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Abstract: The general problem of the stability of motion was introduced by A. M. Lyapunov in
his memoir Lyapunov (1892), published in French in 1907 —cf. (Lyapunov, 1947), translation
which was revised by Lyapunov himself. Since then, many refinements have been made by a
number of authors, but confusion regarding fundamental concepts has also settled through
the years. Moreover, the effect of erroneous statements has been often amplified by inexact
“recursive” citations (when an author A cites an author B, based on a text written by a
tertiary author C). The purpose of this article is to present basic definitions and theorems on
stability, mostly on Lyapunov stability, in the form of a concise but faithful account of the
original statements made by the developers of stability theory, from the Italian G. L. Lagrangia
to 20th century Soviet mathematicians. To that end, we rely on original sources to transcript
the exact formulations of concepts introduced in the early literature, our translations are made
with a maximum of fidelity, keeping at best both the original words and the mathematical
notations. We hope, with this brief historical account, to revive the interest on otherwise
forgotten fundamental literature on Lyapunov stability theory.

Keywords: Lyapunov stability, history of; Lagrange-Dirichlet stability; invariance principle.

“The authors of the present manuscript would like to
insist on the fact that only the attentive reading of
the original documents can contribute to correct certain
errors endlessly repeated by different authors.”

J. J. Samueli & J. C. Boudenot 1

1. STABILITY OF MOTION

To understand stability, consider 2

a solution of a differential equation representing a phys-
ical phenomenon or the evolution of some system [. . . ]
There always exist two sources of uncertainty in the
initial conditions. Indeed, when one attempts to repeat
a given experiment, the reproduction of the initial con-
ditions is never entirely faithful: for instance, a satellite
can only be placed in orbit from one point and with
a velocity that depend on the variable circumstances
related to the launching of the rockets [. . . ] It is thus
fundamental to be able to recognize the circumstances
under which small variations in the initial conditions
will only introduce small variations in what follows of
the phenomenon.

From a mathematical viewpoint, roughly speaking, sta-
bility may be described as a property of the solutions
of differential equations by which, given a “reference”
solution x∗(t, t∗0, x

∗
0) to an ordinary differential equation

ẋ = f(t, x), (1)

with initial conditions (t∗0, x
∗
0) ∈ R≥0 × Rn, any other

solution x(t, t0, x0) starting close to the former (i.e. such

? See also Loŕıa and Panteley (2006). This work was supported by
CNRS under grant BFC 248824.
1 Translated from H. Poincaré (1854-1912), physicien, Editions
Ellipses: Paris, 2005.
2 Quoted from the highly formative and enjoyable text Rouche and
Mawhin (1973), see also Rouche and Mawhin (1980). By the second
author see also the revealing papers Mawhin (2005, 1994).

that t∗0 ≈ t0 and x∗0 ≈ x0), remains close to x∗(t, t∗0, x
∗
0) for

later times.

It is therefore apparent that the property of continuity of
solutions with respect to initial conditions and therefore,
the sufficient conditions for it, may bring an answer to the
question of stability, posed above. However, as explained
by Rouche and Mawhin (1980), the theorem on continuity
of solutions with respect to initial conditions establishes
sufficient conditions for a perturbed solution to remain
“close” to an unperturbed solution over a finite interval
of time. In the question of stability, however, this is
insufficient since one requires that “small variations in the
initial conditions [will] only introduce small variations in
what follows of the phenomenon”, that is, from the initial
time and for ever after.

The mathematical term “perturbed solution” is not in-
nocuous. Even though in control theory we are most used
to relate a perturbation to an external undesirable phe-
nomenon that makes a system “misbehave” with respect
to a desired performance, in classical stability theory of
dynamical systems this term refers to the variation in
the initial conditions, hence, we speak of perturbed initial
conditions: x0 := x∗0 + ∆x and t0 := t∗0 + ∆t.

To complement our generic discussion on stability and in
order to properly explore the foundations of this theory,
we find it important to recall the following terminology
and notation. Following (Hahn, 1963, p. 1) [sic],

“a point of the real, n-dimensional space shall be de-
noted by the coordinates x1, . . . , xn. [. . . ] In addition
to the n-dimensional x-space which is also called phase
space, we shall refer to the (n+ 1)-dimensional space of
the quantities x1, . . . , xn, t, which will be called motion
space. [. . . ]



The notation x= x(t) indicates that the components
xi of x are functions of t. If these functions are contin-
uous, then the point (x(t), t) of the motion space moves
along a segment of a curve as t runs from t1 to t2, [. . . ]

The projection of a motion upon the phase space
is called the phase curve, or trajectory, of the motion.
In this case the quantity t plays the role of a curve
parameter.

The first to formally study the stability of motion was
the Italian-French 3 mathematician J.-L. Lagrange. Our
survey starts with his work.

2. LAGRANGE’S STABILITY

“Messieurs de la Place, Cousin, le Gendre et moi,
ayant rendu compte d’un Ouvrage intitulé : Méchanique
analitique, par M. de la Grange, l’Académie a jugé
cet Ouvrage digne de son approvation, et d’être imprimé
sous son Privilège.

Je certifie cet Extrait conforme aux registres de
l’Académie. A Paris, ce 27 février 1788.

Le Marquis DE CONDORCET” 4

Section III of Part I of (de la Grange, 1788) entitled
“General properties of the equilibrium of a bodies system”
deals with the concepts of equilibrium and stability:

[Translated from (Lagrange, 1888, pp. 69–70)] In a
system of bodies in equilibrium, the forces P , Q, R, . . . ,
stemming from gravity, are, as one knows, proportional
to the masses of the bodies and, consequently, constant;
and the distances p, q, r, . . . meet at the center of Earth.
One will thus have, in such case,

Π = Pp+ Qq + Rr + . . . ;

[. . . ] If one now considers the same system in motion,
and let u′, u′′, u′′′, . . . be the velocities, and m′, m′′,
m′′′, . . . be the respective masses of the different bodies
that constitute it, the so well-known principle of con-
servation of living forces [. . . ] will yield this equation:

m′u′2 +m′′u′′2 +m′′′u′′′2 + . . . = const.− 2Π .

Recognizing that Π corresponds to the expression of poten-
tial energy and recalling that the “living forces” (vis viva)
corresponds to the kinetic energy, we identify in Lagrange’s
text, the equation that expresses the principle of energy
conservation.

In the following paragraph Lagrange makes an interesting
citation that he attributes to Courtivron 5 and which, to
some extent, already speaks of stability:

[Translated from (Lagrange, 1888, p. 70)] Hence, since
in the state of equilibrium, the quantity Π is [has] a

3 While mostly known as a french mathematician, Joseph Louis de
la Grange was born Giuseppe Lodovico Lagrangia on the 25th of
January 1736 in Turin, Sardinia-Piemonte (now part of Italy) where
he lived and taught mathematics until 1766; he moved to Paris only
in 1787.
4 So finishes the preface to the first edition of the famous treatise on
analytical mechanics by Lagrange (of noble status), which occupied
his gifted mind “on the eve” of the French Revolution . . .
5 In Lagrange (1888), the cited text is accompanied by a footnote
of J. Bertrand, editor of the 3rd edition of Lagrange’s treatise,
who comments that Lagrange had attributed in de la Grange
(1788), the mentioned principle from statics to the [sic] “little-
known geometrician Courtivron” but that Lagrange had removed
Courtivron’s name from the second edition to substitute it with the
date of publication.

minimum or a maximum, it follows that the quantity
m′u′2 + m′′u′′2 + m′′′u′′′2 + . . ., which represents the
living force of the whole system, will be at same time a
minimum or a maximum; this leads to the following
principle of Statics, that, from all the configurations
that the system takes successively, that in which it has
the largest or the smallest living force, is that where it
would be necessary to place it initially so that it stayed
in equilibrium. (See the Mémoires de l’Académie des
Sciences de 1748 et 1749.)

Lagrange continues his essay on the properties of the
equilibrium by making his famous statement that the
minimum of the potential energy of a mechanical system
corresponds to a stable equilibrium point whereas the
potential energy function has a maximum at a point
corresponding to an unstable equilibrium:

[Translated from (Lagrange, 1888, p. 71)] [. . . ] we will
show now that if this function [Π] is a minimum, the
equilibrium will have stability; similarly, if the system
being initially supposed at the state of equilibrium and
then coming to be, no matter how little, displaced from
such state, it will tend itself to come back to that
position while making infinitely small oscillations: and
on the contrary, in the case that the same function will
be a maximum, the equilibrium will have no stability,
and once perturbed, the system will be able to make
oscillations that will not be very small, and that may
make it to drift farther and farther from its first state.

In modern terminology we can state stability in the sense
of Lagrange (1888) as follows.

Definition 1. Consider a mechanical system with state
x := col[q, q̇]. We say that the point q = 0 is stable if
for each δ > 0

|q(t0)| ≤ δ =⇒ |x(t)| → 0 ∀ t ≥ t0 ≥ 0 .

Remark 1. We stress the ambiguity of “it will tend itself
to come back to that position”. Indeed, instead of the
implication above one may interpret Lagrange’s stability
as the property such that |q(t0)| ≤ δ =⇒ |q(t)| → 0 —see
Rouche and Peiffer (1967).

Lagrange claims that the minimum of the potential energy
corresponds to a stable point, in the sense previously
defined. The proof of his statement is based on a se-
ries expansion of the function Π and makes use of the
abusive assumption that high-order terms are negligible.
According to G. Lejeune-Dirichlet 6 , Poisson seems to have
been the first to point out this inaccuracy and tried to
correct it by supposing that the terms of second order
dominate largely over terms of order greater than two,
in his 7 Traité de Mécanique, p. 492. It was, however, G.
Lejeune-Dirichlet who provided the first rigorous proof of
Lagrange’s statement. Dirichlet’s proof is worth stressing
since it is the basis of Lyapunov’s direct method:

6 We have this from Lejeune-Dirichlet (1888) but according to J.
Bertrand, Dirichlet’s proof was originally published in the Journal
de Crelle, Vol. 32 and the Journal de Liouville, 1st series, Vol. XII,
p. 474.
7 G. Lejeune-Dirichlet (1805–1859), contemporary of Poisson (1781–
1840), does not give a complete reference for Poisson’s work; accord-
ing to Rouche and Peiffer (1967), the complete reference is Poisson
(1838).



[Translated from (Lejeune-Dirichlet, 1888, p. 457)] The
function of coordinates depends only on the nature of
forces and can be expressed by a defined number of
independent variables λ, µ, ν, . . . , in such a way that
the equation of living forces will be written as∑

mv2 = ϕ(λ, µ, ν, . . .) + C

[. . . ] the condition that expresses that, [. . . ] the
system is at an equilibrium position, coincides with
that which expresses that, for these same values, the
total derivative of ϕ is zero; hence, for each equilibrium
position, the function will be a maximum or a minimum.
If a maximum takes place, then the equilibrium is
stable, that is, if one displaces infinitely little the points
[coordinates] of the system from their initial values, and
we give to each a small initial velocity, in the whole
course of the motion the displacements of the points of
the system, with respect to their equilibrium position,
will remain within certain defined very small limits.

Notice that Dirichlet speaks of maximum of the function
ϕ(λ, µ, ν, . . .) corresponding to a stable equilibrium; this
makes sense if we consider that in modern notation the
potential energy corresponds to −ϕ and the independent
coordinates λ, µ, ν, . . . correspond to the generalized
coordinates of a Lagrangian system —see (Goldstein,
1974). Another interesting characteristic of Dirichlet’s
stability is that he adds to his definition, with respect to
that of Lagrange, the condition that the initial velocities be
small in order to produce small displacements; in modern
terms we might put it as follows.

Definition 2. Let x := col[q, q̇]. We say that the point
q = 0 is stable if for each δ > 0 there exists ε > 0 such
that

|x(t0)| ≤ δ =⇒ |x(t)| ≤ ε ∀ t ≥ t0 ≥ 0 .

Dirichlet’s proof of the fact that the minimum of the
potential energy corresponds to a stable equilibrium is
quite interesting to us since it is close, in spirit, to what
we currently know as Lyapunov theory:

[Translated from (Lejeune-Dirichlet, 1888, p. 459)]

Other than the hypothesis already made, that the
equilibrium position corresponds to the values λ = 0,
µ = 0, . . . , we will also suppose that ϕ(0, 0, 0, . . .) = 0;
[. . . ] hence,∑

mv2 = ϕ(λ, µ, ν, . . .)− ϕ(λ0, µ0, ν0, . . .) +
∑

mv20 .

Since by hypothesis, ϕ(λ, µ, ν, . . .), for λ = 0, µ = 0,
. . . , is zero or maximum, we will be able to determine
positive numbers l, m, n, . . . , sufficiently small so that
ϕ(λ, µ, ν, . . .) be always negative [. . . ] where the abso-
lute values of the variables be respectively constrained
not to overpass the limits l, m, n, . . . , [. . . ] Let us
suppose that, among all the negative values of the
function [. . . ] , −p, except for the sign, is the smallest:
then we can easily show that, if we take λ0, µ0, ν0, . . .
numerically smaller than l, m, n, . . . , and at same time
one satisfies the inequality

−ϕ(λ0, µ0, ν0, . . .) +
∑

mv20 < p ,

each of the variables λ, µ, ν, . . . will remain during
the complete duration of the motion below the limits l,
m, n, . . . . Indeed, if the contrary took place, since the
initial values λ0, µ0, ν0, . . . and due to the continuity of

the variables λ, µ, ν, . . . , it would first be necessary that
at some instant one or more numerical values of λ, µ,
ν, . . . were equal to their respective limits l, m, n, . . . ,
without having any other value overpassing its limit.
At this instant, the absolute value of ϕ(λ0, µ0, ν0, . . .)
would be larger or at least equal to p. Consequently,
the second member of the equation of living forces [i.e.,
the kinetic energy term] would be negative, due to the
inequality above written, and which corresponds to the

initial state; which is not possible,
∑

mv2 being always

positive.

Dirichlet’s proof can be explained in modern terms using
the total energy function, in terms of generalized positions
q := λ, µ, ν, . . . and velocities q̇, i.e.

V (q, q̇) := T (q, q̇) + U(q)

where T (q, q̇) :=
∑
mv2 and U(q) := −ϕ(λ, µ, ν, . . .), i.e.

in general v depends on the generalized velocities and
positions and the potential energy is assumed to depend
only on the positions. Moreover, as Dirichlet points out,
we can assume without loss of generality that U(0) = 0.
Then, Dirichlet poses

p := min{U(q) : |λ| = l, |µ| = m, |ν| = n . . .}
Now, consider initial positions q(t0) and velocities q̇(t0)
such that V (q(t0), q̇(t0)) < p, the equation of living forces
(principle of energy conservation) is

V (q(t), q̇(t)) = V (q(t0), q̇(t0))

so, necessarily, we have V (q(t), q̇(t)) < p for all t ≥ t0.
Equivalently, T (q(t), q̇(t)) + U(q(t)) < p for all t ≥ t0.
Since T (q(t), q̇(t)) ≥ 0 it follows that U(q(t)) < p and
therefore, none of the variables λ, µ, ν, . . . , can overpass
its respective limit.

We see clearly that key concepts such as positive definite-
ness of certain function V as well as negative semidefi-
niteness of its derivative are implicit in Dirichlet’s proof.
Indeed, the key property used is the possitivity of the
kinetic energy T ; notice that V (q(t), q̇(t)) = V (q(t0), q̇(t0))

is equivalent to V̇ (q(t), q̇(t)) = 0, for the case that V
is differentiable. However, V (q(t), q̇(t)) = V (q(t0), q̇(t0))
being the integral of the living forces equation, in Dirich-
let’s proof it is not required that the energy function be
differentiable.

2.1 Modern use of Lagrange stability

Holding rigour to Lagrange, we might say that his defini-
tion of stability rather relates to a property of convergence
of part of the coordinates; this differs from Dirichlet’s
interpretation of Lagrange’s stability, which rather hints
at a property of boundedness of solutions. It is this, or
yet another slight variant of it, which has been retained in
modern literature as “stability in the sense of Lagrange”.
Hahn (1963, p.129 ) attributes it to La Salle (1960), where
one can read:

“the boundedness of all solutions for t ≥ 0 is also a kind
of stability, called Lagrange stability.”

In contemporary texts we find the following.

Definition 3. (Lagrange stability). The system (1) is said
to be Lagrange stable if for each δ > 0 there exists ε > 0
such that

|x(t0)| ≤ δ =⇒ |x(t)| ≤ ε ∀ t ≥ t0 ≥ 0 .



3. LYAPUNOV’S STABILITY

“J’ai seulement eu en vue d’exposer dans cet Ouvrage
ce que je suis parvenu à faire en ce moment et ce qui,
peut-être, pourra servir de point de départ pour d’autres
recherches de même genre.”

A. M. Liapounoff, 1907

With this sentence 8 Lyapunov closes his preface to the
French translation of his famous memoir on stability of
motion; here transcripted verbatim from (Lyapunov, 1947).
As it is well known, however, it was in the original version
of the latter, (Lyapunov, 1892), that the author set the
basis of the stability theory mostly used nowadays in the
literature of automatic control.

It is following up the work of Lagrange, Dirichlet, Poincaré
and other mathematicians who contributed to the founda-
tions of analytical and celestial mechanics, that Lyapunov
seems to have come to the theory that we know. In the
introduction of his memoir he considers
[Translated from (Lyapunov, 1947, p. 209)] [. . . ] a
material [physical] system with k degrees of freedom. Let

q1, q2, . . . , qk

be k independent variables by which we agree to define
its position. [. . . ] Considering such variables as functions
of time t, we will denote their first derivatives, with
respect to t, by

q′1, q
′
2, . . . , q

′
k .

In each problem of dynamics, [. . . ] these functions satisfy
k second-order differential equations.

Then, on the basis of a physical dynamic system, Lyapunov
proceeds to introduce his notation for the study of stability
of ordinary differential equations with respect to arbitrary
solutions:
Let us assume that a particular solution is found to be

q1 = f1(t), q2 = f2(t), . . . , qk = fk(t) ,

in which the quantities qj are expressed by real functions
of t, [. . . ] To this particular solution corresponds a
determined motion of our system. By comparing it,
according to certain relation, to other motions of this
system, possibly under the same forces, we will call it
unperturbed motion, and for all the rest, with respect
to which it is compared, will be said to be perturbed
motions.

That is, we are interested in studying the behaviour of any
solution, or rather, as we will see below, a given function of
any solution, with respect to another given function of one
particular solution. As we recalled from Hahn (1963), the
word perturbation refers to a (small) change in the initial
conditions that generate the unperturbed motion [sic]:

Denoting by t0 an arbitrary time instant, let us denote
the corresponding values of the quantities qj , q

′
j , of an

arbitrary motion, by qj0, q′j0. Let

q1 0 = f1(t0)+ε1, q2 0 = f2(t0)+ε2, . . . , qk 0 = fk(t0)+εk,

q′1 0 = f ′1(t0)+ε′1, q
′
2 0 = f ′2(t0)+ε′2, . . . , q

′
k 0 = f ′k(t0)+ε′k,

where εj , ε
′
j are real constants. These constants, that we

will call perturbations, will define a perturbed motion.

8 “I only pretended to expose in this Work what I managed to do at
this moment and which, maybe, will serve as starting point for other
studies of the same type”.

[. . . ] let Q1, Q2, . . . , Qn be given continuous and real
functions of the quantities

q1, q2, . . . , qk, q′1, q
′
2, . . . , q

′
k .

For the unperturbed motion they will become known
functions of t that we will denote respectively by F1,
F2, . . . , Fn. For a perturbed motion they will become
functions of the quantities

t, ε1, ε2, . . . , εk, ε′1, ε
′
2, . . . , ε

′
k .

When the εj , ε
′
j are equal to zero, the quantities

Q1 − F1 , Q2 − F2, . . . , Qn − Fn
will be zero for each value of t.

The question that Lyapunov poses next is the following:

if without making the constants εj , ε
′
j zero, we make

them infinitesimally small, [. . . ] [is it] possible to
assign to the quantities Qs − Fs infinitely small limits,
such that these quantities never reach them in absolute
value ? The solution to this question, [. . . ] will be the
subject of our research [. . . ] property that we will call
stability.

In contrast to Lagrange and Dirichlet Lyapunov gives a
more formal definition of stability than described above:

[Translated from (Lyapunov, 1947, pp. 210-211)] Let L1,
L2, . . . , Ln be positive given numbers. If for all values
of these numbers, no matter how small they are, one
can choose positive numbers

E1, E2, . . . , Ek E′1, E
′
2, . . . , E

′
k ,

such that, if the inequalities

|εj | < Ej ,
∣∣ε′j∣∣ < E′j (j = 1, 2, . . . k)

hold, then we have that

|Q1 − F1| < L1, |Q2 − F2| < L2, . . . , |Qn − Fn| < Ln
for all values of t greater than t0, the unperturbed
motion will be called stable with respect to the
quantitiesQ1, Q2, . . . , Qn; in the opposite case, it will
be called unstable with respect to the same quantities.

Note that Lyapunov’s stability is broader than that of
Lagrange or Dirichlet since he considers the stability of
functions of q(t) and their derivatives, not only of q(t)
and q′(t) themselves. Moreover, he assumes that one can
have different functions Qi and Fi for each qi. For the case
that the functions Fi are the identity, Lyapunov’s stability
is more restrictive (and at the same time a stronger
property) than that of Lagrange-Dirichlet since Lyapunov
considers stability with respect to all the coordinates and
not only with respect to the displacements. The fact that
Lyapunov’s stability refers to a function of the solutions
is still a fundamental contribution with respect to what
was known from Analytical Mechanics; in the rest of his
memoir, Lyapunov is devoted to study the stability of the
difference Qi − Fi:
[Translated from (Lyapunov, 1947, pp. 212)] The solu-
tion to our question depends on the study of differential
equations of the perturbed motion or, in other words,
of the study of the differential equations satisfied by the
functions

Q1 − F1 = x1, Q2 − F2 = x2, . . . , Qn − Fn = xn .

[. . . ] We will assume that the number n and the func-
tions Qs are such that the order of this system is n and
that the former [the system] has the normal form



(ı)
dx1
dt

= X1,
dx2
dt

= X2, . . . ,
dxn
dt

= Xn,

From the above formulations we recover the familiar
definition that we are used to see in many textbooks (e.g.
Khalil (2002); Vidyasagar (1993); Rouche and Mawhin
(1980)):

Definition 4. (Lyapunov stability). The origin is a stable
equilibrium of Equation (1) if, for each pair of numbers
ε > 0 and t0 ≥ 0, there exists δ = δ(t0, ε) > 0 such that

|x(t0)| < δ =⇒ |x(t)| < ε ∀ t ≥ t0 ≥ 0 .

In some texts and articles, starting probably with Hahn
(1967), one also finds the following definition of stability:

Definition 5. (Lyapunov stability). The origin is a stable
equilibrium of Equation (1) if there exists ϕ ∈ K such that

|x(t, t0, x0)| ≤ ϕ(|x0|) ∀ t ≥ t0 ≥ 0 . (2)

In general, the function ϕ depends on t0. We recall, from
Hahn (1967), that ϕ ∈ K if it is “defined, continuous, and
strictly increasing on 0 ≤ r ≤ r1, resp. 0 ≤ r < ∞, and
if it vanishes at r = 0: ϕ(0) = 0”. It is of class K∞ if,
moreover, ϕ(s)→∞ as s→∞.

Whether we adopt Lagrange’s original concept of stability
(Definition 1), Dirichlet’s interpretation (Definition 2), or
its modern form (Definition 3), note that Lagrange stabil-
ity is mathematically different from Lyapunov’s stability
(Definition 4) —the order in which δ and ε are defined
is inverted in the last two definitions. On the other hand,
Hahn (1967) shows that Definitions 4 and 5 are equivalent.

3.1 Conditions for stability

Lyapunov’s memoir contains two now well-known meth-
ods: the first, relying on a linearisation about the equilib-
rium point and the second, based on what Soviet mathe-
maticians would call later, Lyapunov functions; the termi-
nology “second method” and “first method” was chosen by
Lyapunov himself. He also introduced the method of char-
acteristic exponents which was independently proposed by
Poincaré (1890).

[Translated from (Lyapunov, 1947, p. 256)]
15. We shall consider here real functions of the real
variables
(39) x1, x2, . . . , xn, t,
subject to constraints of the form
(40) t ≥ T , |xs| ≤ H (s = 1, 2, . . . , n),
where T and H are constants, which may be assumed
to be, the first, as large as wanted, the second, as small
as wanted (but not zero). [. . . ] Let us suppose that the
considered function V is such that, under the conditions
(40), T being sufficiently large and H sufficiently small,
it can only take values of a single sign.

We shall say then, that it is a function of fixed sign;
and when it will be needed to indicate its sign, we shall
say that it is a positive function or a negative function.

If, moreover, the function V does not depend on t
and if the constant H can be chosen sufficiently small
so that, under the conditions (40), the equality V = 0
cannot occur unless we have

x1 = x2 = · · · xn = 0 ,

we shall call the function V , as if it were a quadratic
function, definite function or, trying to attract attention
on its sign, positive definite or negative definite.

It is in such terms that Lyapunov introduced what we
call nowadays, positive definite and negative definite (Lya-
punov) functions. Except for the fact that Lyapunov de-
fined the properties of his functions, only locally, the
definitions above are equivalent to those found in modern
literature. Then, he states his theorem on stability, which
is clearly inspired by Dirichlet’s proof of Lagrange’s initial
statement.

[Translated from (Lyapunov, 1947, pp. 258-259)]

Everybody knows Lagrange’s theorem on the stability of
the equilibrium in the case when there exists a function
of the forces, as well as the elegant demonstration given
by Lejeune-Dirichlet. The latter relies on considerations
that may serve the demonstration of many other anal-
ogous theorems.

Guided by these considerations we will establish here
the following propositions:
Theorem I.— If the differential equations of the per-
turbed motion are such that it is possible to find a
definite function V , whose derivative V ′ is a function
of fixed sign and opposite to that of V , or it is exactly
zero, the unperturbed motion is stable.

It is worth mentioning that the sign of V is irrelevant, as
long as it is defined and opposite to that of its derivative.
Lyapunov’s proof starts with the sentence: “Let us sup-
pose, to fix the ideas, that the function found V is positive
definite and that its derivative V ′ is negative or identically
zero. Thereby setting a convention used till today.

Equivalent statements to Lyapunov’s original theorem
include (Hahn, 1967, Theorem 25.1, p. 102), (Vidyasagar,
1993, Theorem 1, Section 5.3.1, p. 158), (Rouche et al.,
1977, Theorem 4.2, p. 13), (Rouche and Mawhin, 1980,
Theorem 4.6, p. 12), (Khalil, 1992, Theorem 3.1, p. 101),
(Khalil, 2002, Theorem 4.1, p. 114), to mention a few.

3.2 Asymptotic Stability

Consider again N. Rouche’s example of a satellite put
in orbit and for which it is practically impossible to
repeat exactly the same conditions every time. Lagrange
stability gives account of whether small initial errors in the
satellite configuration, with respect to a point in its desired
orbit, will lead only to small variations. If, however, for
a given error tolerance we wish to determine the initial
errors that one can allow when launching the satellite,
Lyapunov stability theory is more appropriate. Neither of
them, however, tells us whether the generated small errors
vanish asymptotically. For this, Lyapunov introduced the
property of asymptotic stability [sic]:

[Translated from (Lyapunov, 1947, p. 261)]
Remark II. – If the function V , while satisfying the
conditions of the theorem [Theorem I above], allows
an infinitely small upper bound, and if its derivative
represents a definite function, one can show that every
perturbed motion, sufficiently close to the unperturbed
motion, will approach the latter asymptotically.

The terminology “admits an infinitely small upper bound”
was common in Soviet literature at least till the 1950s;
since, at least, Hahn (1963) this quality of certain functions
is referred to as “decrescent”. Notice also that Lyapunov
only says that the derivative of V should be definite;
however, according to “Theorem I” and the way he



introduced his functions, it is clearly understood that he
means definite and of opposite sign to that of V .

The definition of asymptotic stability became more precise
in Soviet literature that succeeded Lyapunov. For instance,
Krasovskii (1963) says, just before presenting the defini-
tions of stability and asymptotic stability, that “some of
the definitions of refined types of stability follow Četaev’s
annotations in (Četaev, 1956, pp. 11-36)”. The definition
provided in Krasovskii (1963) is as follows:

[Cited from (Krasovskii, 1963, p. 3)]

Definition 1.2. The null solution x = 0 of the system
(1.3)

[
dxi
dt

= Xi(x1, · · · , xn, t) (i = 1, · · · , n) (1.3)]

is called asymptotically stable and the region Gδ of x-
space is said to lie in the region of attraction of the
point x = 0 (at t = t0), provided that the conditions
of definition 1.1 [here, Definition 4] are satisfied, and
provided further that

lim
t→∞

x(x0, t0, t) = 0 ,

x(x0, t0, t) ∈ Γ, t ≥ t0 ,
for all values of the initial point x0 that lie in Gδ. Here
Γ is some sub-region of G which is given in advance,
and with which the physical problem is intrinsically
concerned.

Remark 2. In (Krasovskii, 1963) G is a region of the state
space in which Xi are continuous, not to be confused with
the set of initial states Gδ. Indeed, Gδ ⊂ Γ ⊂ G.

The property that |x0| ≤ δ implies that

lim
t→∞

x(t, t0, x0) = 0

was sometimes called (see, e.g., Hahn (1963), Antosiewicz
(1958)) quasi-asymptotic stability and it was replaced with
the more precise statement that |x0| < δ implies that for
each η > 0 there exists T (η) > 0 such that 9

|x(t, t0, x0)| < η ∀t > t0 + T .

In general, as W. Hahn remarks, the number T depends
on x0 and on t0.

This brings us to the following well-adopted definition
of asymptotic stability: the equilibrium is asymptotically
stable if it is stable and attractive —cf. (Vidyasagar,
1993, Definition 31, p. 141), (Rouche and Mawhin, 1980,
Definition 2.11, p. 6), (Khalil, 2002, Definition 4.1, p. 112).
More precisely, we say:

Definition 6. (Asymptotic stability). We say that the ori-
gin of (1) is asymptotically stable if it is stable in the sense
of Definition 4 and there exists δ > 0 and, for each η > 0
and t0 ≥ 0, ∃T (η, t0) > 0, such that

|x0| < δ =⇒ |x(t, t0, x0)| < η ∀t > t0 + T. (3)

4. THE SET OF INITIAL CONDITIONS

[Cited from (La Salle, 1960, p. 521))]
it is never completely satisfactory to know that the
system is asymptotically stable without some idea of the
size of the region of asymptotic stability [. . . ] Ideally, we
might like to have that the system return to equilibrium
regardless of the size of the [initial] perturbation.

9 Hahn (1967) uses p(t, t0, x0) to denote the solutions; we use the
more common notation x(t, t0, x0).

The same interest, to give conditions for asymptotic sta-
bility under “large” initial perturbations (i.e. initial con-
ditions) was present in (earlier) Soviet literature.

According to (Hahn, 1967, p. 109), [sic]

If the domain of attraction is all of Rn we speak of
asymptotic stability in the whole, (cf. sec 2) or also of
global asymptotic stability [. . . ]

La Salle (1960) speaks of complete asymptotic stability. In
most of modern literature, as e.g. in the texts Vidyasagar
(1993); Slotine and Li (1987); Khalil (2002), we use the
qualifier “global” in global asymptotic stability, to refer
to the case when asymptotic stability holds for all initial
states in the Euclidean space Rn. Hence, we have the
following.

Definition 7. (Global asymptotic stability). We say that
the origin of (1) is globally asymptotically stable if it is
stable in the sense of Definition 4 and globally attractive,
i.e. for each δ > 0, η > 0 and t0 ≥ 0 there exist
T (η, t0) > 0, such that (3) holds.

When the set of initial conditions for which the prop-
erty of asymptotic stability holds is not an arbitrarily
small neighbourhood of the origin but it is not, either,
the Euclidean space, we speak of asymptotic stability in
the large (Barbashin and Krasovskĭı, 1952). It must be
stressed, however, that this terminology is mistakenly used
to speak of global asymptotic stability, which is synonym of
asymptotic stability in the whole. Indeed, from early liter-
ature to modern texts in English, there exists considerable
confusion regarding the qualifiers “in the whole” and “in
the large”; in Russian “v tselom” (ipa: [v “ts"Eljom] ) and
“v bolshom” (ipa: [v b5lj"ùom] ) respectively.

The notions of asymptotic stability in the whole (global)
and asymptotic stability in the large are not synonyms
and clarifying the difference is beyond pedantic semantics’s
interest; mathematically, both properties are different. As
N. N. Krasovskĭı puts it: 10

(Translated from (Krasovskĭı, 1954, p. 149)) When ad-
dressing questions of stability in the large[1] the interest
[resides on] the estimate of the domain of stability (in
the case when there is no stability in the whole).

Hahn (1963) explains us the difference between asymptotic
stability in the large and asymptotic stability in the whole
and warns us against the mistaken translations:

[Cited from (Hahn, 1963, p. 8)] If relation (2.10) [Expres-
sion (3) In Def. 6] is valid for all points x0 from which
motions originate, we shall say that the equilibrium
is asymptotically stable in the large (Aizerman (1952),
Krasovskĭı (1954)). If relation (2.10) holds for all points
of the phase space, the equilibrium is said to be asymp-
totically stable in the whole (Barbashin and Krasovskĭı
(1952, 1954)). La Salle (1960) proposed “complete sta-
bility.” The distinction between asymptotic stability in
the large and asymptotic stability in the whole has
often been obliterated by inaccurate translations of the
Russian terminology. However, it becomes important in
cases where Eq (2.7) [ẋ = f(t, x)] is not defined for all
points of the phase space.

10The upper index [1] in the citation corresponds to the book
Aizerman (1952), which we have not been able to locate.
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Fig. 1. Example from Barbashin and Krasovskĭı (1952) illus-
trating stability in the large. The figure is repeated from
the latter reference.

One cannot overestimate the last two sentences of the
latter passage. The first warns us against the wrong
translation of the term “v tselom”:

[Cited from (La Salle, 1960, p. 524)]

For many systems it may be important to assure that
no matter how large the perturbation, or in a feedback
control system, regardless of the size of the error, the
system tends to return to its equilibrium state. This is
asymptotic stability in the large.

In writing this sentence, perhaps 11 , La Salle had in mind
the seminal article (Barbashin and Krasovskĭı, 1952) which
set the basis of global asymptotic stability, as we know
it, and whose title is commonly mistranslated in the
literature.

The last sentence in the cited paragraph of Hahn above,
clearly states that asymptotic stability in the large is
significant when the property holds in a region of stability
which is a subset of the phase space. Such is the property
that one should speak about when dealing with systems
on manifolds, such as the rigid body in quaternion co-
ordinates. From a more academic viewpoint, Barbashin
and Krasovskĭı (1952) propose to study the system of
differential equations

ẋ = − 2x

(1 + x2)2
+ 2y , ẏ = − 2y

(1 + x2)2
− 2x

(1 + x2)2

using the Lyapunov function

v(x, y) = y2 +
x2

1 + x2
(4)

The authors show that there exists an open domain in
the phase space from which all solutions converge to the
origin and the latter is Lyapunov stable. Indeed, they
show, by solving the system’s differential equations, that
trajectories starting above the curve (γ) and to the right
of the straight line x = 1 in Figure 1, diverge while
trajectories generated by initial conditions below the curve
(γ) converge to zero. A conservative, but typical, estimate
of the domain of attraction, is any compact containing the
origin.

11The article is not cited by La Salle.

In spite of its obvious utility, we have not been able
to locate in non-Russian literature a precise definition
of asymptotic stability in the large. What is more, this
concept seems to have been forgotten and the reference
to Hahn’s clear texts are scarce. Section “Stability in the
large, in the whole” in Furasov (1977) is a rare piece of
text dealing with both concepts in certain rigour:

[Translated from (Furasov, 1977, p. 29)]

Definition 6.1. Let ∆0 be a given positive number. The
unperturbed motion Σ is called asymptotically stable
in the large, if this motion is Lyapunov stable and
condition (2.5) [ x(x0, t) → 0 as t → ∞ ] is satisfied
for any initial perturbations x0 from the region

|x0| ≤ ∆0 .

Asymptotic stability in the large is also abundantly and
clearly discussed in Krasovskii (1963), but in the realm of
non-autonomous systems.

For asymptotic stability in the whole we recall the original
definition as given in the milestone paper (Barbashin and
Krasovskĭı, 1952):

[Translated from Barbashin and Krasovskĭı (1952)]

We say, that the trivial solution xi = 0 of systems (1)

[
dxi
dt

= Xi(x1, x2, . . . , xn), i = 1, 2 , . . . , n, (1) ]

is asymptotically stable for any initial perturbations if
it is stable in the sense of Lyapunov (for sufficiently
small perturbations) and if each other solution xi(t)
of systems (1) posses the property lim

t→∞
xi(t) = 0,

i = 1, 2, . . . , n.

That is, recalling that the “initial perturbations” corre-
spond to the initial states away from zero, we see that E. A.
Barbashin and N. N. Krasovskĭı defined stability with
respect to arbitrary initial conditions as local stability plus
attractivity of the origin for all other solutions, i.e., for all
initial conditions. Even though the authors do not use, in
the definition itself, the terminology asymptotic stability in
the whole the previous definition can be adopted as such.

For the sake of comparison with the definition given by
Furasov, for asymptotic stability in the large (Definition
6.1 above), we recall the following:

[Translated from (Furasov, 1977, p. 30))]

Definition 6.2. The unperturbed motion Σ is called
asymptotically stable in the whole if this motion is stable
[in the sense of] Lyapunov and the condition (2.5)
[ x(x0, t) → 0 as t → ∞ ] is satisfied for any initial
perturbations x0 no matter how large they would be.

5. CONDITIONS FOR ASYMPTOTIC STABILITY

Interestingly, the lack of clarity regarding the terminology
has not impeded, however, to make statements on the
sufficient conditions for asymptotic stability in the large,
albeit not explicitly:

[Paraphrased from (La Salle and Lefschetz, 1961, pp.
58-59, Theorems VI and VII)]

Theorem. Let V (x) be a scalar function with continu-
ous first partial derivatives. Let Ωl designate the region
where V (x) < l. Assume Ωl is bounded and that within
Ωl:



V (x) > 0 for x 6= 0, (a)

V̇ (x) < 0 for all x 6= 0 in Ωl (b)∗

then, the the origin is asymptotically stable, and above
all, every solution in Ωl tends to the origin as t → ∞
(The last conclusion goes beyond Lyapunov’s asymp-
totic stability theorem).

The comment in parenthesis is significant: the authors
emphasize that (La Salle and Lefschetz, 1961, Theorem
VII) establishes asymptotic stability in a much larger
region than “a neighbourhood” of the origin as originally
stated by Lyapunov. Therefore, this theorem comes to
determine what La Salle called “the extent of asymptotic
stability” in (La Salle, 1960; La Salle and Lefschetz, 1961).

The sufficient (and necessary) conditions for asymptotic
stability in the whole, for autonomous systems ẋ = f(x),
are well known: see, e.g., (Hahn, 1967, Theorem 26.3),
(Hahn, 1963, Theorem 4.3), (Khalil, 2002, Theorem 4.2).
As pointed out in these references, the original statement,
as well as its converse, were firstly presented in Barbashin
and Krasovskĭı (1952). The following excerpt is translated
from p. 454:

Theorem 1. If there exists a positively definite, infinitely
large function v(x1, x2, . . . , xn) which has definitely neg-
ative derivative then [the] trivial solution of [the] system
(1) is asymptotically stable for any initial perturbations.

Here, “for any initial perturbations” means “for any initial
states in Rn. Furthermore, in the notation of Barbashin
and Krasovskĭı (1952) “system (1)” corresponds to the
equation

dxi
dt

= Xi(x1, x2, . . . , xn), i = 1, 2, . . . , n .

where the functions Xi are assumed to be continuously dif-
ferentiable. Then, after Barbashin and Krasovskĭı (1952)
[sic],

[. . . ] a function v(x1, x2, . . . , xn) is called infinitely large
if for any positive number A one can determine a
constant N so large that for

n∑
i=1

x2i > N

we have that v(x1, x2, . . . , xn) > A.

The following (equivalent) result appeared later in (La
Salle and Lefschetz, 1961); see also (La Salle, 1960, The-
orem 5), without any credit to Barbashin and Krasovskĭı
(1952) 12 :

[Cited from (La Salle and Lefschetz, 1961, p. 67)]

IX. Theorem. Let V (x) be a scalar function with
continuous first partial derivatives for all x. Suppose
that: (i) V (x) > 0 for x 6= 0; (ii) V̇ (x) < 0 for x 6= 0;
and (iii) V (x) → ∞ as |x| → ∞. Then the system
[ ẋ = X(x), X(0) = 0 ] is completely stable.

The property that V (x) → ∞, which Barbashin and
Krasovskĭı referred to as being “infinitely large”, is bet-
ter known as properness or radial unboundedness —cf.
(Khalil, 2002, p. 123). Furthermore, in the latter the au-
thor discusses the importance of this property in order to
conclude global results and reconsiders the Lyapunov func-

12The striking similarity in the notation used in these references can
hardly be overlooked . . .

tion (4), proposed by Barbashin and Krasovskĭı (1952),
whose level sets are illustrated in Figure 1.

Another fundamental contribution made by Barbashin and
Krasovskĭı (1952) is “La Salle’s” stability theorem.

5.1 On “La Salle’s” theorem

The conditions of (Barbashin and Krasovskĭı, 1952, Theo-
rem 1), for global asymptotic stability, are hard to meet in
a number of particular applications. Specifically, finding a
Lyapunov function with a negative definite derivative is in
general a rather difficult task. La Salle (1960) published
a few theorems for asymptotic stability for the case when
one does not know a Lyapunov function with a negative
definite derivative. The following statement, on attractiv-
ity of an invariant set, appears in La Salle (1960) —see also
(La Salle and Lefschetz, 1961, p. 8), (Rouche and Mawhin,
1980, p. 51):

[Cited from (La Salle, 1960, Theorem 3)] Let V (x) be
a scalar function with continuous first partials for all x.
Assume that

1) V (x) > 0 for all x 6= 0

2) V̇ (x) ≤ 0 for all x.

Let E be the set of all points where V̇ (x) = 0, and
let M be the largest invariant set contained in E. Then
every solution of (2) [ ẋ = X(x) ] bounded for t ≥ 0
approaches M as t→∞.

Let us consider the particular case thatM = {0}. Then, al-
though the previous statement guarantees the attractivity
of the origin, it is direct to conclude asymptotic stability.
Lyapunov stability follows (according to (Lyapunov, 1947,

Theorem I) ) in view of the condition V̇ (x) ≤ 0. If, in
addition, we impose that V is radially unbounded, accord-
ing to Barbashin and Krasovskĭı (1952), the property is
global. This was established in (Barbashin and Krasovskĭı,
1952)[sic]:

Theorem 4. Let there exist an infinitely large definitely
positive function v(x1, x2, . . . , xn) and a setM such that

dv

dt
< 0 not in M ;

dv

dt
≤ 0 in M .

Let the set M have the property that on any inter-
section of the set v = c (c 6= 0) and M there does
not exist positive semi-trajectories of [the] system. We
state, that the trivial solution xi = 0 of system (1)
[ dxi

dt = Xi(x1, x2, . . . , xn), i = 1, 2 , . . . , n ] is
asymptotically stable for any initial perturbations.

v
=
c ∗

x∗
2•

−x∗
2

•

x2

x1

Fig. 2. Illustration of (Barbashin and Krasovskĭı, 1952, Theo-
rem 4)



For the sake of illustration let us consider a second-order
autonomous system. Assume that there exists a positive
definite, radially unbounded (infinitely large) function
v(x1, x2) some of whose level curves are showed in Figure
2. Furthermore, assume that there exists a continuous
function x1 7→ w such that w(0) = 0, w(x1) < 0 for all
x1 6= 0 and

dv

dt
=

∂v

∂x1
X1(x1, x2) +

∂v

∂x2
X2(x1, x2) = −w(x1) .

To apply (Barbashin and Krasovskĭı, 1952, Theorem 4)
recalled above, we see that the set {x1 = 0, x2 ∈ R}, i.e.
the vertical axis of the phase space representation, and
any subset of it qualifies as the set M . The intersections
of v = c (naturally for a small number of cs) with the
vertical axis is represented in Figure 2. According to the
theorem we must verify that on any intersection of {v = c}
and M the only set that contains continuous positive semi-
trajectories (i.e. functions t 7→ x with t ≥ 0) is the origin.
Therefore, the only reasonable choice of the set M as
defined in Theorem 4 is {x1 = 0, x2 ∈ R} or equivalently,
{v̇ = 0}. This means that global asymptotic stability
follows if {x2 = 0} is the only solution of ẋ2 = X2(0, x2).

Extensions of (Barbashin and Krasovskĭı, 1952, Theorem
4) to the case of non-autonomous periodic systems have
also been published. The first is probably also due to
Krasovskĭı —see, e.g. (Krasovskii, 1963, Theorem 14.1).

6. UNIFORMITY

So far we have discussed the “well-known” concepts of
stability, asymptotic stability and non-local versions of
the latter, without making any distinction between au-
tonomous and non-autonomous systems, ẋ = f(t, x). For
the latter, however, it is crucial to understand whether the
properties of stability and convergence hold uniformly in
the initial times t0.

According to a number of authors, the first to study this
fundamental property was Persidskĭı, in the early 1930s.
Antosiewicz (1958) attributes it to Persidskĭı (1946) while
Rouche et al. (1977) attribute the definitions of uniform
stability to Persidskĭı (1933):

[Translated from (Persidskĭı, 1946)]

Consider the differential equations

dxs
dt

= Ws(x1, · · · , xn, t) (s = 1, · · · , n) (1)

[. . . ] If for any given numbers ε > 0 and t0 ≥ 0 there
exists a number r > 0, such that any solution

x1 = f1(t), . . . , xn = fn(t)

of system (1) satisfying inequality

|f1(t0)|2 + . . .+ |fn(t0)|2 < r2 ,

will, for all finite values t ≥ t0, satisfy inequality

|f1(t)|2 + . . .+ |fn(t)|2 < ε2 ,

we will say that solution x1, . . . , xn of system (1) is
stable; [. . . ] in the case when for all values t0 ≥ 0
there exists a number r which is independent of t0 we
will say that stability is uniform [2].

The reference “[2]” that Persidskĭı cites above is Persidskĭı
(1933). As for much of Lyapunov theory, Hahn greatly

contributed by unifying the notation with contrasting
rigour 13 :

[Cited from (Hahn, 1963, p. 62)]

Theorem 17.1: The equilibrium of differential equa-
tion (2.7) [ ẋ = f(x, t), f(0, t) = 0, f ∈ E ] is
uniformly stable if and only if there exists a function
ρ(r) with the following properties:

(a) ρ(r) is defined, continuous, and monotonically
increasing in an interval 0 ≤ r ≤ r1;

(b) ρ(0) = 0; the function ρ, therefore, belongs to
the class K;

(c) the inequality

|p(t, x0, t0)| ≤ ρ(|x0|)
is valid for |x0| < r1.

In Hahn’s characterization of uniform stability the func-
tion ρ is independent of the initial conditions, specifically,
it is independent of t0. Then, the author attributes the
following result to Persidskĭı (1937):

[Cited from Hahn (1963)]

Theorem 17.6 If there exists a positive definite decres-
cent Lyapunov function v such that its total derivative v̇
for (2.7) is negative semi-definite, then the equilibrium
is stable.

Many authors attribute uniform stability to Persidskĭı,
who also provided a converse result (Persidskĭı, 1937).
Although no formal statement is given in this reference,
sufficiency is also attributed to it by Rouche et al. (1977);
Antosiewicz (1958) cites Persidskĭı (1946). In other texts,
following Hahn’s book, uniform stability is defined as
follows —cf. (Vidyasagar, 1993, p. 137), (Rouche et al.,
1977, p. 7), (Antosiewicz, 1958, p. 143), (Khalil, 2002,
Definition 4.4., p. 149):

Definition 8. (Uniform stability). The origin of the sys-
tem (1) is said to be uniformly stable if for each ε > 0
there exists δ(ε) > 0 such that

|x0| ≤ δ =⇒ |x(t, t0, x0)| ≤ ε
for all t ≥ t0 and all t0 ≥ 0 .

6.1 Uniform Global Stability

For non-autonomous systems it is important to distinguish
whether uniform stability holds locally or in a given region.
Specially, if we are interested in that it hold in the whole
Euclidean space:

[Cited from (Hahn, 1963, p. 62)]

Definition 17.2: The equilibrium of (2.7) is said to
be uniformly stable in the whole if the assumption of
Theorem 17.1 are satisfied for every arbitrarily large r1.

It is shown by Hahn that uniform stability in the whole
is equivalent to the existence of a class K∞ function ϕ,
independent of t0, such that (2) holds. In fact, uniform
stability in the whole, also known as uniform global stabil-
ity, comprises two essential and independent properties:

• (local) uniform stability.
• uniform global boundedness (uniform global La-

grange stability)

13We remind the reader that in Hahn’s notation p(t, x0, t0) corre-
sponds to the solution of the differential equation ẋ = f(x, t) and
f ∈ E if f is such that the solutions of ẋ = f(x, t) are unique and
continuous in the initial conditions.



The first is a local property while the second implies that
the overshoot of the norm of the solutions has an upper-
limit independent of the initial time, t0.

Even though the concept of uniform global stability has
been used implicitly at least, from the 1950s by Soviet and
Western authors, an explicit definition remains absent in
recent English texts, such as: Vidyasagar (1993); Khalil
(1992, 1996, 2002); Rouche et al. (1977); Rouche and
Mawhin (1980). It appears, however, in (Krstić et al., 1995,
p. 490) [sic]:

Definition A.4 The equilibrium point x = 0 of (A.1)
[ ẋ = f(x, t) ] is
•• uniformly stable, if there exists a class K function
γ(·) and a positive constant c independent of t0,
such that

|x(t)| ≤ γ(|x(t0)|) ,∀ t ≥ t0 , ∀ x(t0) | |x(t0)| < c; (A.3)

• globally uniformly stable, if (A.3) is satisfied with
γ ∈ K∞ for any initial state x(t0);

Relative to Definition 8, uniform global stability is tanta-
mount to the property that ε 7→ δ is globally invertible
and independent of t0.

6.2 Uniform Asymptotic Stability

Similarly to asymptotic stability, which consists in the
dichotomy of the two properties: stability and attractivity,
in plain words, we say that the origin is uniformly asymp-
totically stable if it is both uniformly stable and uniformly
attractive. Uniformity is to be understood with respect to
the initial states and initial times and for both properties.
The many other combinations (e.g. uniform stability plus
(non-uniform) attractivity, etc.) have also received some
attention in the literature, Antosiewicz (1958) collects nine
different definitions.

Uniform asymptotic stability appears in different articles
by I. G. Malkin between 1940 and 1955 in the context
of stability with respect to constantly-acting disturbances,
also known today as total stability or local input-to-state
stability. It is also widely discussed in (Krasovskii, 1963),
which appeared in English well after the author had
introduced these concepts in Soviet literature:

[Cited from Hahn (1963)]

Definition 17.4 (Malkin [20]): The equilibrium of
(2.7) is called uniformly asymptotically stable if
(1) the equilibrium is uniformly stable
(2) for every ε > 0 a number τ = τ(ε) depending

only on ε, but not on the initial instant t0 can be
determined such that the inequality

|p(t, x0, t0)| < ε (t > t0 + τ)

holds, provided x0 belongs to a spherical domain
<η whose radius η is independent of ε.

Interestingly, Hahn attributes this definition to the paper
Malkin (1954) on stability with respect to constantly-
acting perturbations; however, no precise formulation of
uniform asymptotic stability is given in Malkin (1954).
The second property in (Hahn, 1963, Definition 17.4) is
often referred to as uniform attractivity 14 —cf. (Rouche
et al., 1977, p. 8), of which the following interesting
characterisation is probably due to Hahn:
14Hahn uses the terminology uniformly attracting as a qualifier for
the equilibrium.

[Cited from (Hahn, 1963, p. 64)]

Theorem 17.3: Necessary and sufficient for the second
condition of Definition 17.4 is the existence of a function
σ(r) with the following properties:
(a) σ(r) is defined, continuous, and monotonically de-

creasing, for all r ≥ 0,
(b) lim

r→∞
σ(r) = 0,

(c) provided the initial points belong to a fixed spheri-
cal domain <η, the relation

|p(t, x0, t0)| ≤ σ(t− t0) (17.6)

holds.

Further, the following characterization of uniform asymp-
totic stability is also established by Hahn:

[Cited from (Hahn, 1963, p. 64)]

Theorem 17.4: Necessary and sufficient for uniform
asymptotic stability of the equilibrium is the existence
of two functions κ(r) and ϑ(r) with the following
properties:
(a) κ(r) satisfies assumptions (a) and (b) of Theorem

17.1,
(b) ϑ(r) satisfies the corresponding assumptions of

Theorem 17.3;
(c) in addition, the inequality

|p(t, x0, t0)| ≤ κ(|x0|)σ(t−t0) (17.7)

holds, provided that the initial points x0 belong to
a fixed spherical domain <η.

The following statement, which Krasovskii (1963) at-
tributes to Barbashin and Krasovskĭı (1952), Barbashin
and Krasovskĭı (1954), gives sufficient conditions for the
general notion of uniform asymptotic stability in the large.
If the region of stability is reduced to a neighbourhood of
the origin, we recover uniform asymptotic stability; if the
domain of attraction corresponds to all of the Euclidean
space, we obtain the notion of uniform asymptotic stability
in the whole (Barbashin and Krasovskĭı, 1954).

[Cited from (Krasovskii, 1963, 30)]

Definition 5.3. The null solution x = 0 is called
uniformly asymptotically stable in the large in the
region G if for arbitrary preassigned positive η > 0
and arbitrary H0, H̄0 ⊂ G, there are always a number
T (H0, η) and a bounded region H1, H̄1 ⊂ G such that
the relations

x(x0, t0, t) ∈ H1 for all t ≥ t0,
||x(x0, t0, t)||2 < η for all t ≥ t0 + T (H0, η) ,

hold for every initial moment of time t0 and for every
given value of x0 ∈ H0.

A sufficient condition for asymptotic stability in the
large is the following.

Theorem 5.2. The null solution x = 0 of equations
(1.3) [ cf. p. 6 ] is asymptotically stable in the large
in the region G if there exists a function v(x, t) such
that
(i) v(x, t) is positive definite in G
(ii) v(x, t) admits an infinitely small upper bound in G;

(iii) v(x, t) admits an infinitely great lower bound on the
boundary of G [v(x, t) is radially unbounded in G];

(iv) The derivative dv/dt along a trajectory of (1.3) is
negative-definite in G.



According to Krasovskii (1963) [sic] “The theorem is
incorrect without the assumption (iii); a counter-example
appears in [16]”. For the sake of clarity, it seems important
to stress, however, that “[16]” here refers to Barbashin and
Krasovskĭı (1952) which deals with asymptotic stability
in the whole of autonomous systems (i.e., uniformity
is obtained for free) and therefore, the counter-example
refers to the case when v(x, t) is not radially unbounded on
Rn; in this case, one is led to conclude asymptotic stability
in the large and not asymptotic stability in the whole. As
we pointed out above, for the sake of argument, Barbashin
and Krasovskĭı (1952) use the counterexample illustrated
by Figure 1, which is also discussed in all three editions of
Khalil (1992, 1996, 2002).

This brings us back to the discussion on the distinction
between asymptotic stability in the large and in the whole.
The importance of this difference cannot be overestimated.
Uniform asymptotic stability in the whole is the strongest
stability property one may have for the equilibrium of non-
autonomous differential equations (1). It was originally
introduced in Barbashin and Krasovskĭı (1954) [sic]:

[Translated from (Barbashin and Krasovskĭı, 1954, p.
346)]: We call the solution x1 = . . . = xn = 0 of system
(1)

[
dxi
dt

= Xi(x1, · · · , xn, t) (i = 1, · · · , n) (1) ]

uniformly stable in the whole, if for any numbers R1 > 0
andR2 > 0 one can find a number T (R1, R2), depending
continuously only on R1 and R2, such that, any solution
xi(x10, . . . , xn0, τ0, t) (i = 1, . . . , n) with initial values
for t = τ0 ≥ t0 laying in the region

x210 + · · ·+ x2n0 ≤ R2
1 ,

satisfies inequality

x21 + · · ·+ x2n < R2
2 for τ0 + T (R1, R2)

and at same time for any number R1 > 0 there exists
a number R2 = F (R1), depending continuously only on
R1, such that any trajectory starting from the interior
of a sphere of radius R1 does not escape from a sphere
of radius R2 as time passes.

Note that the definition has two parts, one which describes
the property of uniform global attractivity and another
which describes uniform global boundedness. Indeed, even
if it is not made explicit in the paper that the function F
is radially unbounded, this may be tacitly understood. In
other words,

∀ δ > 0, ∃ ε > 0 : |x(t, t0, x0)| ≤ ε
and, moreover, the function ε 7→ δ is a globally bijective
map. Only in this case, the function κ in (Hahn, 1967,
Ineq. (17.7)) above is of class K∞. This property is ensured
by item (iii) in (Krasovskii, 1963, Theorem 5.2) without
which, as the author warns us, would be incorrect.

It may also be noted that the definition of Barbashin and
Krasovskĭı (1954) does not explicitly mention the prop-
erty of uniform Lyapunov stability but this is apparent
from the context in that reference. The interpretation by
Hahn (1963) of the definition of Barbashin and Krasovskĭı
(1954), makes it clearer [sic]:

Definition 17.5 (Barbašin and Krasovskii [2]): The
equilibrium of the differential equation (2.7) is said to

be uniformly asymptotically stable in the whole, if the
following two definitions are satisfied:
(a) The equilibrium is uniformly stable in the whole;
(b) for any two numbers δ1 > 0 and δ2 > 0 there exists

a number τ(δ1, δ2) such that

|p(t, x0, t0)| < δ2
if t ≥ t0 + τ(δ1, δ2) and x0 < δ2.

Item (a) unequivocally comprises the two properties of
uniform stability and uniform global boundedness. Yet, for
many years uniform global asymptotic stability has been
defined as the combination of (only) the two properties 15 :
uniform stability and uniform global attractivity that
is, the property (b) in (Hahn, 1963, Definition 17.5).
For non-autonomous systems, however, such definition is
incomplete because there is no guarantee that during the
transient (for all t ∈ [t0, t0 + τ ]), the solution’s norm |p(t)|
does not grow to a limit that increases with t0. In other
words, only in the case that ρ(·) in (Hahn, 1963, Theorem
17.1) is of class K∞, the converse of (Krasovskii, 1963,
Theorem 5.2) is valid for the global case (for all x0 ∈ Rn.
Teel and Zaccarian (2006) warns us against this repeated
mistake in the literature, rectified e.g., in (Khalil, 2002,
p. 150), where a definition equivalent to the following is
given.

Definition 9. The origin of the system (1) is uniformly
globally asymptotically stable if there exists ϕ ∈ K∞
(independent of t0) such that |x(t, t0, x0)| ≤ ϕ(|x0|) for
all t ≥ t0 and, for any pair r > 0 and σ > 0, there exists
T (σ, r) > 0 such that, for all t0 ≥ 0,

|x0| ≤ r =⇒ |x(t, t0, x0)| ≤ σ ∀ t ≥ t0 + T .

7. CONCLUSIONS

Lyapunov stability theory is one of the undisputed pil-
lars of control theory, as we know it today. However,
it is inevitable that the milestone concepts developped
through more than a century are miss-translated and miss-
transcripted from text to text. One shall not keep rigour,
however, to the authors who, in their bona fide pedagogical
endeavor, transmitted these concepts to succeeding gener-
ations. This being said, let us recall the reader that:

“Des lecteurs attentifs, qui se communiquent leurs
pensées, vont toujours plus loin que l’auteur”

—Voltaire, “Traité sur la tolérence” 1763.

REFERENCES16

*Aizerman, M.A. (1952). Teori� avtomatiqeskogo
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uravneniĭ. Prikl. Mat. i Mekh., 18, 149–154. English
title: On the behaviour in the large of integral curves of
a system of two differential eqations. Better translation:
On the behaviour in the whole . . . .

Krasovskii, N.N. (1963). Problems of the theory of stability
of motion. Stanford Univ. Press. Translation of Russian
edition, Moscow 1959.
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chapter in Méchanique Analytique de J.-L. Lagrange –
Note II., p. 457 du Tome Premier. Gauthier-Villars et
fils. (In French).
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einen satz von Liapounoff.
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