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Abstract: This paper presents a novel decentralized consensus-based formation controller that
considers both, the kinematic and the dynamic model, to uniformly and asymptotically drive
a network composed of N nonholonomic mobile robots to a desired formation with a given
orientation. The network is modeled as an undirected, static and connected graph. The controller
is a smooth time-varying δ−persistently exciting controller of the Proportional-Derivative type.
The stability analysis is carried out using a novel strict Lyapunov function. Simulations, using
a network with six agents, illustrate our theoretical contributions.
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1. INTRODUCTION

In recent years, there has been an increasing interest in
the distributed control for multiple mobile robots systems
due, possibly, to the large number of applications that
these systems can achieve, such as reconnaissance mis-
sions, detection of forest fires, search and rescue missions,
object transportation and border patrol, among others
(Kwon and Chwa, 2012; Li et al., 2014; Dimarogonas and
Kyriakopoulos, 2007).

One of the objectives of distributed control in networks of
multiple agents is consensus, where the control objective is
to reach an agreement between certain coordinates of in-
terest using only the information of the agent’s neighbors.
Consensus is a particular case of rendezvous, containment
and formation control(Cortés et al., 2006; Moreau, 2004;
Ren et al., 2005; Olfati-Saber and Murray, 2004; Cortés
et al., 2006; Ferrari-Trecate et al., 2006; Lafferriere et al.,
2005; Olfati-Saber, 2006). The consensus of multiple dy-
namical systems has been extensively studied for linear
systems (Ren et al., 2005; Kranakis et al., 2006; Hui, 2011)
and different classes of nonlinear systems (Nuño et al.,
2011; Nuño et al., 2013b; Panteley et al., 2015). However,
these results cannot be applied in multi-agent systems with
nonholonomic restrictions.

One of the main difficulties appearing in the formation
control of nonholonomic systems is that the designed
controller has to be either discontinuous or time-varying
(Brockett, 1983). Different approaches have been proposed
to deal with consensus-like control objectives. Among
them are: (Dimarogonas and Kyriakopoulos, 2007) where
it is introduced a decentralized feedback control that

drives a system of multiple nonholonomic unicycles to a
rendezvous point in terms of both position and orienta-
tion, the proposed control law is discontinuous and time-
invariant; the work of (Lin et al., 2005) presents necessary
and sufficient conditions for the feasibility of a class of
formations; (Peng et al., 2015) propose a distributed for-
mation control law using a consensus-based approach to
drive a group of agents to a desired geometric pattern;
(Yang et al., 2016) address the position/orientation for-
mation control problem for multiple nonholonomic agents
using a time-varying controller that leads the agents to a
given formation using only their orientation; to solve the
consensus problem, (Dong and Farrell, 2008) propose a
cooperative control law that its robust to constant com-
munication delays and its application to formation con-
trol. (Ajorlou et al., 2015) present a distributed consensus
control law for a network of nonholonomic agents in the
presence of bounded disturbances with unknown dynamics
in all inputs channels; for an undirected graph, (Peng et al.,
2015) propose a smooth time varying controller that has
been extended in (Bautista-Castillo et al., 2016) to a PD-
like controller at the dynamical level. All these previous
works, solve the consensus problem without uniformity
on the initial time, and they only work on the kinematic
model, except for (Bautista-Castillo et al., 2016).

In this paper we solve a consensus-based formation prob-
lem for a network of multiple second order nonholo-
nomic robots with a given desired orientation. The so-
lution is established using a novel smooth time vary-
ing δ−Persistently Exciting (PE) controller (Loŕıa et al.,
1999); see also (Wang et al., 2015). The behavior of the
agents takes into account both the kinematic and the
dynamic models. Under the assumption that the inter-



connection graph is static, connected and undirected we
propose a novel Strict Lyapunov Function (SLF) to es-
tablish uniform global asymptotic stability of the desired
equilibrium point. The SLF is designed following (Malisoff
and Mazenc, 2009) and (Mazenc, 2003). To the best of
our knowledge this is the first work that provides a SLF
in this scenario. It is well known that a SLF entails the
system with robustness properties with regards to exter-
nal perturbations and it also provides a tool for tuning
the controller gains. Simulations are presented to provide
evidence of our proposal.

Notation. For a vector z ∈ Rn, we denote by z̄ its
diagonal matrix representation, i.e., z̄ = diag[zi]. z

⊥ is
the orthogonal vector to z and ‖z‖ denotes the Euclidean
norm of z. For a symmetric positive semi-definite matrix
L ∈ Rn×n, we denote by λmax(L) and λmin(L), λi(L),
the maximum, the minimum and the ith eigenvalue of L,
respectively. ‖L‖ is the induced Euclidian norm of L. For
a time varying matrix M(t) we denote by ‖M(t)‖∞ =
supt≥0 {M(t)}. The symbol ⊗ stands for the Kronecker
product and we define L2 := L⊗ I2.

2. SYSTEM DYNAMICS

As customary in multi-agent consensus (Olfati-Saber and
Murray, 2004; Nuño et al., 2011), the complete dynamics
of the systems is composed of a twofold: i) the dynamics
of nodes, which are described by a second order nonholo-
nomic differential equation; and ii) the interconnection
topology, modeled using the Laplacian matrix from graph
theory.

2.1 Node Dynamics

Without loss of generality, we consider the following model
of N second order nonholonomic robots (Tzafestas, 2013),

ż =Φ(θ)v

v̇ =uv
˙̃
θ =ω

ω̇ =uω

(1)

where z = [z>1 , ..., z
>
N ]> ∈ R2N ; zi = [xi − δxi, yi −

δyi]
> ∈ R2 is the translational error of the ith-robot;

δi := [δxi, δyi]
> ∈ R2 is the given desired position of

the ith-robot relative to the barycentre of the formation;
v = [v1, ..., vN ]> ∈ RN ; vi is the linear velocity, Φ(θ) =
diag[φ(θi)] ∈ R2N×N ; φ(θi) = [cos(θi), sin(θi)]

> ∈ R2;

θ̃ = θ − θd = [θ1 − θd1, ..., θN − θdN ]> ∈ RN is the
orientation error of each robot, with θd a constant desired
orientation; ω = [ω1, ..., ωN ]> ∈ RN ; ωi is the angular
velocity; and finally uv = [uv1, ..., uvN ]> ∈ RN and uω =
[uω1, ..., uωN ]> ∈ RN are the control inputs.

Since θd is constant, the two following equations hold

Φ̇(θ) = −Φ(θ)⊥ω̄, Φ̇(θ)⊥ = Φ(θ)⊥ω̄, (2)

where ω̄ = diag[ωi] ∈ RN×N , Φ(θ)⊥ = diag[φ(θi)
⊥] ∈

R2N×N and φ(θi)
⊥ = [sin(θi),− cos(θi)]

>.

2.2 Interconnection Topology

The interconnection of the N agents is modeled using the
Laplacian matrix L := [`ij ] ∈ RN×N , whose elements are
defined as

`ij =


∑
j∈Ni

aij i = j

−aij i 6= j
(3)

where Ni is the set of agents transmitting information to
the ith robot, aij > 0 if j ∈ Ni and aij = 0 otherwise.

Similar to passivity-based (energy-shaping) synchroniza-
tion (Aldana et al., 2015; Nuño et al., 2013a) and in order
to ensure that the interconnection forces are generated by
the gradient of a potential function, the following assump-
tion is used in this paper:

A1. The interconnection graph is undirected, static and
connected.

Remark 1. By construction, L has a zero row sum, i.e.,
L1N = 0, where 1N is a vector of N ones. Moreover,
Assumption A1, ensures that L is symmetric, has a single
zero-eigenvalue and the rest of the spectrum of L is
positive. Thus, rank(L) = N − 1. 4

3. PROBLEM FORMULATION AND ITS SOLUTION

Consensus Problem. Consider a network of N non-
holonomic robots satisfying (1). Design a decentralized
controller verifying Assumption A1 such that all robots
positions converge, globally, uniformly and asymptotically,
to a given formation pattern with a desired orientation,
i.e., there exists zc ∈ R2 such that

lim
t→∞

z(t) = 1N ⊗ zc; lim
t→∞

θi(t) = θdi, (4)

where θdi ∈ R is a given desired constant orientation
for each robot, and zc is the barycentre of the formation
pattern. O
Remark 2. The consensus problem defined above is typi-
cally referred to as leaderless consensus, since the barycen-
tre of the formation zc is not a priori known. 4

We solve the consensus problem by recasting it into a
classical stabilisation problem (of the origin). To that end,
we first need to introduce suitable error coordinates. Let

e =Φ(θ)>L2z,

s =Φ(θ)⊥>L2z
(5)

and we recall that L2 = L⊗I2. Then, the control objective
(4) is achieved if we prove that (e, s)→ (0, 0). This is due
to the following fundamental fact.

Lemma 1. Consider (e, s), given by (5), and assume that
L satisfies A1, then L2z = 0⇔ (e, s) = (0, 0). Moreover,

λ2(L)z>L2z ≤ |e|2 + |s|2 ≤ λN (L)z>L2z, (6)

where λ2(L) and λN (L) are the second smallest and the
largest eigenvalue of L, respectively. �

Proof of Lemma 1. Since the matrix

[
Φ(θ)>

Φ(θ)⊥>

]
is non

singular. The first fact follows directly. For the second fact,

we remark that |e|2 + |s|2 = z>L2
2z = z>L

1
2
2 L2L

1
2
2 z. Since

L
1
2
2 z is orthogonal to the eigenspace associated to the zero

eigenvalue of L2, it holds that

λ2(L)z>L
1
2
2 L

1
2
2 z ≤ z>L

1
2
2 L2L

1
2
2 z ≤ λN (L)z>L

1
2
2 L

1
2
2 z,

and so (6) follows. �

In the new error coordinates, for the translation, we
employ a simple PD-like controller originally proposed in
(Bautista-Castillo et al., 2016). That is,



uv = −Kdtv −Kpte, (7)

while for the rotational dynamics we use

uω = −Kdθω −Kpθ θ̃ − p(t)κ(s, e). (8)

By design,Kdt,Kpt,Kdθ,Kpθ are diagonal positive definite
matrices and κ(s, e) is defined as

κ(s, e) =
1

2
[s2

1 + e2
1, ..., s

2
N + e2

N ]> ∈ RN (9)

and the function p : R+ → R satisfies the following.

A2. p(t), and up to its third derivative, is bounded and
ṗ(t) is persistently exciting (see the Appendix) with
excitation parameters (T, µ). Thus, there exists bp >
0 such that

max
{
‖p‖∞, ‖ṗ‖∞, ‖p̈‖∞, ‖p(3)‖∞

}
≤ bp.

Remark 3. Two remarks are in order: i) for simplicity,
and without losing generality, the function p is taken
equal for all the agents; ii) the function κ in (9) may
correspond to any class-K function with the following form
κ(s, e) = 1

2 [G(s2
1+e2

1), ..., G(s2
n+e2

n)]>. The only condition
on κ is that there exist two positive polynomials P1(·) and
P2(·) such that:

G(·) ≤ P1(·), and,

∥∥∥∥∂G(·)
∂(·)

∥∥∥∥ ≤ P2(·).

Now, the closed-loop system, which results from Equations
(1), (5), (7), and (8), is

ż =Φ(θ)v

v̇ =−Kdtv −Kpte

ė =− ω̄s+ Φ(θ)>L2Φ(θ)v

ṡ =ω̄e+ Φ(θ)⊥>L2Φ(θ)v

θ̇ =ω

ω̇ =−Kdθω −Kpθ θ̃ − p(t)κ(s, e).

(10)

Our main contribution is to establish uniform global
asymptotic stability for the origin of this system. More-
over, our proof is constructive as it relies on the con-
struction of a strict Lyapunov function (globally positive
definite and with negative definite derivative). To that end,
let us define the following change of coordinates:

eθ = θ̃ + f̄(t)κ(s, e)

eω =ω +
¯̇
f(t)κ(s, e),

(11)

where f̄(t) := diag[fi(t)] ∈ RN×N ,
¯̇
f(t) := diag[ḟi(t)] ∈

RN×N and fi(t) satisfies the differential equation

f̈i + kdtiḟi + kptifi = p(t), (12)

where kdti, kpti are the elements of the diagonal matrices
Kdt and Kpt, respectively. If ṗ(t) satisfies A2 then, after

Lemma 2 in the Appendix, it follows that ḟi is also per-

sistently exciting and so is the matrix
¯̇
f(t). Furthermore,

there exists bf̄ > 0 such that

max
{∥∥f̄∥∥∞,∥∥ ¯̇

f
∥∥
∞,
∥∥ ¯̈
f
∥∥
∞,
∥∥f̄ (3)

∥∥
∞

}
≤ bf̄ .

Lemma 2 also provides an explicit estimation of the
excitation parameters (Tf , µf ) of ḟ and the constant bf̄
that are used in the construction of the Lyapunov function.

Next, let us define Xt = [v>, e>, s>]> ∈ R3N and Xr =
[e>θ , e

>
ω ]> ∈ R2N , as the translational and rotational parts

of the state, respectively. Additionally, let ē = diag[ei],
s̄ = diag[si], ēω = diag[eωi] and κ̄ = diag[κi]. Then,

Ẋt =

−Kdt −Kpt 0

0 0
¯̇
fκ̄− ēω

0 − ¯̇
fκ̄+ ēω 0

Xt +

 0
Φ>L2

Φ⊥>L2

Φv

Ẋr =

[
0 IN
−Kpθ −Kdθ

]
Xr +

[
f̄
¯̇
f

] (
ēΦ>L2 + s̄Φ⊥>L2

)
Φv.

(13)

Note that in view of Lemma 1, (Xt, Xr) = (0, 0) ⇔
(v, z, θ, ω) = (0, 1N ⊗ zc, θd, 0) and the dynamics (10) are
embedded in (13). Therefore, our analysis problem comes
to study the stability of the origin for (13). This is the
subject of our main result, which is stated next.

Theorem 1. Controller (7) and (8) solves the Consensus
Problem provided that p(t) satisfies A2. Moreover, the
closed-loop system (13) admits a strict Lyapunov function.
4

Proof: (Sketch) Due to space constraints we do not include
here a complete proof, but the main steps are given.

First, we observe that the translational part of the system
admits the following non-strict Lyapunov function

V (θ,Xt) = v>K−1
pt v + z>L2z. (14)

Indeed, in view of (6), it is concluded that V (θ,Xt)
is positive definite and radially unbounded with regards
to Xt. Moreover, the time derivative of V along the
trajectories of (10) yields

V̇ (θ,Xt) = −2v>K−1
pt Kdtv. (15)

Now, the Lyapunov function for the closed-loop system
(13) is

Γ(t,Xt, Xr) = W (t,Xt, Xr)+ρ1(V )Z(Xr)+ρ2(V )V (16)

where

W = γ(V )V + V κ>Q̄ḟ2(t)κ+ α(V )e>v − c1V e> ¯̇
fs

+c1bfλN (L)V 2 + (λN (L) + ‖Kpt‖)α(V )V,

Z = c2
(
e>ω eω + e>θ Kpθeθ

)
+ e>θ eω,

ρ1(V ) =
2σ(V )

c2λmin(Kdθ)
(α(V ) + c1bfV ) + 1,

σ(V ) = max

{
16Tc1bf

µ
,

4λN (L)
∥∥K−1

dt Kpt

∥∥α(V )V

γ(V )

}
,

α(V ) = 4b2fλN (L)V 2
∥∥K−1

pt

∥∥+ 4c1b
2
fλN (L)

∥∥K−1
pt

∥∥V 2

4c1
c4

∥∥∥ ¯̇
f2
(
Φ⊥>L2Φ

)2∥∥∥
∞

∥∥K−1
dt

∥∥V + c21c4b
2
f

∥∥K−1
pt

∥∥ ,
γ(V ) = 2c4V

2λN (L)
∥∥K−1

dt Kpt

∥∥ ∥∥∥Q̄ḟ2Φ>L2Φ
∥∥∥2

∞

+2c4V
2λN (L)

∥∥K−1
dt Kpt

∥∥∥∥∥Q̄ḟ2Φ⊥>L2Φ
∥∥∥2

∞

+
∂α

∂V
V (‖Kpt‖+ λN (L)) +

c4
2
c1V

+2α(V )
∥∥Φ>L2Φ

∥∥
∞

∥∥K−1
dt Kpt

∥∥
∞

+
c4
2

∥∥KptK
−1
dt

∥∥α2(V ) +
c4
2
α(V ) ‖Kdt‖

+2c1bfλN (L)V +
4

c4
V 2λN (L)

∥∥K−1
dt

∥∥



+
c4
2
c21
∥∥K−1

dt Kpt

∥∥∥∥∥ ¯̇
f2
(
Φ>L2Φ

)2∥∥∥
∞
,

ρ2(V ) = ρ1(V )ρ3(V )V

ρ3(V ) =
c3λN (L)

∥∥K−1
dt Kpt

∥∥
2

(∥∥Φ>L2Φ
∥∥2

∞ +
∥∥Φ⊥>L2Φ

∥∥2

∞

)
,

and the constants c1, c2, c3 and c4 are:

c1 = 1 +
λN (L)

max
{

2, 2T
µ

(
1 + 2N

λ2(L)

)}
c2 =

2

λmin(Kdθ)
+
λmax(Kdθ) + 1

λmin(Kpθ)
+ 1

c3 = max

{
8 (2c2bf + bf )

2

c2λmin(Kdθ)
,

8 (2c2bfλmax(Kpθ) + bf )
2

λmin(Kpθ)

}
,

c4 = max

{
2,

2T

µ

(
2 +

8N

λ2(L)

)}
.

Additionally, we have defined Q̄ḟ2(t) := diag
[
Qḟ2

i
(t)
]
,

with

Qḟ2
i
(t) := 1 + 2b2fT −

2

T

∫ t+T

t

∫ m

t

ḟi(s)
2ds dm. (17)

It should be underscored that Qḟ2
i
(t) admits the following

bounds 1 ≤ Qḟ2
i
(t) < bQi := 1 + 2b2fT and, furthermore,

Q̇ḟ2
i
(t) = − 2

T

∫ t+T

t

ḟi(s)
2ds+ 2ḟi(t)

2. (18)

Since ρ1 and ρ2 are positive functions and radially un-
bounded, positive definiteness of Γ is ensured with the fact
that Γ(t, 0, 0) = 0, for all t ≥ 0, and

W ≥ γ(V )V,

W ≤ γ(V )V + V κ>(e, s)Q̄ḟ2(t)κ(e, s) + 2c1bfλN (L)V 2,

+2 (λN (L) + ‖Kpt‖)α(V )V,

Z ≥min {1, λmin(Kpθ)}
(
e>θ eθ + e>ω eω

)
,

Z ≤max {1 + c2, c2λmax(Kpθ) + 1}
(
e>θ eθ + e>ω eω

)
.

After some term chasing and some cumbersome manipu-
lations we get

Γ̇ ≤− µ

4T
V 3 − ρ1(V )

8

[
c2e
>
ωKdθeω + e>θ Kpθeθ

]
− 1

4
γ(V )v>KdtK

−1
pt v −

1

8
α(V )e>Kpte

(19)

Therefore Γ̇ is negative definite and Γ qualifies as a
strict Lyapunov function for system (13). Global uniformly
asymptotic stability of the equilibrium (Xt, Xr) = (0, 0) is
ensured and thus the Consensus Problem is solved.

4. SIMULATIONS

This section presents some numerical simulations using six
differential wheeled mobile robots. The desired formation
pattern is an hexagon and the communication topology,
together with the required vectors δi are depicted in Fig. 1.
The initial states positions of the robots are:

For simplicity, all the robots are the same, with mass equal
to 10kg and the moment of inertia equal to 3kg m2. The

q1 q2 q3 q4 q5 q6
xi 5 6 -3 -4 3 2

yi 0 2 0 -2 -4 -6

θi 90 15 80 0 -90 100

1

3

Fig. 1. Interconnection graph and bias of each mobile robot
in the network.
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Fig. 2. Trajectories and formation of the simulation of the
network of mobile robots.

distance parameters are: R = 0.1 and r = 0.01. The gains
have been set to di = kdi = 7, kpi = 100, pi = 100,
kαi = 300.

Fig. 2 show the trajectories of the nonholonomic mobile
robots in order to form the desired pattern. Fig. 3 present
the orientation behaviour of the network, where θd = 70.
From these simulations it can be concluded that the
novel proposed controller asymptotically solves the desired
control objective, as expected.

5. CONCLUSION

This paper deals with the formation control of multiple
nonholonomic robots. We report a novel decentralized
consensus-based formation controller that considers both,
the kinematic and the dynamic model, to uniformly and
asymptotically drive a network composed of N agents to
a desired formation with a given orientation. The network
is modeled as an undirected, static and connected graph.
The controller is a smooth time-varying PD-like scheme
that is δ−persistently exciting the nonholonomic robots.
Up to the authors’ knowledge this is the first work that
provides a strict Lyapunov function, thereby guaranteeing
uniform global asymptotic stability for the closed-loop
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Fig. 3. Orientation of each mobile robot in the network.

system. Hence, the system is robust with respect to (small)
external perturbations. Simulations, using a network with
six agents, have been provided to illustrate our theoretical
contributions.
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of nonidentical Euler-Lagrange systems using P+d con-
trollers. IEEE Transactions on Robotics, 26(6):1503–
1508, 2013b.

R. Olfati-Saber. Flocking for multi-agent dynamic sys-
tems: Algorithms and theory. IEEE Transactions on
Automatic Control, 51(3):401–420, 2006.

R. Olfati-Saber and R. Murray. Consensus problems in
networks of agents with switching topology and time-
delays. IEEE Transactions on Automatic Control., 49
(9):1520–1533, 2004.
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Appendix A. ON PERSISTENCY OF EXCITATION

We recall that a function ψ : R+ → Rn×m is said to be
persistently exciting, with excitation parameters−(T, µ),
if there exist T, µ > 0 such that∫ t+T

t

ψ(s)ψ(s)>ds ≥ µIn ∀ t ≥ 0. (A.1)

The following lemma extends a well-known filtration prop-
erty of persistently exciting functions (Ioannou and Sun,
1996).

Lemma 2. Consider the scalar second order system:

f̈ + k1ḟ + k2f = p(t) (A.2)

where k1, k2 > 0 and p(t) is a time varying input such
that ṗ(t) is PE with excitation parameters−(T, µ) and
there exists bp > 0 such that max

{
p, ṗ, p̈, p(3)

}
≤ bp. Then

ḟ(t) is PE with excitation parameters−(Tf , µf ) given by
Tf = kT ,

µf =
2(1 + k−1

2 )bpr

bp
2
(
1 + k1k

−1
2 + k−1

2

)2
Tf
, (A.3)

and k =

[
4(1+k−1

2 )bpr
µk−1

2

]
+ 1, where

r2 =
(a+ 1)y(0)2 + 4(ak2 + 1)

(
f(0)2 + k−1

2 bp
2
)

+
bbp

2

c

min {1, k2}
,

(A.4)
a = 2k−1

1 + k1k
−1
2 + k−1

2 + 1, b := 4k−1
2 + 1

ak1k22
and

c := 1
4

min{ak1,k2}
a+2+ak2

.

Furthermore, max
{
ḟ , f̈ , f (3)

}
≤ bf , with:

bf = r
(
k2

1 + k1k2 + k2 + k1 + 1
)

+ bp. (A.5)

�

Proof of Lemma 2. Consider the following linear change of
coordinates x = f − k−1

2 p(t), y = ḟ . Then ẋ = y− k−1
2 ṗ(t)

and ẏ = −k2y − k1x.

First, note that the overall trajectories are bounded, i.e.,
there exists r > 0 that is a function of (x(0), y(0), bp), such
that ‖(x, y)‖ ≤ r, ∀t ≥ 0.

Consider now the following time derivative

d

dt

[
−ṗx− k−1

2 p̈y
]

=[−ṗ+ k1k
−1
2 p̈− k−1

2 p(3)]y + k−1
2 ṗ2

≥− bp
[
1 + k1k

−1
2 + k−1

2

]
|y|+ k−1

2 ṗ2,

then

bp
[
1 + k1k

−1
2 + k−1

2

] ∫ t+kT

t

|y(s)|ds ≥∫ t+kT

t

d

ds

[
ṗ(s)x(s) + k−1

2 p̈(s)y(s)
]
ds+

k−1
2

∫ t+kT

t

ṗ(s)2ds ≥ −2
(
1 + k−1

2

)
bpr + k−1

2 kµ

where k is a positive integer and, to obtain the last
inequality, we used the fact that trajectories are bounded
and that ṗ is PE with parameters (T, µ).

Invoking the Cauchy-Schwartz inequality on
∫ t+kT
t

|y(s)|ds,
we obtain

b2p
(
1 + k1k

−1
2 + k−1

2

)2
kT

∫ t+kT

t

y(s)2ds ≥(
k−1

2 kµ− 2
(
1 + k−1

2

)
bp
)2

Finally, we get∫ t+kT

t

y(s)2ds ≥
(
k−1

2 kµ− 2
(
1 + k−1

2

)
bpr
)2

b2p
(
1 +Kdθk

−1
2 + k−1

2

)2
kT

(A.6)

Taking k =

[
4(1+k−1

2 )bpr
µk−1

2

]
+ 1, we find Tf = kT and

µf =
2(1+k−1

2 )bpr

b2p(1+Kdθk
−1
2 +k−1

2 )
2
Tf

, such that
t+Ty∫
t

y(s)2ds ≥ µf

In order to have an explicit estimation of (Tf , µf ) it only
remains to estimate the upper bound of the trajecto-
ries. For, let us define the Lyapunov function candidate
V (x, y) = a

(
y2 + k2x

2
)

+ xy with a = 2k−1
1 + k1k

−1
2 +

k−1
2 + 1.

V (x, y) verifies the following bounds

min {1, k2}(y2 + x2) ≤ V (x, y) ≤
max {a+ 1, ak2 + 1} (x2 + y2).

V̇ , along the trajectories of the system, satisfies

V̇ (·) ≤− ak1y
2 + y2 − k1yx− k2x

2 + 2ṗx+ k−1
2 yṗ

≤− a

4
k1y

2 − 1

4
k2x

2 +

[
4k−1

2 +
1

ak1k2
2

]
ṗ2

≤− cV + bb2p

where c := 1
4

min{ak1,k2}
a+2+ak2

and b := 4k−1
2 + 1

ak1k22
.

Since x2 + y2 ≤ 1
min{1,k2}V , we can calculate the upper

bound of the trajectories as

‖(x, y)‖2 ≤ 1

min {1, k2}
max

{
V (0),

bb2p
c

}

≤
(a+ 1)y(0)2 + 4(ak2 + 1)

(
f1(0)2 + k−2

I b2p
)

+
bb2p
c

min {1, k2}
= r2.

Finally, from the system dynamics and (A.7), we can find
that ẏ ≤ (k1 +k2)r and ÿ ≤ (k2

1 +k1k2 +k2)r+bp so (A.5)
follows. This concludes the proof. �


