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A robust δ-persistently exciting controller for formation-agreement stabilization of multiple mobile robots

 for leader-follower agreement control of a group of nonholonomic mobile robots, under the assumption that the virtualleader velocities converge to zero. We assume that each of the vehicles in the formation communicates only with one leader and one, or several followers hence, that is, they form a spanning-tree communication topology rooted at the virtual leader. The control is decentralized and guarantees the convergence of the error coordinate of each agent, relatively to its neighbor. More significantly, our proofs are based on Lyapunov's direct method that is, we provide strict Lyapunov functions to guarantee strong integral input-to-state stability with respect to the reference velocities and, hence, uniform global asymptotic stability of the closed-loop system provided that the reference velocities are integrable.

I. INTRODUCTION

Over the turn of last century there was a considerable bulk of literature on tracking and stabilization of non-holonomic mobile robots. Remarkable examples include the landmark papers [START_REF] Kanayama | A stable traking control scheme for an autonomous vehicle[END_REF] on the tracking-control problem and [START_REF] Samson | Time-varying feedback stabilization of car-like wheeled mobile robots[END_REF] on the more difficult problem of set-point stabilization, via smooth time-varying feedback. Indeed, it is well known that nonholonomic systems cannot be stabilized to a point via static smooth feedback. In [START_REF] Fierro | Control of a nonholonomic mobile robot: backstepping kinematics into dynamics[END_REF] and [START_REF] Jiang | Tracking control of mobile robots: A case study in backstepping[END_REF] a backstepping controller is proposed for the full-model, i.e., including the kinematics and force dynamics; uniformly global asymptotic stability is established for both, the tracking and the setpoint stabilization problems. In [START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF] is presented an adaptive controller for simultaneous stabilization and tracking control.

In [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF] a cascades-based linear time-varying tracking controller was proposed and uniform global asymptotic stability was established under a condition of persistency of excitation on the angular reference velocity. This was, to the best of our knowledge, the first time that persistency of excitation was used in control design for nonholonomic systems. Then, strongly inspired by the seminal paper [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF], the approach was extended to the stabilization problem in [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF], [START_REF] Loría | UGAS of skew-symmetric time-varying systems: application to stabilization of chained form systems[END_REF] where the so-called δ-persistently exciting controllers were proposed. Roughly, these are controllers which use persistency of excitation as stabilization mechanism, but the controller ceases to be persistently exciting as the stabilization errors converge. This control method is also effective, for instance, in the case of tracking control over straight paths [START_REF] Loría | Leader-follower formation control of mobile robots on straight paths[END_REF]. Some of the control approaches to the tracking problem have been extended to the case of formation control for swarms of vehicles. For instance, in [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF] the problem of reaching a certain geometric configuration using a distributed control was addressed; necessary and sufficient graphical conditions were established. In [START_REF] Van Den Broek | Formation control of unicycle mobile robots: a virtual structure approach[END_REF], [START_REF] Consolini | Leaderfollower formation control of nonholonomic mobile robots with input constraints[END_REF], and [START_REF] Guo | Adaptive leader-follower formation control for autonomous mobile robots[END_REF], a virtualstructure and a leader-follower-based approaches were investigated. A comparison between the two methods can be found in [START_REF] Van Den Broek | Formation control of unicycle mobile robots: a virtual structure approach[END_REF]. In [START_REF] Do | Nonlinear formation control of unicycle-type mobile robots[END_REF] the formation-tracking control problem is solved using a combination of the virtual structure and path-tracking approaches to generate the reference for each agent. Then, an output-feedback observer-based controller is designed.

In this paper we solve the distributed leader follower agreement control for a group of mobile robots, when the leader velocities converge to zero. Our control approach is decentralized; we design a local controller for each robot, relying on its own state measurements and the values of a leader robot. Our control laws are smooth time-varying and possess the so-called property of δ-persistency of excitation [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF], [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]. In contrast to most similar results, we establish uniform global asymptotic stability for the closed-loop, via Lyapunov's direct method. To construct our Lyapunov functions we follow the guidelines of [START_REF] Malisoff | Constructions of Strict Lyapunov functions[END_REF], [START_REF] Mazenc | Strict Lyapunov functions for time-varying systems[END_REF], [START_REF] Mazenc | Uniform global asymptotic stability of a class of adaptively controlled nonlinear systems[END_REF]. In addition, we establish strong integral input-to-state stability (strong iISS) -see [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the strong iISS property[END_REF] and the Appendix. The importance of strong iISS is that not only this property guarantees robustness with respect to measurement noise, but it renders the solution to the formation control problem straightforward.

In section II we provide a problem formulation. In Section III we present our main result on leader-follower trackingagreement control. Based on the latter, we present a statement for swarms of vehicles, in Section IV. We provide some illustrative simulation results in Section V, before concluding with some remarks.

II. PROBLEM FORMULATION

Consider the kinematic model of a mobile robot, given by

θ = ω ẋ = v cos θ ẏ = v sin θ,
where v denotes the forward velocity, ω corresponds to the angular velocity, (x, y) denote the Cartesian coordinates, and θ its orientation with respect to a fixed frame. It is assumed that the robot is velocity-controlled that is, v and ω also correspond to the control inputs.

The tracking control problem consists in making the robot follow a reference vehicle

θr = ω r (1a) ẋr = v r cos θ r (1b) ẏr = v r sin θ r . (1c) 
In addition, according to the tracking-agreement control goal, it is assumed that

lim t→∞ |v r (t)| + |ω r (t)| = 0. (2) 
Note that this excludes conditions of persistency of excitation or, even more restrictive, that the the references are always separated from zero -cf. [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF], [START_REF] Canudas De Wit | Nonlinear control design for mobile robots[END_REF], [START_REF] Do | A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots[END_REF].

In other words, from a control viewpoint, the goal is to steer to zero the differences between the Cartesian coordinates of the two robots, as well as orientation angles, that is,

p θ = θ r -θ p x = x r -x -d x p y = y r -y -d y
where d x , d y are design parameters. These are distances to define the position and posture of the robot with respect to the (virtual) leader. In general, these may be functions of time and state or may be assumed constant, depending on the desired path to be followed. For simplicity, here, we consider them constant -cf. [START_REF] Loría | Leader-follower formation control of mobile robots on straight paths[END_REF]. Then, according to the approach in [START_REF] Kanayama | A stable traking control scheme for an autonomous vehicle[END_REF] we transform the error coordinates [p x , p y , p θ ] from the global coordinate frame to local coordinates fixed on the robot, to obtain

  e θ e x e y   =   1 0 0 0 cos θ sin θ 0 -sin θ cos θ     p θ p x p y   (3) 
In the new coordinates, the error dynamics between the virtual reference vehicle and the follower becomes

ėθ = ω r (t) -ω. (4a) ėx = ωe y -v + v r (t) cos(e θ ) (4b) ėy = -ωe x + v r (t) sin(e θ ) (4c) 
Therefore, the follow-the-leader tracking-agreement control problem comes to stabilizing (4) at the origin, under the assumption that (2) holds.

III. LEADER-FOLLOWER AGREEMENT CONTROL

Consider the controller given by

v = K x e x + v r cos e θ (5a) ω = ω r + K θ e θ + K y e 2 y + e 2 x P (t) (5b) 
under the standing assumption that Ṗ is persistently exciting that is, there exist µ > 0 and T > 0 such that

t+T t Ṗ (s)ds ≥ µ ∀t ≥ 0. (6) 
This type of controller is called δ-persistently exciting; roughly speaking, a function φ(t, x) is called δ-persistently exciting (with respect to x) if, for any δ > 0, there exist µ > 0 and T > 0 such that

|x| ≥ δ =⇒ t+T t |φ(s, x)|ds ≥ µ ∀t ≥ 0. (7) 
For instance, φ(t, x) := [e 2 y + e 2 x ]ϕ(t) satisfies ( 7) with x = [e x , e y ] and ϕ persistently exciting, such as sin(t), white noise, a chaotic signal, etc.

Via our main result (Proposition 1 below), we establish, under the action of the controller (5), strong integral input-tostate stability with respect to the reference trajectories v r and ω r . In particular, we state that the tracking errors converge to zero for any reference velocities satisfying (2), even slowlyconverging references.

Proposition 1 Consider the system (4) in closed loop with the controller (5). Let K x , K θ , and K y > 0 and let P and Ṗ be bounded and persistently exciting. Then, the closed-loop system (4), ( 5) is strongly integral input-to-state stable with respect to the reference trajectories v r and ω r .

Corollary 1 Under the conditions of Proposition 1 the following hold:

1) under the action of any converging reference velocities v r and ω r , that is, satisfying (2), we have

lim t→∞ |e(t)| = 0; (8) 
2) the origin is uniformly globally asymptotically stable if, moreover, v r and ω r are integrable, that is, there exists α > 0 such that

∞ 0 |v r (s)| + |ω r (s)|ds ≤ α. (9) 
Remark 1 The integrability assumption on the reference velocities holds, for instance, if they converge exponentially fast in a neighbourhood of zero.

Proof of Proposition 1

We start writing the closed-loop system (4) with ( 5) in the output-injection form

ė = A(t, e)e + K(t, e) (10) 
where e := [e θ e x e y ] ,

A(t, e) :=   -K θ -K y P (t)e x -K y P (t)e y 0 -K x ψ(t, e) 0 -ψ(t, e) 0   , K(t, e) =   0 w r (t)e y -w r (t)e x + v r (t) sin(e θ )   , ψ(t, e) := K θ e θ + K y P (t) e 2 y + e 2 x .
Then, we establish the proof is in three steps:

1) we construct a strong Lyapunov function for the nominal system ė = A(t, e)e; 2) we use this Lyapunov function to establish the small input-to-state stability property with respect to the velocity references ω r and v r ; 3) we establish integral input-to-state-stability of ( 10), [START_REF] Jiang | Tracking control of mobile robots: A case study in backstepping[END_REF] with respect to ω r and v r .

Stability of the nominal system ė = A(t, e)e

Let f m and f M > 0 and consider the positive differentiable function f :

R + → [f m , f M ] satisfying ḟ = -K θ f + k y P. (11) 
Then, consider the new coordinate

e z = e θ + f (t) e 2 y + e 2
x , which, by direct calculation and using [START_REF] Ito | A Lyapunov approach to cascade interconnection of integral input-to-state stable systems[END_REF], satisfies

ėz = -K θ e z -2f K x e 2 x . (12) 
Then, in the new coordinates, the nominal system becomes

ėz = -K θ e z -2f K x e 2 x ( 13a 
)
ėx ėy = -K x ḟ [e 2 y + e 2 x ] -ḟ [e 2 y + e 2 x ] 0 
e x e y +e z 0 K θ -K θ 0 e x e y (13b) 
Now, since Ṗ persistently exciting and f satisfies

f = -K θ ḟ + Ṗ (14) 
we conclude that ḟ is also persistently exciting [START_REF] Narendra | Stable adaptive systems[END_REF]. Based on these properties, following the methodology of [START_REF] Malisoff | Constructions of Strict Lyapunov functions[END_REF], we proceed to construct a Lyapunov function for [START_REF] Khalil | Nonlinear systems[END_REF].

Lemma 1 Let f : R + → R and ḟ be persistently exciting (this holds if so are P and Ṗ , which is an assumption of Proposition 1). Then, the system (13) admits the following strict Lyapunov function:

V 3 (t, e) := γ 2 (V 1 )V 1 + V 2 + γ 3 (V 1 )e 2 z ( 15 
)
where

V 1 := 1 2 e 2
x + e 2 y ,

V 2 :=γ 1 (V 1 )V 1 + Q ḟ 2 V 3 1 -ḟ V 1 e x e y + P 1 (V 1 )V 1 , (16) 
Q ḟ 2 (t) :=1 + 2 f 2 T - 2 T t+T t m t ḟ (s) 2 dsdm (17) 
and (•) denotes an upper bound on (•). Furthermore, let γ 1 , γ 2 and γ 3 be continuous maps R ≥0 → R ≥0 such that

K x γ 1 (V 1 ) ≥ 12 f 2 V 2 1 + K x f T 2µ K x f + f + K x f V 1 + 2 f 2 V 1 + f T 2µ K x f + f + f V 1 + f V 1 K x + K x + 28 f 2 V 2 1 , (18) 
γ 3 (V 1 ) ≥ 2 K 2 θ f 2 2T µ V 1 + K θ f V 1 + 2V 1 + 1 , (19) 
K x γ 2 (V 1 ) ≥ f 2 K 2 x γ 3 (V 1 )V 1 + K θ f V 2 1 + V 2 1 , (20) 
and let P 1 : R ≥0 → R ≥0 be a first-order polynomial function of

V 1 , such that P 1 (V 1 ) ≥ f 2 V 1 . Under these conditions, V3 ≤ - µ 4T V 3 1 - γ 3 (V 1 ) 4 e 2 z .
The proof follows by direct calculation but it is ommitted due to space constraints. In particular, the choice of the functions γ i guarantees the negative-definiteness of V3 . Positivity of V 3 follows from a simple inspection, considering that 1 ≤ Q ḟ 2 (t) ≤ 1 + 2 f 2 T for all t ≥ 0.

Small ISS property

We recall that a system ẋ = f (t, x, u) is said to be "small ISS" if it is input-to-state stable for sufficiently small values of u.

The proof of this property for the system (10) relies on the function V 3 and, especially on its order of growth in V 1 . Note that the function V 3 in (15) satisfies V 3 (t, e) ≡ V 3 (t, e, V 1 ) where

V 3 (t, e, V 1 ) = P 2 (t, V 1 )V 1 -ḟ V 1 e x e y + P 1 (V 1 )e 2 z ( 21 
)
and P 2 : R ≥0 ×R ≥0 → R ≥0 is a smooth function, uniformly bounded in t and P 2 (t, •) is a polynomial of degree 2 with strictly positive coefficients. In particular,

∂P 2 ∂V 1 ≥ 0 ∀ (t, V 1 ) ∈ R ≥0 × R ≥0
By Lemma 1 the time derivative of V 3 along the nominal system (13) satisfies

V3 (t, e) ≤ - µ 4T V 3 1 - P 1 (V 1 ) 4 e 2 z ( 22 
)
hence, the time derivative of V 3 along trajectories of ( 10) satisfies

V3 ≤ - µ 4T V 3 1 - P 1 (V 1 ) 4 e 2 z + ∂V 3 ∂e K(t, e). (23) 
Now, setting

K = K 1 + K 2 , K 1 = ω r   0 e y -e x   , K 2 = v r   0 0 sin e θ  
and, using the fact that

∂V 1 ∂e K 1 (t, e) = 0, it follows that V3 ≤ - µ 4T V 3 1 - P 1 (V 1 ) 4 e 2 z -2 ḟ ω r V 1 e 2 y -e 2 x + ∂V 3 ∂e K 2 (t, e) ≤ - µ 4T V 3 1 - P 1 (V 1 ) 4 e 2 z + 2 f |ω r | V 2 1 + ∂V 3 ∂e |K 2 |.
On the other hand:

∂V 3 ∂e ≤ ∂P 2 ∂V 1 V 1 + P 2 (V 1 ) + 2 f V 1 |e y | + |e x | + ∂P 1 ∂V 1 |e y | + |e x | e 2 z + 4P 1 (V 1 ) f |e z | |e y | + |e x | . (24) 
Thus, defining

q 2 (V 1 ) := ∂P 2 ∂V 1 V 1 + P 2 (V 1 ) + 2 f V 1
as a positive polynomial of degree 2, and

α := ∂P 1 ∂V 1
as a positive constant, and using them in [START_REF] Samson | Time-varying feedback stabilization of car-like wheeled mobile robots[END_REF], we obtain

V3 ≤ - µ 4T V 3 1 - P 1 (V 1 ) 4 e 2 z + 2 f |ω r | V 2 1 + q 2 (V 1 ) |v r | |e y | + |e x | + α|v r | |e y | + |e x | e 2 z + 4P 1 (V 1 ) f |v r ||e z | |e y | + |e x | . ( 25 
)
Using the inequality

|e z | (|e y | + |e x |) ≤ e 2 z + 2V 1 in (25) yields: V3 ≤ - µ 4T V 3 1 + 2 f |ω r | V 2 1 + q 2 (V 1 )|v r | |e y | + |e x | + 8P 1 (V 1 ) f |v r | V 1 - 1 4 -4 f |v r | P 1 (V 1 ) -α |v r | |e y | + |e x | e 2 z ≤ Φ 1 (e x , e y , v r , ω r ) + Φ 2 (e x , e y , v r )e 2 z .
where,

Φ 1 := - µ 4T V 3 1 + 2 f |ω r |V 2 1 + q 2 (V 1 )|v r | |e y | + |e x | + 8P 1 (V 1 ) f |v r |V 1 ,
and,

Φ 2 := - 1 4 -4 f |v r | P 1 (V 1 ) + α|v r | |e y | + |e x | .
It can be noticed that the negative term of Φ 1 dominates for sufficiently high values of e x and e y . With a similar analysis, for a sufficiently small values of v r , the function Φ 2 is negative since all the coefficients of P 1 (V 1 ) are strictly positive. So the system is input-to-state stable for sufficiently small values of v r and ω r .

The iISS property

The proof of Proposition 1 is finalized by establishing integral input-to-state stability of the system [START_REF] Ito | A Lyapunov approach to cascade interconnection of integral input-to-state stable systems[END_REF] with respect to v r , ω r . To that end, consider the proper positive-definite Lyapunov function

W 3 (t, e) = ln (1 + V 3 (t, e)) (26) 
whose time derivative along [START_REF] Ito | A Lyapunov approach to cascade interconnection of integral input-to-state stable systems[END_REF] satisfies

Ẇ3 = V3 (t, e) 1 + V 3 (t, e) ≤ - µ 4T V 3 1 + P1(V1) 4 e 2 z 1 + V 3 (t, e) + ∂V3 ∂e K 1 + V 3 (t, e) .
Now, V 3 (t, e) is positive definite and radially unbounded. Actually, from Lemma 1 and ( 21), it follows that there exist polynomials g 1 (V 1 ) and g 2 (V 1 ), with strictly positive coefficients and of degrees 1 and 2 respectively, such that

V 3 (t, e) ≥ g 2 (V 1 )V 1 + g 1 (V 1 )e 2 z . (27) 
Therefore, there exists a positive definite function α 1 such that

α 1 (|e|) ≥ µ 4T V 1 (e) 3 + P1(V1(e)) 4 e 2 z 1 + V 3 (t, e) . (28) 
Then,

Ẇ3 ≤ -α 1 (|e|) + 2 f |ω r | V 2 1 1 + g 2 (V 1 )V 1 + q 2 (V 1 )|v r | |e y | + |e x | 1 + g 2 (V 1 )V 1 + α|v r | |e y | + |e x | e 2 z + 4P 1 (V 1 ) f |v r ||e z | |e y | + |e x | 1 + g 1 (V 1 )e 2 z + g 2 (V 1 )V 1 . ( 29 
) Note that V 1 = O(|e| 2
) hence, the second, third, and forth terms in (29) are bounded functions of e. It follows that there exists a constant k > 0 such that:

Ẇ3 ≤ -α 1 (|e|) + k [v r ω r ] . (30) 
Therefore, the system ( 10) is integral input-to-state stable.

IV. MULTI-AGENT FORMATION CONTROL

We extend the previous results on tracking control to the case of leader-follower formation-agreement control, under a spanning tree communication topology. That is, we consider a group of n mobile robots with kinematic models:

θi = w i , i ∈ [1, n] (31a) ẋi = v i cos (θ i ) (31b) ẏi = v i sin (θ i ) (31c) 
where, for the i th robot, x i and y i determine the position with respect to a globally-fixed frame, θ i defines the heading angle, and the linear and angular velocities are denoted by v i and w i respectively. The control objective is to make the n robots take specific postures and to make the swarm follow a path determined by a virtual reference vehicle; as before, the reference velocities are assumed to converge to zero. Any physically feasible geometrical configuration may be achieved and one can choose any point in the Cartesian plane to follow the virtual reference vehicle. We solve this problem using a slightly modified recursive implementation of the tracking leaderfollower controller of the previous section. For each vehicle the local control law depends on the reference trajectory generated by the virtual leader. From a configuration viewpoint, the robots are interconnected in a spanning-tree topology, that is, the minimal configuration to achieve consensus. Accordingly, each robot has only one leader and may have one or several followers.

The fictitious vehicle, which serves as reference to the swarm, describes a reference trajectory defined by the desired linear and angular velocities v r and w r which are communicated to the swarm leader robot only. According to this communication topology, and following the setting for tracking control, the formation-agreement control problem reduces to stabilizing the origin of the error systems,

ėθi = ω i-1 -ω i (32a) ėxi = ω i e yi -v i + v i-1 cos e θi (32b) ėyi = -ω i + e xi + v i-1 sin e θi (32c) 
for each i ∈ [1, n] -by definition, ω 0 := ω r and v 0 := v r .

Similarly to the controller proposed previously, we define Then, the closed-loop system under (33a) and (33b) may be written in the form

v i = v i-1 cos(e θi ) + K xi e xi (33a) ω i = ω i-1 + K θi e θi +
  ėθi ėxi ėyi   =   -K θi -K yi P (t)e xi -K yi P (t)e yi 0 -K xi ψ i (t, e i ) 0 -ψ i (t, e i ) 0     e θi e xi e yi   +   0 ω i-1 e yi -ω i-1 e xi + v i-1 sin e θi   . ( 34 
)
The rationale of the proof follows a recursive cascades argument. From Proposition 1 the system (34) is strongly integral input-to-state stable with respect to v i-1 , ω i-1 , and for all i ∈ [2, n]. For i = 1, the system (34) is strongly iISS with respect to v r and ω r , and uniformly globally asymptotically stable under the integrability condition on v r and ω r . The proof is completed from the preservation of the strong iISS property under a cascaded interconnection -see [START_REF] Chaillet | Strong iISS is preserved under cascade interconnection[END_REF]. This implies that the system composed of n agents is strongly iISS with respect to v r and ω r .

V. SIMULATIONS

In order to illustrate our results we have performed some simulation tests under Simulink TM of Matlab TM . We consider a group of four mobile robots following a virtual leader. In this simulation, the desired formation shape of the four mobile robots is a diamond configuration that tracks the converging trajectory of the virtual leader. See Figure 3. We define the reference velocities v r and ω r in a way that they converge to zero asymptotically but relatively slowly, which is a hardcase scenario -see Figure 1.

The initial conditions are set to [x r (0), y r (0), θ r (0)] = [0, 0, 0], [x 1 (0), y 1 (0), θ 1 (0)] = [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the strong iISS property[END_REF][START_REF] Consolini | Leaderfollower formation control of nonholonomic mobile robots with input constraints[END_REF][START_REF] Canudas De Wit | Nonlinear control design for mobile robots[END_REF], [x 2 (0), y 2 (0), θ 2 (0)] In Figure 2 we show the convergence of the tracking errors between the agent and its neighborhood. We presented a simple decentralized controller for leaderfollower agreement that is, we consider that the leader velocities converge. Further research is being carried out to incorporate the dynamics at the force-level and to consider more realistic cases, such as that of parametric uncertainty and output feedback control.

Fig. 1 .

 1 Fig. 1. Reference velocities vr and ωr

Fig. 2 .

 2 Fig. 2. Exponential convergence of the relative errors (in norm) for each pair leader-follower

Fig. 3 .

 3 Fig. 3. Illustration of the path-tracking in formation

  K yi P (t) e 2 yi + e 2 R + → [P m , P M ], with P m > 0, is bounded and smooth. Moreover, we assume that this function, and its first time derivative, Ṗ (t), are persistently exciting.Proposition 2 For each i ∈ [1, n], consider the systems (32) in closed loop with the controller (33). Let K xi , K yi , K θi > 0 and let P and Ṗ be bounded and persistently exciting. Then, under (2),[START_REF] Fierro | Control of a nonholonomic mobile robot: backstepping kinematics into dynamics[END_REF] holds for e := [e xi , e yi , e θi ]. If, in addition (9) is satisfied, then the origin is uniformly globally asymptotically stable.

	xi	(33b)
	where P :	

Sketch of proof. To compact the notation, let us define

ψ i (t, e i ) := K θ i e θi + K y i P (t) e 2 yi + e 2 xi

APPENDIX

On input-to-state stability

Paraphrasing [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the strong iISS property[END_REF], we say that the dynamical system ẋ = f (t, x, u) is strongly integral input-to-state stable (strongly iISS) with respect to u, if it is:

1) integral input-to-state stable (iISS), i.e., there exists a class KL function β and class

2) small-input-to-state stable (small-ISS), i.e., there exist R > 0 and functions β ∈ KL and µ ∈ K ∞ , such that, for all x • ∈ R n and all t ≥ t • ≥ 0,

Lemma 2 (Lyapunov characterization of ISS [START_REF] Khalil | Nonlinear systems[END_REF]) Let V : [0, ∞) × R n → R be a continuously differentiable Lyapunov function such that:

where α, α are K ∞ functions, ρ a class K function, and W 3 a continuous positive definite function. Then, the system ẋ = f (t, x, u) is ISS with respect to the input u.

Lemma 3 (Lyapunov characterization of iISS [START_REF] Ito | A Lyapunov approach to cascade interconnection of integral input-to-state stable systems[END_REF])

where α, α, and ρ are class K ∞ functions and α 1 is positive definite. Then, the system ẋ = f (t, x, u) is integral ISS with respect to u.