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Abstract—This paper provides an optimal energy management
application of a multipopulation approach based on the escort
evolutionary game theory. A distribution system including photo-
voltaic (PV) generation, a dedicated battery storage system (BSS)
interacting with electrical vehicles (EVs) is studied. Different
case studies with single-phase and three-phase EV chargers are
presented and analysed. Results show the benefits of integrating
a BSS regarding the undesired unbalancing effects and strong
peaks of PV production.

Index Terms—Plug-In Hybrid Electric Vehicles, Smart charg-
ing, Vehicle-to-Grid, Peak shaving, Valley filling, Game theory,
Escort evolutionary game theory.

I. INTRODUCTION

Electric Vehicles (EVs - fully electric and hybrid rechargeable
vehicles) take advantage of large portable energy storage capacities
to use clean and cheap electrical energy for transportation purposes.
However, the integration of these vehicles to the grid may cause
some technical impacts. Per the availability of resources (e.g. cloudy
or windy days), micro-generators produce intermittent quantities
of electricity, regardless of the hours of peak or low demand. On
the other hand, EV owners expect to recharge their vehicles within
residential electricity grids. Without any management method, many
EVs plugging-in at the same time can easily congest the electricity
infrastructures [1]–[3]. Furthermore, all these devices require inter-
faces (power electronics) to exchange energy with the grid. These
interfaces have the inherent problem of polluting the system with
harmonics that can affect other end users and infrastructural devices
(transformers, industrial motors, etc.).

Without proper optimal management tools, these non-controlled
perturbations are prone to destabilize the electrical system, provok-
ing black-outs in the worst-case scenarios. To respond to these chal-
lenges, Energy Storage Systems (ESS) (e.g. batteries, or flywheels),
along with adapted communication infrastructures and data analyt-
ics tools, appear as the cornerstone of the future smart electricity sys-
tem. The benefits of energy storage in smart electricity grids can be
understood by making an analogy to memory devices in informatics
systems. ESS can reduce the impacts of intermittent micro-sources
by storing generated energy for later use during peak hours. Keeping
in mind this sense of purpose for ESS, if EVs are considered as a
fleet instead of individual vehicles, they become part of the solution
for smart electricity systems [4]. The approach of this present paper
is to propose distributed optimization algorithms for the integral load
management of electric vehicle fleets and their potential services
to the electricity system. The proposed methodologies optimally
manage EV fleets charge/discharge schedules by applying game
theory, and evolutionary game theory techniques. These techniques

are the application of population dynamical methods to game theory
[5]. They can be employed to represent the evolution of the distribu-
tion of a population of a given species over multiple environments,
depending on the resources these environments offer. They are suit-
able for load management problems. In [6], a game-theoretic model
predictive control (MPC) approach for demand-side management
that can be adapted to real-time data has been proposed. The authors
of [7] have investigated a smart grid model with dynamic pricing
for a population with distributed storage and generation capabilities.
They have used a day-ahead optimization process in order to find a
non-cooperative Nash equilibrium. A game-theoretic framework is
established in [8] for modelling the strategic behaviour of buses that
are connected to renewable energy resources.

In the approach proposed in this present paper, the energy con-
sumed by an EV is represented by a population. Then, multiple
populations can interact (multiple EVs interacting). These popula-
tions are distributed over multiple environments which in the model
represents different moments of the day. Applying the mathemat-
ical representation of these techniques, decentralized optimization
algorithms for EVs to provide multiple auxiliary services to the
electricity grid can be proposed. These algorithms tackled the
stochastic behaviour of variables like arrival and departure, initial
and final state of charge, and incentives to EV owners. Without
differentiation between single and three-phase EV chargers, the
proposed methodologies seek to provide services like load flattening
(shifting and shaving), load balancing among phases, reactive power
supply, resource sharing among EVs, and interaction with renewable
energy micro-sources.

The paper is organized as follows. Section II gives an overview
of the proposed algorithm. Section III introduces and describes the
system used in this paper. In section IV, the simulation results of the
application of the algorithm are presented. Finally, section V gives
some conclusions.

II. OVERVIEW OF THE PROPOSED APPROACH

The objective is to propose a solution to a global distributed prob-
lem, dealing with several local constrained variables. To accomplish
this, a multi-population approach is proposed, as an application of
the escort dynamics (ED) and the proposed escort functions of the
recent work [9]. The ED describes the evolution of the distribution of
a normalized population over K possible pure strategies, according
to the benefit provided by those strategies. This generalized escort
evolutionary game dynamics is defined in continuous time by

ẋk = φk(xk)(fk(x)− f̄φ(x)), (1)



where x = [x1, x2, · · · , xk, · · · , xK ]T is the state vector of portions
of the population following pure strategy k, fk(x) is the payoff
function for strategy k, and f̄φ(x) is weighted with respect to the
escort functions and the sum of them. The so-called escort function
φk(xk) can be understood as an incentive for the rate of growing.
The following are some of the analogies proposed in this approach:
Pure strategies are considered to be the phases at each time slot,
while a population is a quantity to be split among several phases and
slots of time (i.e. active and reactive powers). The whole number of
populations depends on the number of connected electrical vehicles
(EVs), while the size of each population and the number of pure
strategies for each population depend on the owners’ requirements.
Each EV is locally in charge of two populations that represent
respectively: Energy (Wh), and reactive power (var).

A. Analogies for energy (Wh) populations
In order to illustrate the analogies introduced in this paper, let us

check Fig.1. In this diagram, three populations, with given number
of individuals, are initially distributed among 12 environments iden-
tified by pairs (k,m). Each environment has a given carrying capac-
ity for individuals of the different populations, and each environment
provides a certain payoff for those individuals. Among these three
populations, the first one has a sedentary behavior, which means that
its individuals are not willing to migrate to other environments. The
individuals from the other two populations have nomad behaviors,
i.e. they are prone to choose among environments in order to
increase the payoff of their population. Each environment represents
a pure strategy for each individual of the nomad populations, and
each individual of these populations is able to choose among 12 pure
strategies. The total number of individuals of the three populations
does not change with time, i.e. the size of the total population is
constant through the time. However, the nomad populations are
able to convince individuals from the other populations to leave
their current population and environment, and migrate. In this sense,
the size of the two nomad populations, may increase with time at
the expense of other populations’ size decrease. Nonetheless, the
size of the two nomad populations is limited by given reception
capacities. Given this scenario, the size and distribution of the
populations evolves with time. Fig. 1 shows initial and final sizes
and distributions of the three populations according to the payoffs
provided by the 12 environments.

This scenario summarizes an example of the proposed energy
management application of this paper, for two EVs and four slots of
time (four hours for instance). Each environment represents a phase
m = {1, 2, 3} at time k = {1, 2, 3, 4}. The sedentary population
represents the forecasted energy consumption at each phase of the
transformer and at each slot of time. The carrying capacities of the
environments represent the load limits of the transformer at each
phase. Nomad populations represent the energy demands of each
EV and the size of the population represents the amount of energy
required to reach a desired state of charge of its battery. The idea
of nomad populations attracting individuals from other populations
represent the fact that connected EVs may consume energy from a
phase at a given instant, and inject it at another phase and another
instant. The reception capacity of a nomad population represents the
battery capacity of the EV. Finally, the idea behind the evolution
of the distribution of nomad populations reflects the fact that EVs
may allocate consumption or injections of energy among phases and
slots of time, depending on benefits they can get from, or services
they can provide to the grid.

B. Formal definition for the types of populations representing
EVs variables

An EV i has to consume active power in order to fully charge
its battery in a time window of length Ki. This length is defined or
estimated by the owner who can be as restrictive as she/he requires
(taking into account the charger’s limits). In the case of three-phase
chargers, the consumption can be distributed among slots of time
and phases. Thus, a phase at a given time slot is represented by
one of multiple pure strategies. The following set of constraints is
obtained:

Ki∑
k=1

3∑
m=1

xik,m = socid − soc
i
0, (2a)

xik,m ≤ soc
i −

(
soci0 +

Ω∑
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3∑
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xiω,m − xik,m

)
, (2b)
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)
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∀Ω = {1, 2, · · · ,Ki}, ∀k = {1, 2, · · · ,Ω}, ∀m = {1, 2, 3}
− tikp

i ≤ xik,m ≤ t
i
kp
i, (2d)

xik,m ≤ t
i
k(L− πk,m) + xik,m, (2e)

∀k = {1, 2, · · · ,Ki}, ∀m = {1, 2, 3},

where socid is the desired state of charge (Wh) at the end of the time
window defined by the owner, soci0 is the initial state of charge (Wh),
tik is the length of the step of time k in hours or fractions of hour,
pi is the nominal power of the charger per phase, and L is the limit
load of the transformer per phase. Constraints (2b) and (2c) represent
the accumulated state of charge at time τ which cannot go below
soci or above soci. Constraint (2d) represents the limits of energy
consumption/injection given the nominal limits of the charger and
the length of the step of time k. Constraint (2e) represents the limits
of energy consumption given the nominal limits of the transformer
and the length of the step of time k.

C. Payoff function definition

In this approach, payoff functions take into account both the
objectives of the utility grid manager and the EV owners. Two
factors are defined. The first factor is a commitment factor µi

controlled by EV owners. It gives them some choice regarding their
commitment to the gird on one hand and the ability of utility grid
manager on the other hand. This factor is given as follows:

µ ≤ µi ≤ 1

where 0 ≤ µ ≤ 1 is the minimum allowed level, and 1 is the
maximum level of commitment. The second factor is a smoothing
factor η. This factor is controlled by the utility grid manager in order
to manage the variations of total active and reactive power profiles
over time. It is given as follows:

0 ≤ η ≤ 1

In this approach, monotonically decreasing payoff functions are
proposed and the candidate functions are quadratic, strictly concave
on all the controllable parameters. The level of commitment and
the smoothing parameter define the zero crossing of these candidate
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Fig. 1. Illustrative example of the multi-population approach proposed for the distributed energy management.

functions. For Energy pure strategies the proposed payoff functions
are,

f ik,m(xik,m) = −(1− µi)(
xik,m − x

i∗
k,m

tik
) (3)

− µi
[
ηπk,m + (1− η)(2πk,m − πk−1,m − πk+1,m)

]
,

where xi∗k,m is the owner’s preferred reference for the charging rate
(i.e. the reference for power consumption of the charger at time k
and phase m). For single-phase chargers, an additional parameter
υ, such that 0 ≤ υ ≤ 1, is included in order to balance between
single-phase grid’s interests (υ = 0) and three-phase grid’s interests
(υ = 1).

D. The role of aggregator
An aggregator is in charge of managing the interaction among

EVs following a Best Reply approach [10]. It receives optimal
profiles from EVs, then it compiles the information adding the
EV profiles to the forecasted active and reactive power profiles,
and redistributes them to EVs again, making the new information
available to EVs under the transformer in a certain order. Finally,
given historic data [11], the aggregator provides an updated 24-hour
forecast of the loading of each phase of the MV-LV transformer.

III. THE STUDIED SYSTEM

The multi-population escort evolutionary game theory approach
of this paper is tested on a system including photovoltaic gen-
eration, a dedicated battery storage system interacting with EVs.
Real historic data has been used. It has been collected from a
distribution transformer of the SOREA utility grid company, in the
region of Savoie, France. The purpose of this test, is to check how

Fig. 2. Active and reactive power profiles for the four day test scenario
with photovoltaic (PV) generation, and a dedicated battery storage
system (BSS). Forecasts based on real historic data measured from
a transformer for “sports facilities’, from the SOREA utility grid
company in the region of Savoie, France.

the proposed approach behaves when there is a high penetration
of renewable energy, and an additional dedicated storage system is
able to interact with the connected EVs. Besides it is also useful
to check a scenario where the load among phases is well balanced,
as it is evidenced by the historic data measurements. Furthermore,
under this transformer, three sets of photovoltaic modules, with peak
capacities of 60kWp, 60kWp, and 80kWp, are installed. On the other
hand, a group of batteries with an energy storage capacity of 36kWh
at a nominal power of 18kW, is currently being installed. The load
under this transformer, corresponds completely to sports facilities.
A summary of the conditions of this case study is given on Table I.

For this system, four spring days of forecasted active and reactive
powers per phase in hourly steps, are shown on Fig. 2. It can be
noticed that the consumption/production, and reactive power of the



TABLE I
DESCRIPTIVE SUMMARY AND ASSUMPTIONS OF THE CONSIDERED

REALISTIC SCENARIO WITH PV GENERATION, AND DEDICATED BSS.

Item Description
Dedicated BSS 36kWh, nomimal rate of charge power

18kW
PV arrays 2 of 60kWp, and one of 80kWp
Chargers 3.3kW/phase with probability of 80%

7.5kW/phase with probability of 20%
Batteries 8.8kWh with probability of 30%

20kWh with probability of 70%
Constraints on batteries Between 25% and 90% for 8.8kWh

Between 30% and 85% for 20kWh
Single or 3-phase charger Probability of 50% for single-phase

and 50% for three-phase charger
7.5kW/phase with probability of 20%

Connection phase Probability of 33.33% for each phase
Time period 4 days (96 hour steps)
Highest rate of arrivals 7 EVs/h at 05h
Lowest rate of arrivals 0.5 EVs/h at 04h next day
Peak of connected EVs Between 24 and 32 EVs around 09h each

day.
Trade-off values µi Common and fixed for all EVs to µi = 0.9.
Utility grid manager Service parameter fixed at η = 0.7
Utility grid manager Service trade-off factor υ = 0
Distribution system info. Data from SOREA utility grid company,

Savoie, France
Scenarios 1. Single-phase chargers only

2. Both single and three-phase chargers

a)

b)

c)

a)

a)

Fig. 3. (a) Profiles for the total amount of connected vehicles in
the single-phase chargers only scenario. The number of arriving EVs
each hour, for the four days test scenario, is shown as well. (b) The
total amount, and the amounts of vehicles connected per phase, for
the single-phase chargers only scenario. (c) For the scenario with
both types of chargers: The amount of vehicles connected to three-
phase and single-phase chargers, and the amount of EVs connected
to single-phase chargers per phase.

system are well balanced among the three phases. Moreover, it
can noticed that consumption is usually much less than the PV
production. As a consequence an important amount of energy is
injected to the grid through the transformer each day.

On the other hand, let us consider the profile of arrivals and
departures of EVs, shown on Fig. 3(a). This profile is obtained using

Profiles for single-phase chargers only (υ = 0), and PV generation

Fig. 4. Case study with single-phase chargers (υ = 0), several
days and a realistic scenario with photovoltaic (PV) generation. (a)
Forecasted and final active power profiles, for each phase, obtained
with the proposed approach. (b) Forecasted and final reactive power
profiles, for each phase, obtained with the proposed approach. (c)
State of charge profiles for each EV, obtained with the proposed
approach. (d) Forecasted and final total active power profiles, obtained
with the proposed approach. Comparison with unmanaged case. (e)
Forecasted and final total reactive power profiles, obtained with the
proposed approach.

a classical Poisson model with variable rate of arrivals (changing
with time) and variable connection times. The highest rate of arrivals
is 7 EVs/h at 05h and it decays up to 0.5 EVs/h at 04h the next day.
Moreover two, likely to occur, scenarios are considered: when there
is only presence of single phase chargers, and when there is presence
of both three and single-phase chargers in equal proportions in the
grid. For the first of these two scenarios, Fig. 3(b) shows the profile
of total connected EVs through the studied days, as well as the
distributions of those EVs on single-phase chargers connected over
the three phases. For the second scenario, Fig. 3(c) shows the same
profile of total connected EVs through the study days, and this time,
the distributions of those EVs among single-phase and three-phase
chargers. For the corresponding portion of EVs connected to single-
phase chargers, this figure shows the distribution over the three-
phases as well.

IV. RESULTS

Fig. 4 shows the behavior of the proposed ED approach over the
interesting variables of the system, when only single phase chargers
are considered and υ = 0. The applied arrivals and departures
profiles, are those previously mentioned on Figs. 3(a) and 3(b). As
it can be expected, the presence of single-phase chargers only, has
a negative effect on the balance of load among phases, as it can be
observed for the active and reactive power profiles on Figs. 4(a),
4(b).



Profiles for single-phase chargers only (υ = 0), PV generation, and dedicated
batteries

Fig. 5. Case study with single-phase chargers (υ = 0), several
days and a realistic scenario with photovoltaic (PV) generation, and
a dedicated battery storage system (BSS). (a) Forecasted and final
active power profiles, for each phase, obtained with the proposed
approach. (b) Forecasted and final reactive power profiles, for each
phase, obtained with the proposed approach. (c) State of charge
profiles for each EV, obtained with the proposed approach. (d)
Forecasted and final total active power profiles, obtained with the
proposed approach. Comparison with unmanaged case. (e) Forecasted
and final total reactive power profiles, obtained with the proposed
approach.

Similar profiles can be observed in Figs. 5(a), 5(b), where, besides
the same presence of single-phase chargers, the BSS interacts as
well with EVs. The BSS has a capacity of 36kWh, with states of
charge limited to cycles between 20% and 80% (a useful capacity
of around 22kWh), and a nominal power of 18kW (6kW/phase).
In the proposed approach, the BSS interacts with EVs, as another
EV, through the aggregator. Its desired state of charge is always
18kWh (50%), and its corresponding “populations” of active and
reactive power are always distributed among 36 environments, cor-
responding to the 3 phases during a connection time horizon of 12
hour steps, m = {1, 2, 3}, and k = {1, 2, · · · , 12}. Off course this
time horizon can be longer or shorter depending on the utility grid
manager criteria.

Comparing the results for only single-phase chargers, with those
when the BSS is included, it can observed that the BSS strongly mit-
igates the undesirable unbalancing effects of single-phase chargers,
specially in terms of reactive power. Concerning, the states of charge
in Fig. 4(c), without battery, and υ = 0, single-phase chargers are
always focused on the smoothing/flattening objectives for total load
profiles, so chargers always try to shift their consumption to those
hours where PV produces the deepest values of total active power.
With the BSS, the behavior is similar, as it can be observed in Fig.
5(c). The presence of the BSS allows to balance the effects of single-
phase chargers in different phases, by modulating the consumption

Profiles for three-phase, single-phase chargers (υ = 0), and PV generation

Fig. 6. Case study with both three-phase and single-phase chargers
(υ = 0), several days and a realistic scenario with photovoltaic
(PV) generation. (a) Forecasted and final active power profiles, for
each phase, obtained with the proposed approach. (b) Forecasted
and final reactive power profiles, for each phase, obtained with the
proposed approach. (c) State of charge profiles for each EV, obtained
with the proposed approach. (d) Forecasted and final total active
power profiles, obtained with the proposed approach. Comparison
with unmanaged case. (e) Forecasted and final total reactive power
profiles, obtained with the proposed approach.

of its phases in consequence. The state of charge cycles of the BSS
evidence high consumption rates during hours of deep values of
total active power, which reflect as well, the smoothing/flattening
objectives. On the other hand, given that single-phase chargers con-
sume as much as they can during the hours of high power production
(aiming to accomplish the smoothing/flattening objectives), there is
a lack of available reactive power from EVs and they are not able
to supply the demand of the grid. This can be observed in Fig. 4(e),
especially around 17h on each day. On the contrary, when the BSS is
available, it also consumes as much as it can during the peaks of PV
production, but around 17h each day, it has already reached states
of charge close to the upper limit of 80% (29kWh). Because of this,
around 17h each day, its consumption is limited in order to avoid
surpassing this limit, and as a consequence, it has available reactive
power in order to supply the grid demand. The difference can be
appreciated by checking the total reactive power profile in Fig. 5(e).

When both single-phase and three-phase chargers are considered,
three-phase chargers are enough to mitigate the balancing issues
caused by single-phase chargers. This can be observed on Figs. 6(a)
and 6(b), for active and reactive power profiles of individual phases,
when the arrivals and departures profile in Fig. 3(c) is considered.
However, thee-phase chargers are also intended to consume as much
as possible during strong PV production, so their available reactive
power is also reduced. The effects are not as string as for single-
phase chargers, but still, around 17h, the reactive power demand of



Profiles for three-phase, single-phase chargers (υ = 0), PV generation, and
dedicated batteries

Fig. 7. Case study with both three-phase and single-phase chargers
(υ = 0), several days and a realistic scenario with photovoltaic
(PV) generation, and a dedicated battery storage system (BSS). (a)
Forecasted and final active power profiles, for each phase, obtained
with the proposed approach. (b) Forecasted and final reactive power
profiles, for each phase, obtained with the proposed approach. (c)
State of charge profiles for each EV, obtained with the proposed
approach. (d) Forecasted and final total active power profiles, obtained
with the proposed approach. Comparison with unmanaged case. (e)
Forecasted and final total reactive power profiles, obtained with the
proposed approach.

the grid cannot be completely supplied by the EVs. On the contrary,
comparing Figs. 6(e) and 7(e), when the BSS is introduced, the sup-
ply of reactive power is almost completely assured, in collaboration
with EVs.

Comparing the total active power profiles of the two considered
scenarios, and the inclusion of a dedicated energy storage system
on both of them, on Figs. 4(d), 5(d), 6(d), and 7(d), it is possible to
observe that the presence of PV generation forces EVs to shift their
consumption mostly to peak hours of production. This motivates the
use of clean energy sources and improves the technical behavior of
the grid under the existence of this type of energy sources. Moreover,
the existence of a dedicated energy storage system, of a relatively
small size, could complement the ancillary services that EVs are able
to provide with the proper coordination provided by the proposed
approach. Besides, the diversity on types of connected chargers
(three-phase and single-phase) is beneficial for the grid: it is able
to improve its power quality, while it introduces the proper use of
renewable energy sources, it provides the charging service to the EV
owners, and it reduces infrastructure maintenance costs.

V. CONCLUSION

In this paper, a dedicated battery storage system (BSS) system
is included in the loop of synergies induced by a multi-population
approach for distributed management of EV load. In this scenario,

multiple photovoltaic modules are connected to a distribution trans-
former feeding a sports facility. Moreover, according to the on-site
measurements, the system is well balanced before the inclusion of
EV chargers. The dedicated BSS is proposed to act as another EV
interacting with the others through the aggregator. It is observed
that the inclusion of the BSS strongly mitigates the undesired
unbalancing effects produced when only single-phase chargers are
considered, and single-phase grid’s interest are privileged over three-
phase grid’s interests. When there is presence of both three-phase
and single-phase chargers, three-phase chargers are enough to miti-
gate the unbalancing effects of single-phase chargers. However, the
strong peaks of PV production force all EVs to consume. Conse-
quently they are not able to supply the reactive power demand during
those hours. In that scenario, it was observed that the BSS reinforces
the service provided by EVs given its larger nominal power. It is
important to notice again that, under the proposed approach, the
peaks of PV production force EVs to shift their consumption to these
peak hours of production. This correlation motivates the installation
of renewable energy sources together with EV chargers, aiming to
use clean energy sources while their intermittency is mitigated by
EVs and dedicated BSSs.
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“A game-theoretic framework for control of distributed renewable-based
energy resources in smart grids,” in American Control Conference
(ACC), 2012. IEEE, 2012, pp. 3623–3628.

[9] A. Ovalle, A. Hably, and S. Bacha, “Alternative defnitions of escort
functions in the escort evolutionary dynamics with stability proof,”
Automatica, vol. submitted, 2015.

[10] J. Hofbauer and K. Sigmund, “The theory of evolution and dynamical
systems.” Cambridge University Press, 1988.

[11] K. Basu, L. Hawarah, N. Arghira, H. Joumaa, and S. Ploix, “A prediction
system for home appliance usage,” Energy and Buildings, vol. 67, no. 0,
pp. 668 – 679, 2013.


