case will correspond to the computation of
a pure 0−1−2 coupling wave (contact discontinuity), thus using results of propo-
sition 2; afterwards a second Riemann problem involving a shock wave in phase 1
and the 0−1−2 coupling wave will be investigated. The last one will be a classical
shock tube problem. We restrict here to the classical three-phase flow model (3).

The second subsection will focus on the experimental set-up proposed in [8]. As
mentioned briefly in the introduction, a shock tube apparatus will generate a shock
wave propagating towards the right hand side, which will hit a cloud of spherical
particles and interact with it. Two situations will be examined: in the first one, parti-
cles in the bed will be assumed to be rigid, whereas in the second one these particles
will be liquid droplets that will be sheared by the hinting gas shock wave, and break
up; this will strongly modify the structure of the flow, and the computation will take
advantage of the fact that the interfacial area is estimated by the modified three-
phase flow model introduced in section 2.4. Hence we compute here approximate
solutions of system (16).

We use uniform meshes, and set for all cases: CFL = 1/2, which in turn enables
to define the time step ∆ tn.

4.1 Verification test cases based on Riemann problems

We consider simple EOS such that:

Pk(ρk) = P0
k (ρk)γk

where we set for all cases : P0
k = 1.105. Several values of polytropic exponents γk

will be used. As usual, the initial discontinuity separating states WL and WR is lo-
cated at x = 1/2, and the one-dimensional computational domain is [0,1].

We neglect here relaxation terms, thus setting: dkl(W ) = 0 and ekl(W ) = 0, what-
ever k, l are.

4.1.1 Pure coupling wave

For the first two test cases, EOS are chosen such that:

γ1 = 3/2 , γ2 = 2 , γ3 = 5/2.
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The left state is such that (Uk)L = k, (Vk)L = 0 and:

(α2)L = 4/10 ; (α3)L = 1/2;

(ρ1)L = 1/3 ; (ρ2)L = 1/4 ; (ρ3)L = 1.

The right state labeled Wr is defined setting (Vk)r = 0, but also:

(α2)r = 2/10 ; (α3)r = 3/10;

and computing the six unknowns (ρk)r,(Uk)r in such a way that:

Im
0,1(WL) = Im

0,1(Wr)

for m = 1 → 6 (see section 2.3 for details).

Thus we obtain:

(ρ1)r = 0.598903, ; (ρ2)r = 0.249992, ; (ρ3)r = 0.999986,

and:
(U1)r = 1.0, ; (U2)r = 3.000060, ; (U3)r = 4.333381.

We may thus compute the L1 norm for the six independent variables Im
0,1(W ).

The coarser and finer regular meshes contain 100 and 50000 cells respectively. We
retrieve as expected the 1/2 rate of convergence for all variables (see Figure 2).
Approximate values of the invariant I6

0,1(W ) can be observed in Figure 1, while
considering various meshes.

4.1.2 Phase 1 shock wave coupled with the coupling wave

This second Riemann problem relies on similar initial conditions WL on the left
hand side. However, the right state WR is now taken equal to Wr, except for the two
components (ρ1)R and (U1)R which read now:

(ρ1)R = 0.19963439 , (u1)R =−352,54023

The exact solution is composed of a right-going coupling contact wave travelling at
speed (u1)L behind a 1-shock wave travelling at speed σ1. More exactly we have:

w(x, t) = wL i f : x
t < (u1)L ;

w(x, t) = wr i f : (u1)L < x
t < (σ1) ;

w(x, t) = wR i f : x
t > (σ1) ;

(48)



Relaxation and simulation of a barotropic three-phase flow model 25

0 0,2 0,4 0,6 0,8 1

Abscissa

54360

54380

54400

54420

P
re

ss
u
re

100
1000
5000
10000
50000

Riemann problem 1
Pressure profile on 5 distinct meshes

Fig. 1 Riemann problem 1. Pressure profiles for I6
0,1(W ) on five distinct meshes. Coarser mesh:

100 cells, finer mesh : 50000 cells.
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Fig. 2 Riemann problem 1. L1 norm of the error for I6
0,1(W ) wrt the mesh size h.

Using the same kind of meshes as before, we plot the L1 norm of the error on figures
3, 4. Again we retrieve a convergence behaviour as h1/2 for fine enough meshes.
The finer mesh here involves two hundred thousand cells. This hudge refinement is
mandatory, owing to the competition between the asymptotic h1/2 (respectively h1)
rates of convergence in the contact (respectively shock) waves.
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Fig. 3 Riemann problem 2. L1 norm of the error (densities) wrt the mesh size h.
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Fig. 4 Riemann problem 2. L1 norm of the error (velocities) wrt the mesh size h.

4.1.3 Pure shock tube problem

Herein, EOS are such that:

γ1 = 7/5 , γ2 = 1.005 , γ3 = 1.001
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Fig. 5 Riemann problem 3. Pressure profiles on a fine mesh : P1 (green), P2 (black), P3 (red).

We use here a fine mesh including 80000 regular cells. The initial data are such
that velocities are null everywhere at the beginning of the computation, thus, for
k = 1,2,3:

(Uk)L = (Uk)R = (Vk)L = (Vk)R = 0;

In addition we choose left and right states (αk)L,R and (ρk)L,R such that:

(α2)L = 0.4 ; (α3)L = 0.5 ; (α2)R = 0.2 ; (α3)R = 0.3;

(ρk)L = 1. ; (ρk)R = 1/8.

for k = 1to3. Phasic pressures Pk have been plotted on Figure 5. Approximations of
the sixth Riemann invariant: P = I6

0−1(W ) of the the 0− 1 coupling wave, and of
the mean pressure:

Pwall = Σk=1→3αkPk

are given in Figure 6, while velocity profiles are drawn in Figure 7. We may check
the numerical invariance of P = I6

0−1(W ) through the 0−1 coupling wave.

4.2 Shock tube apparatus: interaction of a gas shock wave with a
lid of droplets

The main objectives of this section are two-fold. We wish first to validate the nu-
merical method built in order to provide approximate solutions of the barotropic
three-phase flow model, with one vanishing phase (phase labeled 3 here). More-
over, we aim at investigating the two solutions associated with:
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Fig. 6 Riemann problem 3. Pressure profiles on a fine mesh : P = I6
0,1(W ) (black), Pwall (red).
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Fig. 7 Riemann problem 3. Velocity profiles on a fine mesh : U1 (green), U2 (black), U3 (red).

1. the standard three-phase flow model (3),
2. the modified system (17) that accounts for the interfacial area A.

The first one will enable us to compute approximate solutions of an incoming
gas shock wave hitting a cloud of spherical rigid particles, whereas the second one
will generate similar approximations when a lid of deformable liquid droplets is
considered instead.

For that purpose, we consider here the experimental setup discussed in [7, 8].
This one is indeed interesting and well documented. It is well suited for our basic
goal: mechanical effects alone are at stake, which corresponds to our situation where
the sole barotropic model is considered, rather than its full form [20] including par-
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Fig. 8 Sketch of the experimental shock tube apparatus.

tial differential equations for the total energies. Hence we may expect to retrieve the
main flow patterns pointed out in [7, 8] ; more precisely, pressure transducers reveal
that, after the first instants of interaction of the incoming shock wave with the cloud
of liquid droplets, a pressure decrease occurs until some new pressure equilibrium
is retrieved; it thus clearly reduces the intensity of the shock wave.

A sketch of the shock tube apparatus is given in figure 8. Four pressure trans-
ducers are located at stations Sp (for p = 1− 4). The length of the computational
domain is L = 3.75m, and the tube is closed at both ends. The cloud of (rigid or
liquid) droplets lies between x1 = 2.97m and x2 = 3.37m (hence the bed width is
400.mm). The gas phase (with label 2) and the liquid-water droplet phase (with la-
bel 1) are at rest at the beginning of the computation, and all pressure fields are
assumed to be in equilibrium with the gas phase everywhere, thus, for k = 1,3 :

Pk(x, t = 0) = P2(x, t = 0).

The position of the initial pressure disequilibrium is x0 = 0.75, and the mean gas
pressure is given by ([7]) :

P2(x < x0, t = 0) = PL = 7.×105, P2(x > x0, t = 0) = PR = 1.×105,

on each side of the initial membrane.

The statistical fraction for the evanescent phase 3 is set to α3 = 10−10 everywhere
before the experiment starts.

Liquid water droplets in the cloud are spherical, identical and their initial diam-
eter is d(x, t = 0) = 0.5mm.

Eventually, the amount of droplets (or rigid droplets) within the lid is equal to :

α1(x, t = 0) = 0.0104 for : x ∈ [x1,x2], α1(x, t = 0) = 10−10. elsewhere.

The EOS for the liquid water droplet phase 1 is chosen as follows:
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P1(ρ1) = c2
1,0ρ1 +Pre f

where: c1,0 = 1500, and Pre f is such that: P1(103) = 105, whereas for the gas phase
we choose:

P2(ρ2) = 105× (ρ2/ρ2,re f )7/5, with : ρ2,re f = 1.27.

The same EOS is chosen for the vanishing phase 3.

The drag force between gas and liquid water droplets (or undeformable droplets)
is obtained using the following closure law:

e12 = 0.125×Aρ2C12|u1−u2|

where: C12 = 0.42. Eventually we set in these computations : d12 = 1010. Unless
otherwise specified, computations have been performed using regular meshes in-
cluding 104, 5.×104 and 105 cells, and the time step in chosen in order to comply
with the CFL = 1/2 constraint.

Discussion

• Single phase reference experiment:

As a reference case, we may first compute the single phase case of a pure gas
shock tube apparatus, by removing the initial cloud of particles (hence setting the
above value α1 = 0.014 to α1 = 10−10). The total pressure is noted :

P = Σ
3
k=1(αkPk).

The pressure records at station 1 and station 4 during the first ten milliseconds
are shown in figure 9 and 10. For this single phase case, we may define the mean
pressure P∗ just behind the right going shock wave, and also the mean pressure
P∗∗ after the reflection of this shock wave on the right wall boundary. We may
compute exact values P∗,P∗∗ , assuming that the gas phase is governed by:

1. the barotropic Euler equations, using notation P∗,Eulerbaro,P∗∗,Eulerbaro,
2. the full Euler equations, using notation P∗,Euler,P∗∗,Euler,

and we may compare these values with the experimental values P∗,exp,P∗∗,exp.
The latter two values can be found in [7, 8], which are approximately :

P∗,exp = 2.4×105, P∗∗,exp = 5.0×105;

whereas exact values obtained with the (Euler and barotropic Euler) models are
respectively:
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P∗,Euler = 2.46×105, P∗∗,Euler = 5.02×105;

and:
P∗,Eulerbaro = 2.78×105, P∗∗,Eulerbaro = 6.85×105.

Hence, we note that the full Euler equations provide a fair appoximation of
the experimental results, whereas the barotropic Euler equations over estimate
the latter. Obviously, the former exact values of P∗,Eulerbaro,P∗∗,Eulerbaro are re-
trieved by the three-phase barotropic code on sufficiently fine meshes (see figure
10), which was expected of course (and mandatory).

Looking at figure 10, one can also note at station 4 that when t > t1 = 7.7ms, the
second plateau value P∗∗,Eulerbaro is followed by a regular decrease, due to the
reflection of the initial left-going 1−rarefaction wave that has reflected on the
left wall boundary.

A straightforward consequence of the previous comparison in the single-phase
framework is that we can hardly expect an accurate approximation of experi-
mental results with the current barotropic three-phase flow model when turning
to two-phase or three-phase flow experiments.

• Two-phase experiment with rigid droplets:

We turn now to the case of a lid of rigid droplets, setting α1 = 0.0104 in the
range [x1,x2] at the beginning of the computation.

Thus we compute approximate solutions of the three-phase flow model (3), get-
ting rid of the interfacial area equation for A, and using the initial diameter
d(x, t) = d0 everywhere throughout the computation.

Hence, we focus now on figure 11. At station 1, the pressure first jumps up to
the same value P∗,Eulerbaro = 2.78× 105, and it then remains steady until the
reflection of the left-going rarefaction wave meets that position (around time
t = 5.91ms), as it occured in the single phase experiment (see figure 9). The lat-
ter plateau value is thus followed by a decrease of the pressure due the interaction
with the reflection of the left going rarefaction wave, and then we note a second
jump (around time t = 6.4ms), which is due to the reflection of the right-going
gas shock wave that has hit the cloud of droplets, again followed by a smooth de-
crease of the pressure. The latter jump obviously cannot be observed on signals
recorded at stations 2 and 3 since these are located on the right hand side of the
bottom of the cloud.

If we turn to station 2 , we may observe the first jump of the pressure which
is slightly lower than the value P∗,Eulerbaro = 2.78× 105. Once the gas has pen-
etrated the cloud of droplets, the pressure smoothly increases (the lid of solid
particles acts as a convergent nozzle) until t = 6.4ms. This is again followed by
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a decrease of the pressure, owing to the reflected rarefaction wave, and again by
a sudden compression due to the reflection of the initial right going shock wave
on the right wall boundary.

Similar comments hold for the pressure signal at station 3, with a small delay, as
shown on figure 11.

• Two-phase experiment with deformable liquid droplets:

The last test corresponds to the interaction of the gas shock wave with a lid of
deformable liquid droplets. Hence we compute now approximate solutions of
the modified three-phase flow model (17), including the governing equation for
the interfacial area A.

Figures 12 and 13 provide numerical approximations of the mean pressure
P = Σ 3

k=1(αkPk) obtained with the code at stations 2 and 3 in that case ; mean-
while figures 14 and 15 respectively show the behaviour of the interfacial area A
and of the void fraction α1 within the liquid phase.

At the beginning, we still note the same kind of flow pattern, and we retrieve a
value of the mean pressure which is close to P∗,Eulerbaro. Nonetheless, and unlike
in the previous case involving rigid droplets, it must emphasized that the mean
pressure suddenly decreases just after the impact of the incoming gas shock wave
with the lid of droplets. This behaviour is typical of what happens in a medium
involving deformable droplets with a high breakup phenomenon (see [17]). This
is actually well detailed in reference [8]. The present numerical simulation en-
ables us to retrieve this specific behaviour, and this is indeed a very encouraging
point. Afterwards, we note that the pressure P increases again until it reaches
some maximum value close to 4.8×105 (respectively 3.1×105) at station 2 (re-
spectively at station 3). The experimental counterparts arising from [7, 8] for the
latter two values are respectively 3.2×105 and 3.25×105.

Thus, as expected within the light of our preliminary single phase flow compu-
tations, the barotropic model provides a rather good qualitative agreement with
experiment, and it enables to retrieve the sudden experimental decrease of the
pressure in the lid of droplets once the transmitted incoming shock wave has
hit the cloud, as soon as the breakup of droplets is accounted for in the model.
However, the whole obviously requires further investigation and improvements
in order to achieve a better matching with experimental results. Eventually, fig-
ure 16 shows the influence of the drag coefficient on the computations, hence
comparing results associated to C12 = 0.42 with those obtained with:

C12 =
24
Re

(
1+0.15(Re)0.687

)
+0.42

(
1+42500(Re)−1.16

)−1

More details on this test case and associated results can be found in [6].
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Fig. 9 Single phase shock tube apparatus. Pressure signal at station 1. Meshes : 104 cells (black),
5.×104 cells (red) and 105 cells (blue).

5 Conclusion

We have discussed in this paper the main properties of a three-phase flow barotropic
model, and we gave special focus on the pressure and velocity relaxation process
involved in the source terms. The fractional step method enables to comply with
the entropy inequality at the continuous level, and it provides satisfactory results
on fine meshes, as expected. It would be worth investigating alternative schemes in
the pressure relaxation step in order to get a fully discrete entropy inequality. The
comparison with the results of the experimental set-up of [8] is indeed encouraging.
Applications to different situations such as those encountered in solid-gas-liquid
flows in pipelines also seem quite appealing.

However, this work must also be understood as a first step in the direction of
steam explosion modeling. Though the list below is not exhaustive, we detail after-
wards some items that are still missing in order to obtain a complete and accurate
enough approximation of that kind of flow.

Actually the following points immediately arise:
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Fig. 10 Single phase shock tube apparatus. Pressure signal at station 4. Meshes : 104 cells (black),
5.×104 cells (red)and 105 cells (blue)

• First of all, the present work suggests that reliable and accurate enough 2D or
evenmore 3D simulations will urge the development of approximate Riemann
solvers dedicated to three phase flow models. An extension of the relaxation
solvers introduced in [1, 2, 11, 10] seems promising for that purpose (see [36]);

• As underlined before, the barotropic approach provides a rather fair qualitative
agreement with experimental results, but one obvious way to improve quanti-
tative results requires the introduction of energy balance equations within each
phase. Actually, the non-barotropic models provided in [20, 29] are two possible
candidates in order to take heat transfer into account, while being ensured that
the barotropic part lies in the same hierarchy of models. One should nonetheless
be aware that pressure relaxation processes are even more complex than those
involved in the current barotropic model;

• A comparison of results obtained with the present model with extensions of the
homogeneous models [13, 18, 19] (involving a sole velocity field) would be
worth being achieved;

• Eventually, the modification of the classical framework, which is due to the intro-
duction of interfacial area equation, might certainly be improved. Possible ways
in that direction are implicitly suggested in papers [27, 12, 24, 37], among others.
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Fig. 11 Two-phase shock tube apparatus with solid particles. Mean pressure signal at stations
1−2−3. Meshes : 104 cells (black), 5.×104 cells (red)and 105 cells (blue)
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thors would like to thank Thierry Gallouët, Sergey Gavrilyuk, Olivier Hurisse, Georges Jourdan,
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6 Appendix A: an alternative pressure relaxation scheme

An implicit Euler scheme might be used to compute pressures and statistical frac-
tions in the pressure relaxation step, thus seeking solutions of:

(α2)n+1
i − (α2)∗i = ∆ tn

(
Σk(d2k)(P2(

m∗
2

α
n+1
2

)−Pk(
m∗

k
α

n+1
k

))
)

;

(α3)n+1
i − (α3)∗i = ∆ tn

(
Σk(d3k)(P3(

m∗
3

α
n+1
3

)−Pk(
m∗

k
α

n+1
k

))
)

;
(49)

where of course : (α1)
n+1,∗
i = 1− (α2)

n+1,∗
i − (α3)

n+1,∗
i , with some abuse of nota-

tion.
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Fig. 12 Two-phase shock tube apparatus with liquid water droplets. Mean pressure signal at station
2. Meshes : 104 cells (black), 5.×104 cells (red)and 105 cells (blue)

Hence we have the result:

Property:
Assume that (αk)∗i and (mk)∗i are positive. Then the previous discrete pressure re-

laxation scheme (49) computes a unique set of positive values (αk)n+1
i .

One drawback of the latter scheme is that the discrete solution may be hard to
find in practice, especially when statistical fractions are close to the boundary of the
admissible domain ; some cure should be found in order to use the latter algorithm
for practical computations. We underline that the latter scheme is the straightforward
extension of the one used for two-phase flow models in [22].
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