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This paper presents a novel decentralized consensus-based formation controller that considers both, the kinematic and the dynamic model, to uniformly and asymptotically drive a network composed of N nonholonomic mobile robots to a desired formation with a given orientation. The network is modeled as an undirected, static and connected graph. The controller is a smooth time-varying δ-persistently exciting controller of the Proportional-Derivative type. The stability analysis is carried out using a novel strict Lyapunov function. Simulations, using a network with six agents, illustrate our theoretical contributions.

INTRODUCTION

In recent years, there has been an increasing interest in the distributed control for multiple mobile robots systems due, possibly, to the large number of applications that these systems can achieve, such as reconnaissance missions, detection of forest fires, search and rescue missions, object transportation and border patrol, among others [START_REF] Kwon | Hierarchical formation control based on a vector field method for wheeled mobile robots[END_REF][START_REF] Li | Formation control for nonlinear multi-agent systems by robust output regulation[END_REF][START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF].

One of the objectives of distributed control in networks of multiple agents is consensus, where the control objective is to reach an agreement between certain coordinates of interest using only the information of the agent's neighbors. Consensus is a particular case of rendezvous, containment and formation control [START_REF] Cortés | Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions[END_REF][START_REF] Moreau | Stability of continuous-time distributed consensus algorithms[END_REF][START_REF] Ren | A survey of consensus problems in multi-agent coordination[END_REF][START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and timedelays[END_REF][START_REF] Cortés | Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions[END_REF][START_REF] Ferrari-Trecate | Laplacian sheep: A hybrid, stop-go policy for leaderbased containment control[END_REF][START_REF] Lafferriere | Decentralized control of vehicle formations[END_REF][START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: Algorithms and theory[END_REF]. The consensus of multiple dynamical systems has been extensively studied for linear systems [START_REF] Ren | A survey of consensus problems in multi-agent coordination[END_REF][START_REF] Kranakis | Mobile agent rendezvous: A survey[END_REF][START_REF] Hui | Finite-time rendezvous algorithms for mobile autonomous agents[END_REF] and different classes of nonlinear systems [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF]Nuño et al., 2013b;[START_REF] Panteley | On the analysis and control design for networked stuart-landau oscillators with applications to neuronal populations[END_REF]. However, these results cannot be applied in multi-agent systems with nonholonomic restrictions.

One of the main difficulties appearing in the formation control of nonholonomic systems is that the designed controller has to be either discontinuous or time-varying [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF]. Different approaches have been proposed to deal with consensus-like control objectives. Among them are: [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF] where it is introduced a decentralized feedback control that drives a system of multiple nonholonomic unicycles to a rendezvous point in terms of both position and orientation, the proposed control law is discontinuous and timeinvariant; the work of [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF] presents necessary and sufficient conditions for the feasibility of a class of formations; [START_REF] Peng | Distributed consensus-based formation control for multiple nonholonomic mobile robots with a specified reference trajectory[END_REF] propose a distributed formation control law using a consensus-based approach to drive a group of agents to a desired geometric pattern; [START_REF] Yang | Smooth time-varying formation control of multiple nonholonomic agents[END_REF] address the position/orientation formation control problem for multiple nonholonomic agents using a time-varying controller that leads the agents to a given formation using only their orientation; to solve the consensus problem, [START_REF] Dong | Consensus of multiple nonholonomic systems[END_REF] propose a cooperative control law that its robust to constant communication delays and its application to formation control. [START_REF] Ajorlou | Distributed consensus control of unicycle agents in the presence of external disturbances[END_REF] present a distributed consensus control law for a network of nonholonomic agents in the presence of bounded disturbances with unknown dynamics in all inputs channels; for an undirected graph, [START_REF] Peng | Distributed consensus-based formation control for multiple nonholonomic mobile robots with a specified reference trajectory[END_REF] propose a smooth time varying controller that has been extended in [START_REF] Bautista-Castillo | Consensus-based formation control for multiple nonholonomic robots[END_REF] to a PDlike controller at the dynamical level. All these previous works, solve the consensus problem without uniformity on the initial time, and they only work on the kinematic model, except for [START_REF] Bautista-Castillo | Consensus-based formation control for multiple nonholonomic robots[END_REF].

In this paper we solve a consensus-based formation problem for a network of multiple second order nonholonomic robots with a given desired orientation. The solution is established using a novel smooth time varying δ-Persistently Exciting (PE) controller [START_REF] Loría | A new persistencyof-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF]; see also [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF]. The behavior of the agents takes into account both the kinematic and the dynamic models. Under the assumption that the inter-connection graph is static, connected and undirected we propose a novel Strict Lyapunov Function (SLF) to establish uniform global asymptotic stability of the desired equilibrium point. The SLF is designed following [START_REF] Malisoff | Constructions of Strict Lyapunov functions[END_REF] and [START_REF] Mazenc | Strict Lyapunov functions for time-varying systems[END_REF]. To the best of our knowledge this is the first work that provides a SLF in this scenario. It is well known that a SLF entails the system with robustness properties with regards to external perturbations and it also provides a tool for tuning the controller gains. Simulations are presented to provide evidence of our proposal. Notation. For a vector z ∈ R n , we denote by z its diagonal matrix representation, i.e., z = diag[z i ]. z ⊥ is the orthogonal vector to z and z denotes the Euclidean norm of z. For a symmetric positive semi-definite matrix L ∈ R n×n , we denote by λ max (L) and λ min (L), λ i (L), the maximum, the minimum and the ith eigenvalue of L, respectively. L is the induced Euclidian norm of L. For a time varying matrix M (t) we denote by M (t) ∞ = sup t≥0 {M (t)}. The symbol ⊗ stands for the Kronecker product and we define L 2 := L ⊗ I 2 .

SYSTEM DYNAMICS

As customary in multi-agent consensus [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and timedelays[END_REF][START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF], the complete dynamics of the systems is composed of a twofold: i) the dynamics of nodes, which are described by a second order nonholonomic differential equation; and ii) the interconnection topology, modeled using the Laplacian matrix from graph theory.

Node Dynamics

Without loss of generality, we consider the following model of N second order nonholonomic robots [START_REF] Tzafestas | Introduction to mobile robot control[END_REF],

         ż =Φ(θ)v v =u v θ =ω ω =u ω (1) 
where

z = [z 1 , ..., z N ] ∈ R 2N ; z i = [x i -δ xi , y i - δ yi ] ∈ R 2 is the translational error of the ith-robot; δ i := [δ xi , δ yi ] ∈ R 2 is the given desired position of the ith-robot relative to the barycentre of the formation; v = [v 1 , ..., v N ] ∈ R N ; v i is the linear velocity, Φ(θ) = diag[φ(θ i )] ∈ R 2N ×N ; φ(θ i ) = [cos(θ i ), sin(θ i )] ∈ R 2 ; θ = θ -θ d = [θ 1 -θ d1 , ..., θ N -θ dN ] ∈ R N is the orientation error of each robot, with θ d a constant desired orientation; ω = [ω 1 , ..., ω N ] ∈ R N ; ω i is the angular velocity; and finally u v = [u v1 , ..., u vN ] ∈ R N and u ω = [u ω1 , ..., u ωN ] ∈ R N are the control inputs. Since θ d is constant, the two following equations hold Φ(θ) = -Φ(θ) ⊥ ω, Φ(θ) ⊥ = Φ(θ) ⊥ ω, (2) where ω = diag[ω i ] ∈ R N ×N , Φ(θ) ⊥ = diag[φ(θ i ) ⊥ ] ∈ R 2N ×N and φ(θ i ) ⊥ = [sin(θ i ), -cos(θ i )] .

Interconnection Topology

The interconnection of the N agents is modeled using the Laplacian matrix

L := [ ij ] ∈ R N ×N , whose elements are defined as ij =    j∈Ni a ij i = j -a ij i = j (3)
where N i is the set of agents transmitting information to the ith robot, a ij > 0 if j ∈ N i and a ij = 0 otherwise. Similar to passivity-based (energy-shaping) synchronization [START_REF] Aldana | Pose consensus in networks of heterogeneous robots with variable time delays[END_REF]Nuño et al., 2013a) and in order to ensure that the interconnection forces are generated by the gradient of a potential function, the following assumption is used in this paper: A1. The interconnection graph is undirected, static and connected. Remark 1. By construction, L has a zero row sum, i.e., L1 N = 0, where 1 N is a vector of N ones. Moreover, Assumption A1, ensures that L is symmetric, has a single zero-eigenvalue and the rest of the spectrum of L is positive. Thus, rank(L) = N -1.

PROBLEM FORMULATION AND ITS SOLUTION

Consensus Problem. Consider a network of N nonholonomic robots satisfying (1). Design a decentralized controller verifying Assumption A1 such that all robots positions converge, globally, uniformly and asymptotically, to a given formation pattern with a desired orientation, i.e., there exists

z c ∈ R 2 such that lim t→∞ z(t) = 1 N ⊗ z c ; lim t→∞ θ i (t) = θ di , (4) 
where θ di ∈ R is a given desired constant orientation for each robot, and z c is the barycentre of the formation pattern.

Remark 2. The consensus problem defined above is typically referred to as leaderless consensus, since the barycentre of the formation z c is not a priori known.

We solve the consensus problem by recasting it into a classical stabilisation problem (of the origin). To that end, we first need to introduce suitable error coordinates. Let e =Φ(θ)

L 2 z, s =Φ(θ) ⊥ L 2 z (5)
and we recall that L 2 = L⊗I 2 . Then, the control objective ( 4) is achieved if we prove that (e, s) → (0, 0). This is due to the following fundamental fact. Lemma 1. Consider (e, s), given by ( 5), and assume that

L satisfies A1, then L 2 z = 0 ⇔ (e, s) = (0, 0). Moreover, λ 2 (L)z L 2 z ≤ |e| 2 + |s| 2 ≤ λ N (L)z L 2 z, (6) 
where λ 2 (L) and λ N (L) are the second smallest and the largest eigenvalue of L, respectively.

Proof of Lemma 1. Since the matrix Φ(θ) Φ(θ) ⊥ is non singular. The first fact follows directly. For the second fact, we remark that

|e| 2 + |s| 2 = z L 2 2 z = z L 1 2 2 L 2 L 1 2 2 z. Since L 1 2
2 z is orthogonal to the eigenspace associated to the zero eigenvalue of L 2 , it holds that

λ 2 (L)z L 1 2 2 L 1 2 2 z ≤ z L 1 2 2 L 2 L 1 2 2 z ≤ λ N (L)z L 1 2 2 L 1 2
2 z, and so (6) follows.

In the new error coordinates, for the translation, we employ a simple PD-like controller originally proposed in [START_REF] Bautista-Castillo | Consensus-based formation control for multiple nonholonomic robots[END_REF]. That is,

u v = -K dt v -K pt e,
(7) while for the rotational dynamics we use

u ω = -K dθ ω -K pθ θ -p(t)κ(s, e).
(8) By design, K dt , K pt , K dθ , K pθ are diagonal positive definite matrices and κ(s, e) is defined as

κ(s, e) = 1 2 [s 2 1 + e 2 1 , ..., s 2 N + e 2 N ] ∈ R N (9)
and the function p : R + → R satisfies the following. A2. p(t), and up to its third derivative, is bounded and ṗ(t) is persistently exciting (see the Appendix) with excitation parameters (T, µ). Thus, there exists b p > 0 such that

max p ∞ , ṗ ∞ , p ∞ , p (3) 
∞ ≤ b p . Remark 3. Two remarks are in order: i) for simplicity, and without losing generality, the function p is taken equal for all the agents; ii) the function κ in (9) may correspond to any class-K function with the following form

κ(s, e) = 1 2 [G(s 2 1 +e 2 1 ), ..., G(s 2 n +e 2 n )] .
The only condition on κ is that there exist two positive polynomials P 1 (•) and P 2 (•) such that:

G(•) ≤ P 1 (•), and, ∂G(•) ∂(•) ≤ P 2 (•).
Now, the closed-loop system, which results from Equations ( 1), ( 5), ( 7), and (8), is

                   ż =Φ(θ)v v = -K dt v -K pt e ė = -ωs + Φ(θ) L 2 Φ(θ)v ṡ =ωe + Φ(θ) ⊥ L 2 Φ(θ)v θ =ω ω = -K dθ ω -K pθ θ -p(t)κ(s, e). (10) 
Our main contribution is to establish uniform global asymptotic stability for the origin of this system. Moreover, our proof is constructive as it relies on the construction of a strict Lyapunov function (globally positive definite and with negative definite derivative). To that end, let us define the following change of coordinates:

e θ = θ + f (t)κ(s, e) e ω = ω + f (t)κ(s, e), (11) 
where f (t

) := diag[f i (t)] ∈ R N ×N , f (t) := diag[ ḟi (t)] ∈ R N ×N and f i (t) satisfies the differential equation fi + k dti ḟi + k pti f i = p(t), (12) 
where k dti , k pti are the elements of the diagonal matrices K dt and K pt , respectively. If ṗ(t) satisfies A2 then, after Lemma 2 in the Appendix, it follows that ḟi is also persistently exciting and so is the matrix f (t). Furthermore, there exists b

f > 0 such that max f ∞ , f ∞ , f ∞ , f (3) ∞ ≤ b f .
Lemma 2 also provides an explicit estimation of the excitation parameters (T f , µ f ) of ḟ and the constant b f that are used in the construction of the Lyapunov function.

Next, let us define X t = [v , e , s ] ∈ R 3N and X r = [e θ , e ω ] ∈ R 2N , as the translational and rotational parts of the state, respectively. Additionally, let ē

= diag[e i ], s = diag[s i ], ēω = diag[e ωi ] and κ = diag[κ i ]. Then, Ẋt =   -K dt -K pt 0 0 0 f κ -ēω 0 -f κ + ēω 0   X t +   0 Φ L 2 Φ ⊥ L 2   Φv Ẋr = 0 I N -K pθ -K dθ X r + f f ēΦ L 2 + sΦ ⊥ L 2 Φv. ( 13 
)
Note that in view of Lemma 1, (X t , X r ) = (0, 0) ⇔ (v, z, θ, ω) = (0, 1 N ⊗ z c , θ d , 0) and the dynamics (10) are embedded in (13). Therefore, our analysis problem comes to study the stability of the origin for ( 13). This is the subject of our main result, which is stated next. Theorem 1. Controller ( 7) and ( 8) solves the Consensus Problem provided that p(t) satisfies A2. Moreover, the closed-loop system (13) admits a strict Lyapunov function.

Proof: (Sketch) Due to space constraints we do not include here a complete proof, but the main steps are given.

First, we observe that the translational part of the system admits the following non-strict Lyapunov function

V (θ, X t ) = v K -1 pt v + z L 2 z. ( 14 
)
Indeed, in view of ( 6), it is concluded that V (θ, X t ) is positive definite and radially unbounded with regards to X t . Moreover, the time derivative of V along the trajectories of (10

) yields V (θ, X t ) = -2v K -1 pt K dt v. (15) 
Now, the Lyapunov function for the closed-loop system (13) is Γ(t, X t , X r ) = W (t, X t , X r )+ρ 1 (V )Z(X r )+ρ 2 (V )V ( 16) where

W = γ(V )V + V κ Q ḟ 2 (t)κ + α(V )e v -c 1 V e f s +c 1 b f λ N (L)V 2 + (λ N (L) + K pt ) α(V )V, Z = c 2 e ω e ω + e θ K pθ e θ + e θ e ω , ρ 1 (V ) = 2σ(V ) c 2 λ min (K dθ ) (α(V ) + c 1 b f V ) + 1, σ(V ) = max 16T c 1 b f µ , 4λ N (L) K -1 dt K pt α(V )V γ(V ) , α(V ) = 4b 2 f λ N (L)V 2 K -1 pt + 4c 1 b 2 f λ N (L) K -1 pt V 2 4c 1 c 4 f 2 Φ ⊥ L 2 Φ 2 ∞ K -1 dt V + c 2 1 c 4 b 2 f K -1 pt , γ(V ) = 2c 4 V 2 λ N (L) K -1 dt K pt Q ḟ 2 Φ L 2 Φ 2 ∞ +2c 4 V 2 λ N (L) K -1 dt K pt Q ḟ 2 Φ ⊥ L 2 Φ 2 ∞ + ∂α ∂V V ( K pt + λ N (L)) + c 4 2 c 1 V +2α(V ) Φ L 2 Φ ∞ K -1 dt K pt ∞ + c 4 2 K pt K -1 dt α 2 (V ) + c 4 2 α(V ) K dt +2c 1 b f λ N (L)V + 4 c 4 V 2 λ N (L) K -1 dt + c 4 2 c 2 1 K -1 dt K pt f 2 Φ L 2 Φ 2 ∞ , ρ 2 (V ) = ρ 1 (V )ρ 3 (V )V ρ 3 (V ) = c 3 λ N (L) K -1 dt K pt 2 Φ L 2 Φ 2 ∞ + Φ ⊥ L 2 Φ 2 ∞
, and the constants c 1 , c 2 , c 3 and c 4 are:

c 1 = 1 + λ N (L) max 2, 2T µ 1 + 2N λ2(L) c 2 = 2 λ min (K dθ ) + λ max (K dθ ) + 1 λ min (K pθ ) + 1 c 3 = max 8 (2c 2 b f + b f ) 2 c 2 λ min (K dθ ) , 8 (2c 2 b f λ max (K pθ ) + b f ) 2 λ min (K pθ ) , c 4 = max 2, 2T µ 2 + 8N λ 2 (L) .
Additionally, we have defined

Q ḟ 2 (t) := diag Q ḟ 2 i (t) , with Q ḟ 2 i (t) := 1 + 2b 2 f T - 2 T t+T t m t ḟi (s) 2 ds dm. (17) It should be underscored that Q ḟ 2 i (t) admits the following bounds 1 ≤ Q ḟ 2 i (t) < b Qi := 1 + 2b 2 f T and, furthermore, Q ḟ 2 i (t) = - 2 T t+T t ḟi (s) 2 ds + 2 ḟi (t) 2 . (18) 
Since ρ 1 and ρ 2 are positive functions and radially unbounded, positive definiteness of Γ is ensured with the fact that Γ(t, 0, 0) = 0, for all t ≥ 0, and

W ≥ γ(V )V, W ≤ γ(V )V + V κ (e, s) Q ḟ 2 (t)κ(e, s) + 2c 1 b f λ N (L)V 2 , +2 (λ N (L) + K pt ) α(V )V, Z ≥ min {1, λ min (K pθ )} e θ e θ + e ω e ω , Z ≤ max {1 + c 2 , c 2 λ max (K pθ ) + 1} e θ e θ + e ω e ω .
After some term chasing and some cumbersome manipulations we get

Γ ≤ - µ 4T V 3 - ρ 1 (V ) 8 c 2 e ω K dθ e ω + e θ K pθ e θ - 1 4 γ(V )v K dt K -1 pt v - 1 8 α(V )e K pt e (19) 
Therefore Γ is negative definite and Γ qualifies as a strict Lyapunov function for system (13). Global uniformly asymptotic stability of the equilibrium (X t , X r ) = (0, 0) is ensured and thus the Consensus Problem is solved.

SIMULATIONS

This section presents some numerical simulations using six differential wheeled mobile robots. The desired formation pattern is an hexagon and the communication topology, together with the required vectors δ i are depicted in Fig. 1. The initial states positions of the robots are:

For simplicity, all the robots are the same, with mass equal to 10kg and the moment of inertia equal to 3kg m 2 . The q 1 q 2 q 3 q 4 q 5 q 6 From these simulations it can be concluded that the novel proposed controller asymptotically solves the desired control objective, as expected.

x i 5 6 -3 -4 3 2 y i 0 2 0 -2 -4 -6 θ i 90 

CONCLUSION

This paper deals with the formation control of multiple nonholonomic robots. We report a novel decentralized consensus-based formation controller that considers both, the kinematic and the dynamic model, to uniformly and asymptotically drive a network composed of N agents to a desired formation with a given orientation. The network is modeled as an undirected, static and connected graph. The controller is a smooth time-varying PD-like scheme that is δ-persistently exciting the nonholonomic robots. Fig. 3. Orientation of each mobile robot in the network.

system. Hence, the system is robust with respect to (small) external perturbations. Simulations, using a network six agents, have been provided to illustrate our theoretical contributions.

First, note that the overall trajectories are bounded, i.e., there exists r > 0 that is a function of (x(0), y(0), b p ), such that (x, y) ≤ r, ∀t ≥ 0.

Consider now the following time derivative

d dt -ṗx -k -1 2 py =[-ṗ + k 1 k -1 2 p -k -1 2 p (3) ]y + k -1 2 ṗ2 ≥ -b p 1 + k 1 k -1 2 + k -1 2 |y| + k -1 2 ṗ2 , then b p 1 + k 1 k -1 2 + k -1 2 t+kT t |y(s)|ds ≥ t+kT t d ds ṗ(s)x(s) + k -1 2 p(s)y(s) ds+ k -1 2 t+kT t ṗ(s) 2 ds ≥ -2 1 + k -1 2 b p r + k -1 2 kµ
where k is a positive integer and, to obtain the last inequality, we used the fact that trajectories are bounded and that ṗ is PE with parameters (T, µ).

Invoking the Cauchy-Schwartz inequality on In order to have an explicit estimation of (T f , µ f ) it only remains to estimate the upper bound of the trajectories. For, let us define the Lyapunov function candidate V (x, y) = a y 2 + k 2 x 2 + xy with a = 2k -1 1 + k 1 k -1 2 + k -1 2 + 1. V (x, y) verifies the following bounds min {1, k 2 }(y 2 + x 2 ) ≤ V (x, y) ≤ max {a + 1, ak 2 + 1} (x 2 + y 2 ).

V , along the trajectories of the system, satisfies Finally, from the system dynamics and (A.7), we can find that ẏ ≤ (k 1 + k 2 )r and ÿ ≤ (k 2 1 + k 1 k 2 + k 2 )r + b p so (A.5) follows. This concludes the proof.

V (•) ≤ -ak 1 y 2 + y 2 -k 1 yx -k 2 x 2 + 2 ṗx + k -1 2 y ṗ ≤ - a 4 k 1 y 2 - 1 4 k 2 x 2 + 4k -1 2 + 1 ak 1 k 2 2 ṗ2 ≤ -cV + bb 2

Fig. 1 .Fig. 2 .

 12 Fig. 1. Interconnection graph and bias of each mobile robot in the network.

  ) 2 ds ≥ µ f

Appendix A. ON PERSISTENCY OF EXCITATION

We recall that a function ψ : R + → R n×m is said to be persistently exciting, with excitation parameters-(T, µ), if there exist T, µ > 0 such that t+T t ψ(s)ψ(s) ds ≥ µI n ∀ t ≥ 0.

(A.1)

The following lemma extends a well-known filtration property of persistently exciting functions [START_REF] Ioannou | Robust adaptive control[END_REF]. Lemma 2. Consider the scalar second order system:

where k 1 , k 2 > 0 and p(t) is a time varying input such that ṗ(t) is PE with excitation parameters-(T, µ) and there exists b p > 0 such that max p, ṗ, p,

2 )bpr µk -1 2 + 1, where

Proof of Lemma 2. Consider the following linear change of coordinates x = f -k -1 2 p(t), y = ḟ . Then ẋ = y -k -1 2 ṗ(t) and ẏ = -k 2 y -k 1 x.