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Abstract: In the area of traction and brake control, measurements of the rotational velocity of
the wheels are often affected by large periodic disturbances that arise from sensor imperfections
and degrade the performance of any closed-loop control algorithm. The aim of our paper is
to address this problem. First, we present a detailed analysis of the most common sensor
imperfections and their effect on their measured velocity. Then, we propose an estimation
scheme that greatly reduces the periodic disturbances in order to provide a better estimate
of the velocity, and we validate it via numerical simulations and experiments.

Keywords: Velocity measurements, encoders, measurement noise, estimation algorithms,
least-squares method, parameter estimation, adaptive algorithms.

1. INTRODUCTION

In the area of traction and brake control, several active
vehicle dynamics control systems rely on the measurement
of the rotational velocity of the wheels as the basic building
block [Panzani et al., 2012]. The most commonly used
technology is based on incremental shaft encoders, which
consist mainly in a rotating disc with slits (or teeth)
distributed along a circular track, and a fixed pick-off
sensor that detects the passing of the slits and outputs
a voltage pulse per slit [De Silva, 2015, § 6.2]. The velocity
is not directly measured, but estimated from the output
voltage pulses.

The velocity estimation problem is usually addressed from
two different perspectives: either model-based or signal-
based approaches. Model-based approaches have been
shown to be suited for applications for which fairly simple
and accurate models exist. In the automotive field, how-
ever, accurate wheel models are rare, since the dynamics is
affected by the highly nonlinear and uncertain tyre–road
friction characteristic. For this reason, signal-based ap-
proaches are considered to be more suited for automotive
applications [Savaresi and Tanelli, 2010, appx. B].

Within this approach, several algorithms have been pro-
posed to estimate velocity and/or acceleration from en-
coder measurements (see, e.g., Brown et al. [1992]; Be-
langer [1992]; Benkhoris and Ait-Ahmed [1996]; Ovaska
and Valiviita [1998]; Janabi-Sharifi et al. [2000]; Phillips
and Branicky [2003]; Bascetta et al. [2009]; Boggarpu and
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Kavanagh [2010]; Merry et al. [2010]; Ronsse et al. [2013]
and references therein), each with its own advantages or
disadvantages with respect to others. Nevertheless, since
they rely on the output of a real sensor subject to man-
ufacturing and assembly tolerances, the aforementioned
algorithms are inevitably affected by large periodic per-
turbations that arise from encoder imperfections.

From the control perspective, any loop closed using the
wheel velocity or acceleration may be affected by these
periodic disturbances if they fall within its bandwidth. As
a simple example, consider a first-order mechanical system
in closed-loop with a proportional controller:

Jω̇ = −ρω + T

T = kp(ωref − ωmeas)

It is clear that if the measured velocity ωmeas contains
large periodic perturbations (noise) which do not exist
in the real velocity ω, the control input T to the system
will be unnecessarily bigger than what would be obtained
in the ideal case. In an ABS system, for example, the
disturbances may trigger the ABS control logic with an
inappropriate timing. It is therefore of great interest to
eliminate these disturbances.

Of course, in an academic context, these disturbances can
be eliminated using error compensation look-up tables,
which are suited solely for a particular encoder and whose
construction requires the availability of a high-resolution
reference sensor (see, e.g., Merry et al. [2013]). But, to the
best of to the authors’ knowledge, only a small number of
works have addressed this question using real-time filters.
The presence of periodic disturbances with a period of one
mechanical revolution was noticed in Corno and Savaresi



[2010], in the context of experimental identification of
engine-to-slip dynamics in a sport motorbike. An offline
acausal (i.e. zero-phase) adaptive notch-filtering scheme
was used to remove the first harmonic component of the
velocity of the wheels. The causes of the disturbances were
later identified in Panzani et al. [2012] and the adaptive-
notch filtering scheme was applied in real-time. Similarly,
the phenomenon was noticed in wheel acceleration mea-
surements in Gerard et al. [2012], in the context of ex-
perimental validation of a five-phase ABS algorithm. A
dynamic notch filter was proposed in Hoang et al. [2012], in
order to eliminate the periodic disturbances on the wheel
acceleration, where the effect of this filter on the delay
margin of the system’s feedback loop was analysed.

In this paper, we propose a method to estimate the angular
velocity of the shaft by removing the periodical distur-
bances introduced by sensor imperfections. Rather than
filtering out solely the first harmonic component of the
disturbances (i.e. the component whose frequency is equal
to the velocity of the wheel), as in the aforementioned
references, the aim of our approach is to identify a given
number of harmonic components of the disturbance, and
to use that information to provide a better estimate of the
velocity. Compared to previous works, the main interest of
our method relies on its potential to extend the system’s
delay margin when implemented in a feedback loop. The
effectiveness of the approach has been tested via numer-
ical simulations and experimental tests with satisfactory
performance.

The rest of the paper is organized as follows. In the
next section we present the outline of the signal-based
velocity estimation algorithm employed throughout this
work. In Section 3, the main sources of error in incremental
shaft encoders are discussed, as well as their effect on the
estimated velocity. The proposed approach is presented in
Section 4 along with simulation and experimental results.
Concluding remarks are given in Section 5.

2. TIME-STAMPING ALGORITHM

The time-stamping algorithm [Merry et al., 2010; 2013]
consists in capturing, via a high-resolution clock with
sampling frequency fs, the time instants and positions of a
number of encoder events, i.e. the pulse transitions of the
encoder’s output signal, and performing at the controller’s
sampling rate fc � fs an m-th-order polynomial fit
through the aforementioned events to approximate the
position of the wheel, i.e.

x(t) = pmt
m + pm−1t

m−1 + . . .+ p0.

Let ti and xi denote the time instant and position corre-
sponding to the i-th encoder event, and let k be the index
of the most recent event. The regression problem can be
formulated for the last n events as

AP = B (1)

with A ∈ Rn×(m+1), P ∈ Rm+1, and B ∈ Rn given by

A =

 tmk−n+1 tm−1k−n+1 · · · tk−n+1 1
...

...
...

...
...

tmk tm−1k · · · tk 1


P = [ pm pm−1 · · · p1 p0 ]

>

B = [ xk−n+1 · · · xk ]
>
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Fig. 1. Error in transition location as a function of an-
gular position for a 60 pulses-per-revolution encoder.
Examination of the data yields approximate values of
ε = 0.0157 and e

r = 0.0327 for this particular encoder.

where p0,··· ,m are the polynomial coefficients to be esti-
mated. Given n > m ≥ 2, equation (1) can be solved for
P via the least squares method as

P = (A>A)−1A>B (2)

to obtain the velocity and acceleration estimations via an-
alytic differentiation of the fitted polynomial with respect
to time as

v(t) =
∑m

i=1
ipit

i−1

a(t) =
∑m

i=2
(i− 1)ipit

i−2.

In this work, the order of the polynomial is set to m = 2.
Under this choice, the algorithm presented here is equiva-
lent to the one described in Gerard et al. [2012, appx. 1],
which has been shown to yield a good performance in
automotive applications.

3. INFLUENCE OF ENCODER IMPERFECTIONS

An ideal incremental shaft encoder is characterised by
identical and equidistant slits distributed over the en-
coder’s code-wheel (hence by equally-spaced edge transi-
tions of the output voltage pulses), and quadrature output
channels with 50% duty cycles. In real devices, however,
encoder imperfections (i.e. nonidealities), which occur due
to manufacturing and assembly tolerances, will inevitably
result in inexact readings of displacement and affect the
quality of the velocity and acceleration estimations [De
Silva, 2015, p. 454].

Generated by these imperfections, the most significant
error sources in the encoder output signals are due to:
1) cycle error, i.e. stochastic variations of the edge transi-
tion locations of the output voltage pulses from their nom-
inal values, due to unequal positional spacings of the slits
over the encoder’s code-wheel, as well as limitations and
irregularities of the encoder’s signal generation and sensing
hardware; 2) shaft eccentricity or tilt of the encoder’s code-
wheel due to concentricity and assembly tolerances; and
3) quadrature-decoding (i.e. pulse-width and phase) er-
rors, generated when the duty cycle of the encoder output
signals is not exactly symmetrical, and/or the two output
channels are not exactly in quadrature.
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(a) Experimental results
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(b) Simulation results

Fig. 2. Velocity estimated via the time-stamping algorithm for a 900 rpm constant-velocity reference using: 3 events
(black, offset = 40 rpm), 6 events (red, offset = 20rpm), 12 events (yellow), 20 events (green, offset = −20rpm), 60
events (blue, offset = −40rpm). An offset is added to each signal for the sake of clarity.

According to their nature, these error sources can be clas-
sified as differential and integral nonlinearities [Kavanagh,
2000b; 2001; 2002]. The former, also termed ‘transition
noise’, represent cycle and quadrature-decoding errors and
appear as high-frequency variations when viewed over the
circumference of the encoder’s code-wheel; the latter corre-
spond to eccentricity and shaft misalignment and give rise
to a systematic low-frequency variation of edge transition
locations from their expected values over a mechanical
revolution. In the following sections we describe the effects
of the aforementioned nonlinearities on position measure-
ment and, consequently, on the incremental-encoder-based
velocity estimation.

3.1 Measurement error due to transition noise

Let θnomi denote the ideal edge transition location of the
i-th slit over the encoder’s code-wheel given by

θnomi = (i− 1) 2π
N , i = 1, . . . , N

where N is the number of pulses per revolution of the
encoder. It has been established in Kavanagh [2001] that
the influence of differential nonlinearities on velocity esti-
mation can be accurately modelled by an additive noise
process uniformly distributed over [−ε,+ε], where ε repre-
sents the maximum deviation of the location at which an
edge transition can occur (even for high-quality sensors, ε
is often found to be in the order of 0.002 to 0.05 relative to
a full encoder cycle [Kavanagh, 2000a]). The corresponding
actual transition locations, i.e. the positions at which a
change in the quantized position code occurs, are given by

θacti = θnomi + δi (3)

where δi ∈ [−ε,+ε] is the transition location error of the
i-th slit with respect to its nominal value.

3.2 Measurement error due to eccentricity

The relationship between the real and the measured angu-
lar position is modelled as

θm = θr + arcsin
{e
r

sin(θr + ϕ)
}
, (4)

where θr denotes the real position and θm denotes the
measured position. The eccentricity e is defined as the
distance between the center of rotation of the code disc and
the geometric center of the circular code track, r denotes
the code track radius which, for most practical purposes,
can be taken as the disc radius, and ϕ is an unknown offset
angle referenced to the selected origin.

If e/r � 1, which is reasonable to assume in practical
scenarios, then the small-angle approximation arcsin{ er} ≈
e
r holds, and (4) can be approximated as

θm ≈ θr +
e

r
sin(θr + ϕ). (5)

3.3 Measurement error due to both nonlinearities

The effects of differential and integral nonlinearities on
position measurement are illustrated in Figure 1. The
graphic shows the error in transition location as a function
of angular position for a 60 pulses-per-revolution encoder.
For the i-th encoder slit, each dot represents the position
error corresponding to that slit (expressed in units relative
to a full encoder cycle or, equivalently, an increment in
position equal to 2π

N rad), measured at one of a total of
30 revolutions; likewise, the crosses represent the average
value of the error corresponding to the i-th slit. Both a
low-frequency sinusoidal variation and a high-frequency
stochastic variation of the transition locations can be
observed, thus fitting the postulation of the two distinct
and independent error sources described by (3) and (5).

Regarding the effects of sensor imperfections on velocity
measurement (i.e. estimation via the time-stamping algo-
rithm), these are illustrated in Figure 2(a). The graphic
shows the velocity estimated via the time-stamping al-
gorithm described in Section 2 for an experiment with a
constant velocity reference of 900 rpm using different num-
bers of events. The algorithm was implemented using the
60 pulses-per-revolution encoder characterised in Figure 1
with fs = 5 MHz, fc = 1 kHz for n = 3, 6, 12, 20 and 60
events (an offset is added to each signal for the sake of
clarity of the graphic). A clear periodicity can be observed
in all cases. It can be noted as well that the amount of



high-frequency variations that appear in the estimated
velocity is directly related to the length of the encoder-
event observation window. Not surprisingly, because we
are using a second-order parabola to approximate the
position history, the more angle/time points are used in
the polynomial fit, the less the estimated velocity is prone
to be affected by high-frequency transition location errors.

Remark 1. This filtering effect introduces, however, a de-
lay in the estimated velocity: the more events used in the
polynomial fit, the longer the delay. Therefore, in any real-
time application, the number of events is to be chosen as a
trade-off between getting a smooth signal and introducing
a long delay.

From the arguments given in the two previous subsec-
tions and from the experimental data shown in Figures 1
and 2(a), a natural way to model sensor imperfections
could be

θm = θr + ψ(θr), (6)

where ψ is a 2π-periodic function that captures the en-
coder defects. Since this function is a priori unknown, in
order to estimate it, we consider a simplified model that
includes only the first M terms of the Fourier expansion
of ψ, that is

θm = θr +

{∑M

k=1
[β′k cos(kθr)− α′k sin(kθr)]

}
. (7)

The differentiation of this last expression with respect to
time leads to the following velocity measurement model

ωm = ωr + ωr

{∑M

k=1
[αk cos(kθr) + βk sin(kθr)]

}
, (8)

where the coefficients αk, βk depend on the coefficients
α′k, β

′
k. We will assume that αk, βk � 1, a condition that is

always satisfied if the quality of the encoder is reasonable
and if the sensor has been correctly mounted on its shaft.

In the experiments associated to Figures 1 and 2(a), an
evaluation of the quality of this model as a function of
the considered number of harmonics M seems to indicate
that the fit between data and the model improves until
M = dN/ne, where n is the number of events used in the
fit and d·e is the smallest integer greater than or equal to
the argument. In other words, taking less events reduces
the measurement delay but increases the complexity of the
model parameter estimation problem.

Remark 2. Note that, since αk, βk � 1, the error intro-
duced by sensor imperfections into the measured position
(see Figure 1) can be neglected, as opposed to the mea-
sured velocity (8) where it is proportional to the velocity
ωr and therefore cannot be neglected. Based on this idea,
the approximation θr ≈ θm will be used in the following
sections along with (8) in order to estimate the velocity
ωr from the available signals.

4. FILTERING AND VELOCITY ESTIMATION

In order to estimate the real velocity, we propose to
perform the three-stage scheme illustrated in Figure 3.
Let (8) be rewritten as

ωm = ωr + ωr ζ̄ (9)

from which the measured velocity ωm can be seen as the
sum of a low-frequency term ωr plus a high-frequency
(with respect to the first one) term ωr ζ̄. In the first
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of ��, ��

�� Estimation 

of ��

ζ �	�, �
� ���

STAGE 1

STAGE 2 STAGE 3

�� ��

Fig. 3. Velocity estimation scheme

stage, in order to separate ζ̄ from the other terms in (9),
the measured velocity is filtered using first-order high-
pass and low-pass filters, using a cutoff frequency that
is considerably below that of the wheel revolution (for
example of 1 Hz), and the output of the high-pass filter is
divided by the output of the low-pass filter to obtain ζ.

In the second stage, under the assumption that the output
of the first stage ζ ≈ ζ̄, and taking θr ≈ θm (see Remark 2),
ζ is used to estimate the coefficients αk, βk of the periodic
perturbation in (8). Taking

ζ =
∑M

k=1
[αk cos(kθm) + βk sin(kθm)] (10)

and rewriting (10) in the form of the parametric model

ζ = φ>ϑ

with
ϑ = [ α1 β1 α2 β2 · · · ]

>

φ> = [ cos(θm) sin(θm) cos(2θm) sin(2θm) · · · ]

the coefficients αk, βk can be estimated via any standard
adaptive parameter estimation algorithm, e.g. the gradient
algorithm [Ioannou and Sun, 2012]

˙̂
ϑ = −Γφε (11)

ε = φ>ϑ̂− ζ (12)

with Γ = Γ> > 0 and ϑ̂(0) = ϑ̂0.

In the third stage, using the estimates α̂k, β̂k, and using
again θm ≈ θr, the velocity is estimated as

ω̂r =
ωm

1 +
∑M
k=1

[
α̂k cos(kθm) + β̂k sin(kθm)

] . (13)

The experimental validation of the velocity estimation
scheme of Figure 3 is illustrated in Figures 4–10. All
tests were implemented using the 60 pulses-per-revolution
encoder characterised in Figure 1 with fs = 1 MHz,

fc = 1 kHz, Γ = γI and ϑ̂(0) = 0, where I and 0 denote,
respectively, the identity matrix and the zero vector of
appropriate dimensions. In all cases, a comparison is made
with respect to the results obtained using a notch filter as
proposed in Panzani et al. [2012] and Hoang et al. [2012].
It can be observed that variations in velocity produce also
variations in the noise intensity, which is typically the case
in automotive applications.

Figures 4–7 show the results obtained for different
constant-velocity references. (Note that, because the exe-
cution of the time-stamping algorithm is feasible only after
the first n events have been captured, neither the measured
nor the estimated/filtered velocity signals are available at
the beginning of the experiments.) It can be noticed in all
cases that, although the estimated velocity ω̂r does not
converge to a constant value, it does contain significantly
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Fig. 4. Measured versus filtered and estimated velocity at
300 rpm using 6 events. Adaptive gain γ = 250.
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Fig. 5. Measured versus filtered and estimated velocity at
609 rpm using 8 events. Adaptive gain γ = 350.

smaller oscillations with respect to the velocity ωm ob-
tained directly from the time-stamping algorithm and, to
a smaller extent, the one obtained using a notch filter.

The usefulness of the proposed estimation scheme over a
notch filter is however more evident from Figures 8–10,
which illustrate its performance under non-zero accelera-
tion conditions. The depicted velocity profile corresponds
to a repeating sequence of constant acceleration (resp.
deceleration) steps of 22 rad/s2, equivalent to 6.6 m/s2

assuming a wheel with a 0.3 m radius. Even though both
the notch filter and the estimation scheme show a good
performance in terms of reducing the amplitude of the
oscillations, the filter clearly introduces a significant de-
lay, whereas the estimation scheme follows the reference
with no noticeable delay. The proposed scheme poses an
improvement over the time-stamping algorithm (recall the
trade-off in Remark 1), as well as over the use of a notch
filter: it makes it possible to obtain better estimate of
the velocity, i.e. a smoother signal, without using a large
number of events nor introducing a long delay.

5. CONCLUSION

This paper presented a three-stage velocity estimation
scheme that allows to reduce the effects of sensor imperfec-
tions, i.e. the presence of large periodic disturbances that
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Fig. 6. Measured versus filtered and estimated velocity at
1020 rpm using 10 events. Adaptive gain γ = 450.
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Fig. 7. Measured versus filtered and estimated velocity at
900 rpm using 60 events. Adaptive gain γ = 500.
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Fig. 8. Measured versus filtered and estimated velocity
using 20 events. Adaptive gain γ = 5.

may affect the performance of closed-loop control algo-
rithms. The performance of the proposed scheme has been
tested via numerical simulations and experiments, which
are satisfactory in our opinion and show good agreement
with each other. Future work will focus on the experimen-
tal evaluation of the proposed estimation scheme in ABS
closed-loop control algorithms and the significance of the
disturbance rejection in such scenario.
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Fig. 9. Measured versus filtered and estimated velocity
using 20 events. Adaptive gain γ = 5.
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Fig. 10. Measured versus filtered and estimated velocity
using 20 events. Adaptive gain γ = 5.
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