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ABSTRACT

The brain microstructure, especially myelinated axons and
free fluids, may provide useful insight into brain neurodegen-
erative diseases such as multiple sclerosis (MS). These may
be distinguished based on their transverse relaxation times
which can be measured using T2 relaxometry MRI. However,
due to physical limitations on achievable resolution, each
voxel contains a combination of these tissues, rendering the
estimation complex. We present a novel multi-compartment
T2 (MCT2) estimation based on variable projection, appli-
cable to any MCT2 microstructure model. We derive this
estimation for a three-gamma distribution model. We validate
our framework on synthetic data and illustrate its potential on
healthy volunteer and MS patient data.

Index Terms— T2 relaxometry, microstructure, brain

1. INTRODUCTION

MRI voxels of the human brain are heterogeneous in terms of
tissue types due to the limited imaging resolution and physical
constraints. Each voxel in the white matter (WM) contains a
large number of myelinated and non-myelinated axons, glial
cells and extracellular fluids [1, 2]. For example, every square
millimeter of the corpus callosum in a human brain has more
than 100,000 fibers (myelinated and non-myelinated) of vary-
ing diameters [1]. These tissues can be distinguished based
on their T2 relaxation times. Myelin being a tightly wrapped
structure has a very short T2 relaxation time of 10 millisec-
onds (ms) [2]. The estimated T2 relaxation time of the myeli-
nated axons is 40ms[2]. The ventricles and tissue injury
regions contain free fluids which have a high T2 relaxation
time (>1000ms). The T2 relaxation values between those of
myelin and myelinated axons and the free fluids correspond
to the glial cells and extracellular tissues [2]. An ability to
obtain the condition of these tissues can help us gain better
insights into the onset and progress of neurodegenerative dis-
eases such as multiple sclerosis (MS).
Myelin water fraction (MWF) has been computed from T2 re-
laxometry images using a variety of approaches [3, 4]. Most
of these methods primarily focus on the MWF estimation.
However, MWF alone might not be able to convey the en-

tire information since it is a relative measurement. For ex-
ample, in MS patients a decrease in MWF in a WM lesion
might be caused by myelin loss or fluid accumulation due to
tissue injury or both. Hence for relative measurements like
water fraction (WF), all the WF maps should be observed si-
multaneously for a complete understanding of the tissue con-
dition. Here we propose an estimation framework to obtain
brain microstructure information using a multi-compartment
tissue model from T2 relaxometry MRI data. The T2 space
is modeled as a weighted mixture of three continuous prob-
ability density functions (PDF), each representing the tissues
with short, medium and high T2 relaxation times. We estimate
the PDF parameters using variable projection (VARPRO) ap-
proach [5]. We derive this generic estimation framework for
gamma PDFs. We validate the proposed method using syn-
thetic data against known ground truth. We then illustrated it
on a healthy subject and MS patient.

2. METHOD AND MATERIALS

2.1. Theory

Signal model The T2 space is modeled as a weighted mix-
ture of three PDFs, representing each of the three T2 relaxom-
etry compartments: short−, medium− and high−T2. Thus
the voxel signal at the i−th echo time (ti) is given as:

s (ti) = M0

3∑
j=1

wj

∞∫
0

fj (T2; pj) EPG (T2,4TE, i, B1) dT2

(1)
Each compartment is described by a chosen PDF, fj (T2; pj),
where pj = {pj1 , . . . , pjn} ∈ Rn are the PDF parame-
ters. In Eq. (1), wj is the weight of the j-th distribution
with

∑
j wj = 1. ∆TE, B1 and M0 are the echo spacing,

field inhomogeneity and magnetization constant respectively.
Imperfect rephasing of the nuclear spins after application of
refocusing pulses leads to the generation of stimulated echoes
[6]. Hence the T2 decay is not purely exponential. The stim-
ulated echoes are thus obtained using the EPG algorithm
[7]. EPG(·) is the stimulated echo computed at ti = i∆TE
where i = {1, . . . ,m} and m is the number of echoes.



Optimization M0 and wj can be combined into a single
term αj ∈ R+ without any loss of generality. In that case, the
weight wj corresponding to each compartment is obtained as
wj = αj/

∑
i αi. In the most general case, the least squares

minimization problem is thus formulated as:

(
α̂, p̂, B̂1

)
= arg min

α,p,B1

m∑
i=1

yi − 3∑
j=1

αjλj (ti; p, B1)

2

= arg min
α,p,B1

‖Y −Λ (p, B1)α‖22 (2)

where Y ∈ Rm is the observed signal and m is the number
of echoes; α ∈ R+3

; Λ ∈ Rm×3; p = {p1,p2,p3} ∈
Rk, where k = 3n. In Eq. (2), each element of Λ,
Λij =λ (ti; pj, B1), is computed as:

Λij =

∞∫
0

fj (T2; pj)EPG (T2,4TE, i, B1) dT2 (3)

Due to the EPG formulation, there is no closed form deriva-
tive solution for the optimization ofB1 [7]. Hence, we opt for
an alternate optimization scheme where we iterate between
optimization of {p, α} with a fixed value of B1 and opti-
mization for B1 using the obtained {p, α} values. The terms
Λ (p, B1) and α in Eq. (2) are linearly separable. Hence we
can use the VARPRO approach to solve for {p, α} [5]. The
unknown α is substituted by Λ (p)

+
Y, where Λ (p)

+ is the
Moore-Penrose generalized inverse of Λ (p). The VARPRO
cost function is computed as:

arg min
p

∥∥∥(I−Λ (p) Λ (p)
+
)

Y
∥∥∥2
2

(4)

where, I − Λ (p) Λ (p)
+ is the projector on the orthogonal

complement of the column space of Λ (p). Since p ∈ Rk,
the Jacobian matrix J ∈ Rk×m and its columns are computed
as shown in [5]. To compute the elements of J, we need to
obtain ∂Λ/∂pji , ∀i, j [5]. After solving Eq. (4) for p, the
values of α are obtained as Λ (p)

+
Y. The optimization for

{α,p} and B1 is performed alternatively until convergence.
B1 is optimized using a gradient free optimizer (BOBYQA),
as it does not have any closed form solution [7].
Multi-compartment model using gamma PDF The previ-
ous estimation framework is generic as it does not depend on
the chosen PDF. We choose here to use gamma PDF for fj(·)
for j = {1, 2 ,3} since their non-negativity and skewed nature
are well suited to describe the compartments used to model
the T2 space. The mean T2 values of myelin, myelinated ax-
ons, inter- and extra-cellular and free fluids in the brain are
well studied in the literature [2, 3]. Hence we parameterized
each fj in terms of its mean (µj) and variance (vj) rather than
the usual shape and scale parameter representation (refer Eq.
(5)). Using this parametric form of the gamma PDF makes

the choice of optimization bounds convenient.

f (T2;µj , vj) =
T

(µ2
j/vj)−1

2

Γ
(
µ2
j/vj

)
(vj/µj)

µ2
j
vj

exp

(
−T2
vj/µj

)
(5)

Hence we have, p = {µs , vs, µm, vm, µh, vh} where, (·)s,
(·)m and (·)h are the PDF parameters describing the short-
, medium- and high-T2 compartments respectively. Due to
practical limitations such as feasible acquisition time, coil
heating and specific absorption rate (SAR) guidelines, T2 re-
laxometry MRI sequences have limitations on the shortest
echo time and number of echoes per acquisition. The high-
T2 compartment aims at capturing of free fluids in the brain,
and hence has a T2 relaxation time larger than 1 second [3]. A
standard T2 spin echo multi-contrast sequence has the shortest
T2 acquisition (first echo) at around 8−10ms and has 20−40
acquired echoes. Hence for the short-T2 compartment, we
usually have a very limited (around 3-4) number of echoes.
There are almost no echoes available which correspond to the
high-T2 compartment. The robustness and accuracy of the
implementations to simultaneously estimate the weights and
all the PDF parameters has been found to be not reliable [8].
Hence we choose to estimate only the mean of the gamma
PDF corresponding to the medium-T2 compartment.
Using the VARPRO approach we thus estimate four param-
eters of the signal model: mean of the medium-T2 gamma
PDF (µm) and the three weights corresponding to each com-
partment. Hence only ∂Λ/∂µm is required for computing the
Jacobian matrix and is obtained as:

∂Λ

∂µm
=

∞∫
0

f (T2;µm, vm)

[
µm
vm

(
2 log

(
T2

µm
vm

)
− (6)

2Ψ

(
µ2
m

vm

)
+ 1

)
− T2
vm

]
EPG (T2,4TE, i, B1) dT2

where Ψ(·) is the digamma function. The remaining gamma
PDF parameter values are pre-selected for the three compart-
ments based on histology findings reported in the literature [3]
and are set as {µs, µh} = {30, 2000}ms and {vs, vm, vh} =
{50, 100, 6400} ms2. We assume a reasonable bound on µm
of 100-125ms for its optimization. The minimization prob-
lem in Eq. (4) is solved for µm using the analytically obtained
derivative in Eq. (6) with a gradient based optimizer [9]. The
short-T2 compartment here indicates the condition of myelin
and myelinated axons [2]. The medium-T2 compartment’s
WF conveys information on the condition of axons, glial cells
and extracellular fluids [2]. The condition of free fluids (such
as in ventricles and fluid accumulation due to tissue injuries)
is indicated by the high-T2 WF values.

2.2. Experiments

Synthetic data. The proposed method was first validated
against synthetic data generated following a known ground



truth, composed of three gamma PDFs with parameters, {µs,
µm, µh} = {25, 120, 1900} and {vs, vm, vh} = {40, 90,
6000}. The weights chosen for each compartment were, {ws,
wm, wh} = {0.2, 0.7, 0.1}. The B1, M0 and T1 values
considered for this simulation were 1.3, 950 and 1000 re-
spectively. The experiments are carried out for SNR values
ranging from 5 to 100 in steps of 5. We simulated T2 relax-
ometry data with the following parameters: first echo (TE0)
is at 9ms;4TE= 9ms; 32 echoes, 100 signal averages.
Healthy volunteer data. The method was tested on T2
relaxometry data acquired on a healthy volunteer (male,
age: 26) with the following acquisition details: Siemens 3T
MRI scanner; 2D multislice CPMG sequence; 32 echoes;
TE0= 9ms; echo spacing of 9ms; TR = 3000ms; single
slice acquired; slice thickness of 4mm; in plane resolution of
1.04mm× 1.04mm; matrix size of 192× 192.
MS patient data. The method was finally tested on T2 re-
laxometry MRI data of a MS patient. The observations from
our estimation maps were compared with the pathological
findings on MS lesion reported in the literature [10, 11]. We
observed whether the estimation maps obtained from our
method were able to provide insight into MS lesion which
corroborate with the pathological findings. The acquisition
details are the same as for the healthy volunteer data.

3. RESULTS

Synthetic data. The results of the synthetic data simulation
are shown in Fig 1. It shows that with increasing SNR the
weights estimation gets more accurate. The bars around the
mean value are the 95% confidence intervals (CI) which is
obtained as 1.96 times the standard deviation of the estimates.
The CIs of the estimation improve with with increasing SNR
for all three WFs. The ground truth lies in the CI of the mean
estimated weights for all three compartments.

Fig. 1. Mean of estimated weights with a 95% confidence
interval for 100 signal averages for the synthetic data study.

Healthy volunteer data. The estimation maps for the healthy
volunteer are shown in Fig 2. The genu of the corpus callo-
sum (CC) has higher ws values compared to any other region

in the brain. The ventricles and other regions with free fluids
have a higher µm compared to the normal appearing white
matter (NAWM) tissues. This is relevant as free fluids have a
higher T2 value compared to the relatively tightly bound tis-
sues present in NAWM.
MS patient data. Two lesions are present in the MR image
of the MS patient shown in Fig. 3 that are marked with red
and blue arrows. We observe absence of short-T2 WF in both
lesions. The lesions and their neighboring tissues have higher
wm values than NAWM tissues. The wh map shows fluid
accumulation in lesion-2 but not in lesion-1 . The estimated
medium-T2 gamma PDF map shows a higher PDF mean for
both lesions compared to the NAWM. In lesion-1 the esti-
mated µm increases (with respect to the neighboring NAWM)
as it approaches the core of the lesion, but is less than the µm
estimated at the ventricles where there is free fluid.

4. DISCUSSION

Our method was successfully validated against synthetic data
with known ground truth for all SNR values (refer Fig. 1).
High ws values in the genu of the CC of healthy volunteer
data (refer Fig. 2) is due to the high myelin and myelinated
fibers density in this region compared to any other part of the
brain [1]. In the estimation maps of the MS patient (refer
Fig. 3), the absence of short-T2 WF in the lesions and in its
neighboring regions can be explained by demyelination of the
nerve fibers caused by MS [10][3]. Demyelination at the on-
set of MS is followed by macrophage intervention leading to
an increased cellular activity in the MS lesion regions [10]
whose T2 relaxation time is greater than myelin and myeli-
nated axons but less than those of free fluids [2]. This phe-
nomenon might explain the high wm values in the lesions and
in neighboring regions. Demyelination is followed by pro-
gressive axonal damage and fluid accumulation (due to tissue
injuries) in MS lesions [10]. The extent of axonal damage and
fluid accumulation in the lesions can provide useful informa-
tion regarding the lesion state and its response to a treatment.
Lesion-2 has fluid accumulation unlike lesion-1 , possibly in-
dicating that the two lesions are in different stages. The con-
tinuous axonal damage in the MS lesions [10][11] explains
the higher µm in the lesion regions compared to the neighbor-
ing NAWM as a higher µm value indicates tissues with less
tightly bound water. The increment in µm values in lesion-
1 as we approach the lesion core from the lesion boundary
might also indicate a reduction in axon density. This is in ac-
cordance with the pathology of MS lesion evolution [10][11].

5. CONCLUSION

We proposed a generic estimation method to obtain estimates
of tissue microstructure in brain by modeling the T2 spectrum
as a weighted mixture of three gamma PDFs. The maps es-
timated from our method can be effective in understanding



Fig. 2. Estimation maps for a healthy volunteer.

Fig. 3. Estimation maps for MS patient data. Lesion-1 and lesion-2 are marked with red and blue arrows respectively.

the heterogeneity of lesions [10] in MS patients and be used
as potential biomarkers to have information on the MS lesion
growth stage. As a part of the future study we intend to val-
idate the observations by applying the proposed estimation
framework on more healthy controls and MS patient datasets.
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