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PENALIZATION OF GALTON-WATSON PROCESSES

ROMAIN ABRAHAM AND PIERRE DEBS

Abstract. We apply the penalization technique introduced by Roynette, Vallois, Yor for
Brownian motion to Galton-Watson processes with a penalizing function of the form P (x)sx

where P is a polynomial of degree p and s ∈ [0, 1]. We prove that the limiting martingales
obtained by this method are most of the time classical ones, except in the super-critical
case for s = 1 (or s → 1) where we obtain new martingales. If we make a change of
probability measure with this martingale, we obtain a multi-type Galton-Watson tree with
p distinguished infinite spines.

1. Introduction

Let (Zn)n≥0 be a Galton-Watson process (GW) associated with an offspring distribution
q = (qn, n ∈ N). We denote by µ the first moment of q and recall that the process is said to be
sub-critical (resp. critical, resp. super-critical) if µ < 1 (resp. µ = 1, resp. µ > 1) and that
the process suffers a.s. extinction in the sub-critical and critial cases (unless the degenerate
case q1 = 1) whereas it has a positive probability 1− κ of survival in the super-critical case.
Moreover, the constant κ is the smallest positive fix point of the generating function f of q.
We refer to [4] for general results on GW processes.

It is easy to check that the two processes (Zn/µ
n)n≥0 and (κZn−1)n≥0 are martingales with

respect to the natural filtration (Fn)n≥0 associated with (Zn)n≥0, with mean 1. Moreover,

given a martingale (Mn)n≥0 with mean 1, we can define a new process (Z̃n)n≥0 by a change
of probability: for every nonnegative measurable functional ϕ, we have

E

[
ϕ(Z̃k, 0 ≤ k ≤ n)

]
= E [Mnϕ(Zk, 0 ≤ k ≤ n)] .

The distribution of the process Z̃ and of its genealogical tree is well-known for the two
previous martingales. In the sub-critical or critical case, the process associated with the
martingale (Zn/µ

n)n≥0 is the so-called sized-biased GW and is a two-type GW. It can also
be viewed as a version of the process conditioned on non-extinction, see [11]. The associated
genealogical tree is composed of an infinite spine on which are grafted trees distributed
as the original one. In the super-critical case, if κ 6= 0, the process associated with the
martingale (κZn−1)n≥0 is the original GW conditioned on extinction. It is a sub-critical GW

with generating function f̃(·) = f(κ ·)/κ and mean µ̃ = f ′(κ). By combining these two
results, we get a third martingale namely

(1) M (1)
n =

Znκ
Zn−1

f ′(κ)n

and the associated process Z̃ is distributed, if 0 < κ < 1, as the size-biased process of the
GW conditioned on extinction.
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2 ROMAIN ABRAHAM AND PIERRE DEBS

A general method called penalization has been introduced by Roynette, Vallois and Yor
[15, 14, 16] in the case of the one-dimensional Brownian motion to generate new martingales
and to define, by a change of measure, Brownian-like processes conditioned on some specific
zero-probability events. This method has also been used for similar problems applied to
random walks, [5, 6]. It consists in our case in considering a function ϕ(n, x) and studying
the limit

(2) lim
m→+∞

E [1Λnϕ(m+ n,Zm+n)]

E[ϕ(m+ n,Zm+n)]

with Λn ∈ Fn. If this limit exists, it takes the form E[1ΛnMn] where the process (Mn)n∈N is
a positive martingale with M0 = 1 (see [17] for more details).

The study of conditioned GW goes back to the seminal work of Kesten [11] and has recently
received a renewed interest, see [9, 2, 1], mainly because of the possibility of getting other
types of limiting trees than Kesten’s. This work can also be viewed as part of this problem.
For instance, penalizing by the martingale Zn/µ

n prevents the process from extinction (this
is the case considered in [11]) whereas considering the weight κZn−1 penalizes the paths where
the size of the population gets large.

In order to generalize the martingale (1), we first consider the function ϕ(x) = Hp(x)s
x

(that does not depend on n) for 0 < s < 1 where Hp denotes the p-th Hilbert’s polynomial
defined by

(3) H0(x) = 1 and Hp(x) =
1

p!

p−1∏

k=0

(x− k) for p ≥ 1.

We prove that the limit (2) exists for every s ∈ [0, 1) but we always get already known limiting
martingales. More precisely, see Theorems 3.3, 3.5 and 3.8, we have for every p ∈ N, every
s ∈ [0, 1), every n ∈ N and every Λn ∈ Fn,

• Critical and sub-critical case.

lim
m→+∞

E
[
1ΛnHp(Zm+n)s

Zm+n
]

E[Hp(Zm+n)sZm+n ]
=

{
E[1Λn] if p = 0,

E[Zn/µ
n
1Λn ] if p ≥ 1.

This result also holds in the critical case for s = 1.
• Super-critical case. We set a = min{k ≥ 0, qk > 0}. We have for every p ≥ 0,

lim
m→+∞

E
[
1ΛnHp(Zm+n)s

Zm+n
]

E[Hp(Zm+n)sZm+n ]
=





E
[
κZn−1

1Λn

]
if p = 0 and a = 0,

E

[
ZnκZn−1

f ′(κ)n 1Λn

]
if p ≥ 1 and a = 0,

E

[
1
qn1
1Zn=11Λn

]
if a = 1,

E

[
q
− a

n
−1

a−1
a 1Zn=a

n1Λn

]
if a ≥ 2.

Let us mention that the choice of the Hilbert’s polynomials is only here to ease the compu-
tations but does not have any influence on the limit. Considering any polynomial of degree
p that vanishes at 0 leads to the same limit as for Hp.

A more interesting feature is to consider, in the super-critical case, s = 1 or a sequence sn
that tends to 1. It appears that the correct speed of convergence, in order to get non-trivial
limits, leads to consider functions of the form

ϕp(n, x) = Hp(x)e
−ax/µn
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where a ∈ R+, see Theorem 4.2. We also describe the genealogical tree of Z̃, see Theorem 4.9,
which is the genealogical tree of a non-homogeneous multi-type GW (the offspring distribution
of a node depends on its type and its generation). For the tree associated with the function
ϕp, the types of the nodes run from 0 to p, the root being of type p. Moreover, the sum of
the types of the offspring of one node is equal to the type of this node. Hence, nodes of type
0 give birth to nodes of type 0, nodes of type 1 give birth to one node of type 1 and nodes
of type 0, nodes of type 2 give birth to either one node of type 2 or two nodes of type 1, and
nodes of type 0, etc. For instance, the figure below gives some possible trees with a root of
type 2 or 3. The type of the node is written in it, black nodes are of type 0.

Figure 1. Trees with a root of respective type 2, 3 and 3.

We see that, if the root is of type p, the tree exhibits a skeleton with p infinite spines on
which are grafted trees of type 0. The distribution of such a tree is given in Definition 4.4.
Let us mention that the trees of type 0 already appear in [3] and may be infinite, the p-spines
of the skeleton are not the only infinite spines of the tree. Multi-spine trees have already
been considered, [13, 8], but they differ from those introduced here.

In the sub-critical case, if we suppose that there exists a second fix point κ for the generating
function f , the associated GW can be viewed as a super-critical GW conditioned on extinction
and can be obtained from this super-critical GW by a standard change of measure. Then by
combining the two changes of measure, the previous results can be used to get similar results
in such a sub-critical case, see Theorem 5.1.

The paper is organized as follows. In the second section, we introduce the formalism of
discrete trees that we use in all the paper and define the distribution of Galton-Watson trees.
In Section 3, we compute all the limits in the case s ∈ [0, 1). We then compute in Section 4
the limit in the super-critical case when sn → 1 and describe the distribution of the modified
genealogical tree. We deduce the same kind of results in the sub-critical case in Section 4
and finish with an appendix that contains a technical lemma on Hilbert polynomials that we
use in the proofs.
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2. Notations

2.1. The set of discrete trees. Let U =
⋃+∞

n=0(N
∗)n be the set of finite sequences of

positive integers with the convention (N∗)0 = {∂}. For every u ∈ U , we set |u| the length of
u i.e. the unique integer n ∈ N such that u ∈ (N∗)n. If u and v are two sequences of U , we
set uv the concatenation of the two sequences with the convention ∂u = u∂ = u. For every
u ∈ U \ {∂}, we define ū the unique element of U such that u = ūi for some i ∈ N∗.

A tree t rooted at u ∈ U is a subset of U that satisfies

• u ∈ t.
• ∀v ∈ U , |v| < |u| =⇒ v 6∈ t.
• ∀v ∈ t \ {u}, v̄ ∈ t.
• ∀v ∈ t, ∃kv(t) ∈ N, ∀i ∈ N∗, vi ∈ t ⇐⇒ i ≤ kv(t).

We denote by Tu the set of trees rooted at u and by T =
⋃

u∈U
Tu the set of all trees.

For a tree t ∈ T, we set H(t) its height:

H(t) = max{|u|, u ∈ t},

and we denote, for every h ∈ N∗, by T(h) (resp. T
(h)
u ) the subset of trees of T (resp. Tu) with

height less that h.
For every n ∈ N∗, we denote by 1n = (1, . . . , 1) ∈ (N∗)n, and we write for simplicity Tn

(resp. T
(h)
n ) instead of T1n (resp T

(h)
1n

).
For every t ∈ T and every u ∈ t, we set tu the subtree of t rooted at u i.e.

tu = {v ∈ t, ∃w ∈ U , v = uw}.

For every t ∈ T and every n ∈ N, we denote by zn(t) the number nodes of t at height n:

zn(t) = Card({u ∈ t, |u| = n}).

For every n ∈ N∗, we define on T the restriction operator rn by

∀t ∈ T, rn(t) = {u ∈ t, |u| ≤ n}.

Classical results give that the distribution of a random tree τ on T is characterized by the
family of probabilities (P(rn(τ) = t), n ∈ N∗, t ∈ T(n)).

2.2. Galton-Watson trees. Let q = (qn, n ∈ N) be a probability distribution on the
nonnegative integers. We set µ =

∑+∞
n=0 nqn its mean and always suppose that µ < +∞.

A T∂-valued random tree τ is said to be Galton-Watson tree with offspring distribution q

under P if, for every h ∈ N∗ and every t ∈ T
(h)
∂ ,

P(rh(τ) = t) =
∏

u∈rh−1(t)

qku(t).

The generation-size process defined by (Zn = zn(τ), n ∈ N) is the classical Galton-Watson
process with offspring distribution q starting with a single individual at time 0.

As we will later consider inhomogeneous Galton-Watson trees (whose offspring distribution
depends on the height of the node), we define for every k ∈ N the distribution Pk under which
the generation-size process is a Galton-Watson process starting with a single individual at
time k:

∀h > k, ∀t ∈ T
(h)
k , Pk(rh(τ) = t) =

∏

u∈rh−1(t)

qku(t).

In other word, the random tree τ under Pk is distributed as 1kτ under P, and P is equal to
P∂ .
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Let f denote the generating function of q and for every n ≥ 1, we set fn the n-fold iterate
of f :

f1 = f, ∀n ≥ 1, fn+1 = fn ◦ f.

Then fn is the generating function of the random variable Zn under P.
We recall now the classical result on the extinction probability of the Galton-Watson tree

and introduce some notations. We denote by {H(τ) < +∞} =
⋃

n∈N{Zn = 0} the extinction
event and denote by κ the extinction probability:

(4) κ = P(H(τ) < +∞).

Then, κ is the smallest non-negative root of f(s) = s. Moreover, we can prove that

(5) ∀s ∈ [0, 1), lim
n→+∞

fn(s) = κ.

We recall the three following cases:

• The sub-critical case (µ < 1): κ = 1.
• The critical case (µ = 1): κ = 1 (unless q1 = 1 and then κ = 0).
• The super-critical case (µ > 1): κ ∈ [0, 1), the process has a positive probability of
non-extinction.

In the super-critical case, we recall that

(6) a = min{k ≥ 0, qk > 0}

and we say that we are in the Schroeder case if a ≤ 1 (which implies f ′(κ) > 0) and in the
Bötcher case if a > 1 (in that case, we have κ = f ′(κ) = 0).

It is easy to check that the process (Zn/µ
n, n ∈ N) is a nonegative martingale under P

and hence converges a.s. toward a random variable denoted by W . Moreover, following
[18], we know that, in the super-critical case, if q satisfies the so-called L logL condition i.e.
E[Z1 logZ1] < +∞, then W is non-degenerate and P(W = 0) = κ.

Let us denote by φ the Laplace transform of W . Then, φ is the unique (up to a linear
change of variable) solution of Schroeder’s equation (see [18], Theorem 4.1):

(7) ∀a ≥ 0, f(φ(a)) = φ(aµ).

3. Standard limiting martingales

In this section, we study the penalization function

(8) ϕp(x) = Hp(x)s
x

for some fixed integer p ∈ N∗ and some fixed s ∈ [0, 1) (or s = 1 in the critical case).

3.1. A formula for the conditional expectation. Let n,m be non-negative integers.
According to the branching property, conditionally on Fn, we have

Zn+m
(d)
=

Zn∑

j=1

Z(j)
m

where the sequence (Z(j), j ≥ 1) are i.i.d. copies of Z. Therefore we deduce that, for every
s ∈ [0, 1), we have

(9) E[sZm+n |Fn] = E




Zn∏

j=1

sZ
(j)
m

∣∣∣∣ Fn


 =

Zn∏

j=1

E

[
sZ

(j)
m

]
= fm(s)Zn .
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Let us denote by

(10) Si,p =

{
(n1, . . . , ni) ∈ (N∗)i,

i∑

k=1

ni = p

}
.

We have the following result:

Lemma 3.1. Let p ∈ N∗ and let q be an offspring distribution with a finite p-th moment.
For every n,m ∈ N and every s ∈ [0, 1), we have

(11) E

[
Hp(Zn+m)sZn+m−p

∣∣∣ Fn

]
=

p∑

i=1

Hi(Zn)fm(s)Zn−i
∑

(n1,...,ni)∈Si,p

i∏

j=1

f
(nj)
m (s)

nj!
·

Proof. First recall Faà di Bruno’s formula:

(12)
dp

dxp
f
(
g(x)

)
= p!

p∑

i=1

1

i!
f (i)
(
g(x)

) ∑

(n1,...,ni)∈Si,p

i∏

j=1

g(nj)(x)

nj!
·

Using (9), we get

E
[
Hp(Zn+m)sZn+m−p|Fn

]
=

1

p!

dp

dsp
(
E[sZn+m |Fn]

)
=

1

p!

dp

dsp
(
fm(s)Zn

)

=

p∑

i=1

Hi(Zn)fm(s)Zn−i
∑

(n1,...,ni)∈Si,p

i∏

j=1

f
(nj)
m (s)

nj!

�

3.2. The limiting martingale for s ∈ [0, 1) in the non-critical case.

Lemma 3.2. Let p ∈ N∗ and q be a non-critical offspring distribution that satisfies the
L log L condition. We suppose that we are in the Schroeder case if q is super-critical. Then,
there exists a positive function Cp, such that for all s ∈ [0, 1):

(13) f (p)
n (s) ∼

n→+∞
Cp(s)γ

n

where γ = f ′(κ) ∈ (0, 1).

Note that the L logL condition in the sub-critical case is needed to avoid C1 ≡ 0 (see [4]
pp. 38).

Proof. The case p = 1 is classical (with C1(s) = 1) and can be found be found in [4] (pp. 38).
The rest of the proof is a generalisation of the case p = 2 found in [10].

Assume that (13) is true for all j ≤ p− 1. Using again Faà di Bruno’s formula, we get:

f
(p)
n+1(s)

f ′
n+1(s)

=
p!

f ′
n+1(s)

p∑

i=1

1

i!
f (i)(fn(s))

∑

(n1,...,ni)∈Si,p

i∏

j=1

f
(nj)
n (s)

nj!

=
p!

f ′
n+1(s)

p∑

i=2

1

i!
f (i)(fn(s))

∑

(n1,...,ni)∈Si,p

i∏

j=1

f
(nj)
n (s)

nj!

+
f ′(fn(s))f

(p)
n (s)

f ′
n(s)f

′(fn(s))
·
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Therefore, we get

(14)
f
(p)
n+1(s)

f ′
n+1(s)

−
f
(p)
n (s)

f ′
n(s)

=

p∑

i=2

p!

i!
f (i)(fn(s))

1

f ′
n+1(s)

∑

(n1,...,ni)∈Si,p

i∏

j=1

f
(nj)
n (s)

nj!

For every 2 ≤ i ≤ p and every (n1, . . . , ni) ∈ Si,p, as nj < p for every j ≤ i, we can use the
induction hypothesis and deduce that there exists a positive constant K such that

(15)
1

f ′
n+1(s)

i∏

j=1

f
(nj)
n (s)

nj!
∼

n→+∞
Kγn(i−1).

The continuity of f (j) and (5) imply that limn→∞ f (j)(fn(s)) = f (j)(κ) for all j ≥ 1, thus
formulas (14) and (15) implies that

f
(p)
n+1(s)

f ′
n+1(s)

−
f
(p)
n (s)

f ′
n(s)

∼
n→+∞

K ′γn

for some constant K ′ > 0.
As γ ∈ (0, 1), uniformly on any compact of (0, 1):

0 < Cp(s) := lim
n→+∞

f
(p)
n (s)

f ′
n(s)

=
f
(p)
1 (s)

f ′
1(s)

+
∑

n≥1

f
(p)
n+1(s)

f ′
n+1(s)

−
f
(p)
n (s)

f ′
n(s)

< +∞

which is equivalent to f
(p)
n (s) ∼

n→+∞
Cp(s)f

′
n(s). Applying again the lemma for p = 1 gives

the result. �

We can now state the main results concerning the limit of (2) with the penalization function
(8). We must separate two cases for super-critical offspring distributions depending on q0 > 0
(which is equivalent to κ > 0) or q0 = 0 (which is equivalent to κ = 0).

Theorem 3.3. Let p ∈ N and let q be a non-critical offspring distribution that admits a
moment of order p (and satisfies the L log L condition if p = 1). We assume furthermore
that q0 > 0 (which is true if q is sub-critical). Then, for every s ∈ [0, 1), every n ∈ N and
every Λn ∈ Fn, we have

(16) lim
m→+∞

E
[
Hp(Zm+n)s

Zm+n1Λn

]

E[Hp(Zm+n)sZm+n ]
= E

[
M̃ (p)

n 1Λn

]

with M̃ (p)
n =

{
κZn−1 if p = 0,
ZnκZn−1

f ′(κ)n if p ≥ 1.

Proof. Let us first consider the case p = 0. Using Equation (9), we get

E[sZm+n
∣∣ Fn]

E[sZm+n ]
=

fm(s)Zn

fm+n(s)
·

As, for every s ∈ [0, 1), limm→+∞ fm(s) = κ > 0, we get

lim
m→+∞

E[sZm+n
∣∣ Fn]

E[sZm+n ]
= κZn−1.

Moreover, using the increasing property of (fn(s))n≥1 in s and n, we have

0 ≤
fm(s)Zn

fm+n(s)
≤

1

q0
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so the dominated convergence theorem gives the result.

Let us now suppose that p ≥ 1. Applying (13), as 0 < γ < 1, we get that, for every i ≥ 1,

∑

(n1,...,ni)∈Si,p

i∏

j=1

f
(nj)
m (s)

nj!
= Cγmi + o(γmi)

for some constant C. Therefore, in (11), we get that the term for i = 1 is dominant when
m → +∞ and therefore

E

[
Hp(Zn+m)sZn+m−p

∣∣∣ Fn

]
=

1

p!
Znfm(s)Zn−1f (p)

m (s)+o(γm) =
1

p!
Cp(s)Znκ

Zn−1γm+o(γm).

Moreover, as for every 1 ≤ i ≤ p, we have

Hi(Zn)fm(s)Zn−i = Hi(Zn)fm(s)Zn−i
1Zn≥i ≤ Hi(Zn),

we have by dominated convergence

lim
m→+∞

E
[
Hi(Zn)fm(s)Zn−i

]
= E

[
Hi(Zn)κ

Zn−i
]
,

and by the same arguments as above, we get

∀Λn ∈ Fn, E
[
Hp(Zn+m)sZn+m−p

1Λn

]
=

1

p!
Cp(s)E

[
Znκ

Zn−1
1Λn

]
γm + o(γm).

Using (11) with n = 0 and (13), we have for m → +∞,

E
[
Hp(Zn+m)sZn+m−p

]
=

1

p!
f
(p)
n+m(s) =

1

p!
Cp(s)γ

n+m + o(γn+m).

Combining these two asymptotics yields

lim
m→+∞

E[Hp(Zm+n)s
Zm+n1Λn ]

E[Hp(Zm+n)sZm+n ]
= E

[
Znκ

Zn−1

γn
1Λn

]
= E

[
Znκ

Zn−1

f ′(κ)n
1Λn

]
.

�

Remark 3.4. Let P be a polynomial of degree p > 0 that vanishes at 0. Therefore, there
exists constants (αk)1≤k≤p such that

P =

p∑

k=1

αkHk.

Then, the previous asymptotics give, for every n,m ∈ N and every Λn ∈ Fn,

E
[
P (Zm+n)s

Zm+n1Λn

]
=

(
p∑

k=1

αk
sk

k!
Ck(s)

)
E
[
Znκ

Zn−1
1Λn

]
γm + o(γm)

and

E
[
P (Zm+n)s

Zm+n
]
=

(
p∑

k=1

αk
sk

k!
Ck(s)

)
γm+n + o(γm)

which implies that we obtain the same limit with P or with Hp in the penalizing function.

Recall Definition (6) of a.
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Theorem 3.5. Let q be a super-critical offspring distribution that admits a moment of order
p ∈ N, and let us suppose that a > 0 (or equivalently q0 = 0). Then, for every s ∈ (0, 1),
every n ∈ N and every Λn ∈ Fn, we have

(17) lim
m→+∞

E
[
Hp(Zm+n)s

Zm+n1Λn

]

E[Hp(Zm+n)sZm+n ]
=




E
[
q−n
1 1Zn=11Λn

]
if a = 1,

E

[
q
− a

n
−1

a−1
a 1Zn=a

n1Λn

]
if a ≥ 2.

Proof. The reasoning is similar to the previous one.
Let us first consider the case p = 0, a = 1. In that case, we have (see [4] pp. 40 Corollary

1),

(18) ∀s ∈ (0, 1), fm(s) ∼ C1(s)f
′(0)m = C1(s)q

m
1

for a positive function C1(s). Therefore

E[sZm+n
∣∣ Fn]

E[sZm+n ]
=

fm(s)Zn

fm+n(s)
∼ q

m(Zn−1)
1 q−n

1

which converges to 0 if Zn > 1 and to q−n
1 if Zn = 1. We conclude then by dominated

convergence as fm(s)Zn/fm+n(s) ≤ f2(0)
−1 for all m ≥ 2.

Let us now suppose that p ≥ 1 and a = 1. Using (11), Lemma 3.2 and (18), we have

E

[
Hp(Zn+m)sZn+m−p

∣∣∣ Fn

]
=

n∑

i=1

CiHi(Zn)q
mZn

1 (1 + o(1))

for some constants Ci (note that γ = f ′(0) = q1 here) and

E
[
Hp(Zn+m)sZn+m−p

]
=

1

p!
f
(p)
n+m(s) =

1

p!
Cp(s)q

n+m
1 + o(qm1 )

which yields for some constant K > 0

E

[
Hp(Zn+m)sZn+m

∣∣∣ Fn

]

E [Hp(Zn+m)sZn+m ]
∼ Kq−n

1 q
m(Zn−1)
1

n∑

i=1

CiHi(Zn).

This ratio tends to 0 if Zn > 1 and to K ′q−n
1 otherwise, with K ′ > 0. Dominated convergence

Theorem ensures the existence of the limit (17) and we can easily find that K ′ = 1 recalling
that necessarily (K ′q−n

1 1Zn=1)n≥0 is a martingale with mean equals to 1.
For the case a ≥ 2, we use the asymptotics given in the following lemma whose proof is

postponed after the current proof.

Lemma 3.6. For every p ∈ N and every s ∈ (0, 1), there exists a positive constant Kp(s)
such that

f (p)
m (s) = Kp(s)a

mpea
mb(s) (1 + o(1))

where

b(s) = log s+

+∞∑

j=0

a
−j−1 log

fj+1(s)

fj(s)a
,

In that case, we have for p = 0 as m → +∞

E[sZm+n
∣∣ Fn]

E[sZm+n ]
=

fm(s)Zn

fm+n(s)
∼ K0(s)

Zn−1ea
mb(s)(Zn−a

n) −→
m→+∞

K0(s)
a
n−1

1Zn=a
n
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since b(s) < 0. We conclude either by saying that K0(s) = q
−1/a−1
a by [7] Lemma 10, or by

using the fact that the limit is a martingale with mean 1.
For p ≥ 1, we use Lemma 3.6 to get that, for every 1 ≤ i ≤ p and every (n1, . . . , ni) ∈ Si,p,

we have as m → +∞,

i∏

j=1

f
(nj)
m (s)

nj!
∼

i∏

j=1

Knj
(s)am.njea

mb(s)/nj ! = K(s)ampea
mb(s)i

for some constant K(s). Hence, we have for 1 ≤ i ≤ p,

∑

(n1,...,ni)∈Si,p

i∏

j=1

f
(nj)
m (s)

nj!
∼ K̃i(s)a

mpea
mb(s)i

for another constant K̃i(s) since all the terms in the sum are nonnegative and of the same
order.

Finally, using (11), we get

E
[
Hp(Zn+m)sZn+m−p

∣∣ Fn

]
=

p∑

i=1

Hi(Zn)fm(s)Zn−i
∑

(n1,...,ni)∈Si,p

i∏

j=1

f
(nj)
m (s)

nj!

∼

p∑

i=1

K0(s)
Zn−iK̃i(s)Hi(Zn)e

a
m(Zn−i)b(s)

a
mpea

mb(s)i

= K̂(s, Zn)e
a
mZnb(s)

a
mp

for some function K̂, again since all the terms of the sum are nonnegative and of the same
order.

This gives

E
[
Hp(Zn+m)sZn+m−p

∣∣ Fn

]

E [Hp(Zn+m)sZn+m−p]
∼

K̂(s, Zn)

Kp(s)
a
−npea

mb(s)(Zn−a
n) −→

m→+∞
Cn1Zn=a

n

where Cn is a constant depending on n that is computed again by saying that the limit is a
martingale with mean 1. �

Remark 3.7. The same arguments as in Remark 3.4 can be used to show that the limit does
not depend of the choice of the polynomial

We now finish this section with the proof of Lemma 3.6.

Proof of Lemma 3.6. In the proof, the letter K will denote a constant that depends on s and
may change from line to line.

Lemma 10 in [7] states that, for every δ > 0 and every s ∈ (0, 1 − δ), we have

fm(s) = q
−1/(a−1)
a ea

mb(s)
(
1 + o(e−δam)

)

which implies the result for p = 0.
To prove the result for p = 1, we follow the same ideas as in the proof of [7], Lemma 10.

We still consider s ∈ (0, 1 − δ) for some δ > 0. First, we have

f ′
m+1(s) = f ′

m(s)f ′(fm(s)) = f ′
m(s)

+∞∑

k=0

(a+ k)qa+kfm(s)a+k−1,
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which gives

0 ≤
f ′
m+1(s)

f ′
m(s)aqafm(s)a−1

− 1 ≤
+∞∑

k=1

(a+ k)qa+k

aqa
fm(s)

≤ Kea
mb(s)

by Lemma 13 of [7]. Therefore, as ln(1 + u) ≤ u for every nonnegative u, we have

0 ≤ ln

(
f ′
m+1(s)

f ′
m(s)aqafm(s)a−1

)
≤ Kea

mb(s)

which implies that the series

+∞∑

n=0

ln

(
f ′
m+1(s)

f ′
m(s)aqafm(s)a−1

)

converges. Using the asymptotics for fm(s) of Lemma 10 of [7] we get that

ln

(
f ′
m+1(s)

f ′
m(s)aeam(a−1)b(s)

)
∼ ln

(
f ′
m+1(s)

f ′
m(s)aqafm(s)a−1

)

and hence that the series

b̃(s) :=
+∞∑

m=0

ln

(
f ′
m+1(s)

f ′
m(s)aeam(a−1)b(s)

)

converges.
Moreover, as

ln
f ′
m(s)

a
me(am−1)b(s)

= b̃(s)−
+∞∑

k=m

ln

(
f ′
k+1(s)

f ′
k(s)ae

a
k(a−1)b(s)

)
= b̃(s) + o(1),

we obtain
f ′
m(s)

a
me(am−1)b(s)

= eb̃(s)(1 + o(1))

which is the looked after formula for p = 1.

We finish the proof by induction on p as for the proof of Lemma 3.2. Let p ≥ 2 and let us
suppose that the asymptotics of Lemma 3.6 are true for every j < p. Recall Equation (14)

(19)
f
(p)
m+1(s)

f ′
m+1(s)

−
f
(p)
m (s)

f ′
m(s)

=

p∑

i=2

p!

i!
f (i)(fm(s))

1

f ′
m+1(s)

∑

(n1,...,ni)∈Si,p

i∏

j=1

f
(nj)
m (s)

nj!

By the induction assumption, we have for every 1 ≤ i ≤ p, using the same computations as
in the proof of Theorem 3.5,

∑

(n1,...,ni)∈Si,p

i∏

j=1

f
(nj)
m (s)

nj!
∼ Ka

mpea
mb(s)i.

We also have

f ′
m+1(s) ∼ Ka

mea
m+1b(s)
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and for every i ≥ 2,

f (i)(fm(s)) =

{
Kfm(s)

a−i(1 + o(1)) if i < a,

O(1) if i ≥ a,

=

{
Kea

m(a−i)b(s)(1 + o(1)) if i < a,

O(1) if i ≥ a.

Hence, in the sum of (19), the terms for i ≤ a (which exist since a ≥ 2) are dominant and
of order Ka

m(p−1).
We get

f
(p)
m+1(s)

f ′
m+1(s)

−
f
(p)
m (s)

f ′
m(s)

∼ Ka
m(p−1)

and, as the series diverge (ap−1 > 1), the partial sums are also equivalent, which gives

f (p)
m (s) ∼ Ka

m(p−1)f ′
m(s) ∼ Ka

mpea
mb(s)

using the result for p = 1. �

3.3. The limiting martingale for s ∈ [0, 1] in the critical case. We finish with the
result for a critical offspring distribution. As the arguments are the same as for the proof of
Theorem 3.3, we only give the main lines in the proof of the following theorem.

Theorem 3.8. Let q be a critical offspring distribution that admits a moment of order p ∈ N.
Then, for every s ∈ [0, 1], every n ∈ N and every Λn ∈ Fn, we have

lim
m→+∞

E[Hp(Zm+n)s
Zm+n1Λn ]

E[Hp(Zm+n)sZm+n ]
=

{
E[1Λn ] if p = 0,

E[Zn1Λn ] if p ≥ 1.

Proof. We first study the case s ∈ [0, 1).
For p = 0, the proof of Theorem 3.3 still applies with κ = 1.
For p = 1, note that according to the dominated convergence theorem

E[Zn+msZn+m−1|Fn]

f ′
m+n(s)

=
E[Zn+msZn+m−1|Fn]

E[Zn+msZn+m−1]
=

Znfm(s)Zn−1f ′
m(s)

E[Znfm(s)Zn−1f ′
m(s)]

=
Znfm(s)Zn−1

E[Znfm(s)Zn−1]

−→
m→+∞

Zn

E[Zn]
= Zn

giving our result. Moreover we can deduce from this limit’s ratio that for all n ≥ 0, when m
goes to infinity

(20) f ′
m+n(s) ∼ f ′

m(s).

We then replace Lemma 3.2 by the following asymptotics for f
(p)
n (s) whose proof is post-

poned at the end of the section.

Lemma 3.9. In the critical case, for every p ≥ 1, there exists a positive function Cp, such
that for all s ∈ [0, 1):

(21) f (p)
n (s) ∼

n→+∞
Cp(s)f

′
n(s)
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The result then follows using the same arguments as in the proof of Theorem 3.3.

Let us now consider the case s = 1. The case p = 0 is trivial, so let us suppose that p ≥ 1.
Equation (11) applied to s = 1 and m = 1 gives

E[Hp(Zn+1)|Fn] =

p∑

i=1

Hi(Zn)
∑

(n1,...,ni)∈Si,p

i∏

j=1

1

nj!
E[Hnj

(Z1)]

and an easy induction on n and p gives the following lemma.

Lemma 3.10. Let q be a critical offspring distribution that admits a moment of order p.
Then there exists a polynomial P of degree p− 1 such that, for every n ≥ 0,

E[Hp(Zn)] = P (n).

This gives asympotics of E[Hp(Zn)] of the form cnp−1 as n → +∞. Plugging these asymp-
totics in (11) and arguing as in the proof of Theorem 3.3 gives the result.

�

Proof of Lemma 3.9. We first need to prove that
∑

n≥0 f
′
n(s) < +∞. Let G be the function

defined on [0, 1) by

G(s) :=
∑

k≥1

sk
∑

n≥0

P(Zn = k) =
∑

n≥0

∑

k≥1

skP(Zn = k) =
∑

n≥0

(fn(s)− fn(0)).(22)

According to [12] pp.584, there exists a function U , such that for s ∈ [0, 1):

lim
n→+∞

n2(fn(s)− fn(0)) = U(s) < ∞

implying that G is a power series that converges on [0, 1) and we have on this interval

G′(s) =
∑

n≥0

f ′
n(s) < +∞.

The rest of the proof is very similar to the one of Lemma 3.2: using (20) and the induction
hypothesis, the equivalent of formula (15) is

(23)
1

f ′
n+1(s)

i∏

j=1

f
(nj)
n (s)

nj!
∼

n→+∞
K(f ′

n(s))
(i−1)

implying that

f
(p)
n+1(s)

f ′
n+1(s)

−
f
(p)
n (s)

f ′
n(s)

∼
n→+∞

K ′f ′
n(s)

for some constant K ′ > 0. Consequently

0 < Cp(s) := lim
n→+∞

f
(p)
n (s)

f ′
n(s)

=
f
(p)
1 (s)

f ′
1(s)

+
∑

n≥1

f
(p)
n+1(s)

f ′
n+1(s)

−
f
(p)
n (s)

f ′
n(s)

< +∞

which is equivalent to f
(p)
n (s) ∼

n→+∞
Cp(s)f

′
n(s). �
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4. A new martingale in the super-critical case when s → 1

We are now considering the same penalization function (8) but with s = 1 or with s
replaced by a sequence (sn) that tends to 1. More precisely, we consider functions of the
form

(24) ϕp(n, x) = Hp(x)e
−ax/µn

for some non-negative constant a.

4.1. The limiting martingale. Recall that Hp denotes the p-th Hilbert polynomial defined
by (3) and φ the Laplace transform of W the limit of the martingale (Zn/µn)n≥0.

For every a ≥ 0, every p ∈ N∗ and every n ∈ N, we set, for every x ∈ R,

(25) G(p)
n (x) =

p!

φ(p)(a)

p∑

i=1

a
(p)
i (n)φ(a/µn)x−iHi(x)

with

(26) a
(p)
i (n) =

∑

(n1,...,ni)∈Si,p

i∏

r=1

φ(nr)(a/µn)

nr!
·

Let us first state the following relation between the coefficients a
(p)
i (n) that will be used

further.

Lemma 4.1. For every i ∈ N∗ and every (s1, . . . si) ∈ (N∗)i, let us set w =
∑i

j=1 sj. Then,
we have for every n, p ≥ 0,

∑

(ℓ1,...,ℓi)∈Si,p

i∏

j=1

a
(ℓj)
sj (n) = a(p)w (n)

Proof. Let us consider the polynomial

P (X) =

p∑

k=1

φ(k)(a/µn)

k!
Xk.

Then, by (26), a
(ℓ)
s (n) is the coefficient of order ℓ of the polynomial P s for every s ≤ ℓ ≤ p.

The lemma is then just a consequence of the formula

i∏

j=1

P sj(X) = Pw(X).

�

Theorem 4.2. Let p ∈ N∗. Let q be a super-critical offspring distribution that admits a
moment of order p. Then, for every a ≥ 0, every n ∈ N, and every Λn ∈ Fn,

lim
m→+∞

E

[
Hp(Zm+n)e

−aZm+n/µm+n
1Λn

]

E
[
Hp(Zm+n)e−aZm+n/µm+n

] = E

[
1

µpn
G(p)

n (Zn)1Λn

]
.

Proof. Let us first remark that for all k ∈ {0, . . . ,m}

(27)
1

µmk
f (k)
m

(
e
− a

µm+n

)
= E

[
e
−aZm−k

µn+m

k∏

i=1

Zm − i+ 1

µm

]
−→

m→+∞
(−1)kφ(k)

(
a

µn

)
.
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And, by the same argument, we have

1

µp(m+n)
E

[
Hp(Zm+n)e

−a
Zm+n

µm+n

]
=

1

p!
E

[
e
−a

Zm+n

µm+n

p∏

i=1

Zm+n − i+ 1

µm+n

]
−→

m→+∞
(−1)p

φ(p)(a)

p!
·

Using Lemma 3.1 and (27), we get

1

µpm
E

[
Hp(Zm+n)e

−a
Zm+n

µm+n

∣∣∣ Fn

]

= e
− pa

µm+n

p∑

i=1

Hi(Zn)fm(e
− a

µm+n )Zn−i
∑

(n1,...,ni)∈Si,p

i∏

j=1

f
(nj)
m (e

− a

µn+m )

nj!µnjm

−→
m→+∞

p∑

i=1

Hi(Zn)φ(a/µ
n)Zn−i

∑

(n1,...,ni)∈Si,p

i∏

j=1

(−1)nj
φ(nj)(a/µn)

nj!

= (−1)p
p∑

i=1

Hi(Zn)φ(a/µ
n)Zn−i

∑

(n1,...,ni)∈Si,p

i∏

j=1

φ(nj)(a/µn)

nj!
·

Again, for every 1 ≤ i ≤ p, we have Hi(Zn)fm(e−a/µm+n
)Zn−i ≤ Hi(Zn) so, by dominated

convergence, we get

lim
n→+∞

E

[
Hp(Zm+n)e

−a
Zm+n

µm+n
1Λn

]

E

[
Hp(Zm+n)e

−a
Zm+n

µm+n

]

=
1

µpn

p!

φ(p)(a)

p∑

i=1

Hi(Zn)φ(a/µ
n)Zn−i

∑

(n1,...,ni)∈Si,p

i∏

j=1

φ(nj)(a/µn)

nj!
·

�

We end this subsection with the following uniqueness result concerning the limiting mar-
tingale in the homogeneous case i.e. a = 0.

Proposition 4.3. Let p ≥ 1. There exists a unique polynomial Pp of degree p that vanishes

at 0 such that the process (X
(p)
n )n≥0 defined by

X(p)
n =

1

µpn
Pp(Zn)

is a martingale with mean 1.

Proof. Existence is given by Theorem 4.2.
For uniqueness, let us write

Pk =

k∑

i=1

c
(k)
i Hi(Zn)

and let us suppose that X
(k)
n is a martingale with mean 1 for every 1 ≤ k ≤ p. This implies

by taking the expectation that, for every n ≥ 0 and every k ≤ p,

(28)
k∑

i=1

1

i!
c
(k)
i f (i)

n (1) = µkn.
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If we set for 1 ≤ i, j ≤ p

fij = f
(j)
i−1(1), cij =

{
c
(j)
i if i ≤ j,

0 if i > j,
mij = µ(i−1)j

and if we consider the square matrices of order p

F = (fij)1≤i,j≤p, C = (cij)1≤i,j≤p, M = (mij)1≤i,j≤p,

Equations (28) for 0 ≤ n ≤ p− 1 write

(29) FC = M

where C contains the unknown variables.
We know that, if c

(k)
i = a

(k)
i where the a

(k)
i are defined by (26) with a = 0 (and hence do

not depend on n), C is indeed a solution of Equation (29) and is triangular with positive
coefficients and hence detC 6= 0. M is a Vandermond matrix and hence also satisfies detM 6=
0. Equation (29) hence implies detF = detM/detC 6= 0 which proves that F is invertible
and that (29) has a unique solution.

�

This proposition implies in particular that the choice of Hp in Theorem 4.2 (if a = 0) in the
penalizing function is not relevant and any other polynomial of degree p > 1 that vanishes
at 0 gives the same limit.

4.2. Distribution of the penalized tree. In this section, we fix an integer p ≥ 0 and
consider an offspring distribution q that admits a p-th moment (and that satisfies the L logL
condtion if p < 2).

For every n ≥ n0, we consider the function

G(p)
n,n0

(x) =





φ(a/µn)x

φ(a/µn0)
if p = 0

p!

φ(p)(a/µn0)

p∑

i=1

a
(p)
i (n)Hi(x)φ(a/µ

n)x−i if p ≥ 1

with a
(p)
i (n) defined by (26) and we consider the martingale

M (p)
n,n0

=
1

µp(n−n0)
G(p)

n,n0
(Zn)

We then define a new probability measure Q
p
n0 on T by

(30) ∀n ≥ n0,
dQ

(p)
n0

dPn0 |Fn

= M (p)
n,n0

.

We now define another probability measure Q
(p)
n0 on T as follows

Definition 4.4. Under Q
(p)
n0 , the random tree τ is distributed as an inhomogeneous multi-type

Galton-Watson tree as follows

• The types of the nodes run from 0 to p.
• The root of τ is of type p and starts at height n0.



PENALIZATION OF GW PROCESSES 17

• A node of type ℓ at height n gives, independently of the other nodes, k offspring with
respective types (ℓ1, . . . , ℓk) such that ℓ1 + · · ·+ ℓk = ℓ with probability

qk
1

µℓ

ℓ!

φ(ℓ)(a/µn)

k∏

j=1

φ(ℓj)(a/µn+1)

ℓj!
·

Remark 4.5. A node of type 0 at height n gives k offspring with probability

q0k(n) = qk
φ(a/µn+1)k

φ(a/µn)
,

all of them being of type 0.
Remark also that q0k(n) = qk if a = 0.

Remark 4.6. If a node is of type ℓ > 0, the condition ℓ1 + · · ·+ ℓk = ℓ implies that this node
has at least one offspring with non-zero type.

Remark 4.7. The last property also writes: A node of type ℓ at height n gives, independently
of the other nodes, k offspring, k−i being of type 0, and i of respective types (ℓ1, . . . , ℓi) ∈ Si,ℓ,
with probability

(31) qk
ℓ!

µℓ

φ(a/µn+1)k−i

φ(ℓ)(a/µn)

(
k

i

) i∏

j=1

φ(ℓj)(a/µn+1)

ℓj !
·

The i nodes with non-zero types are uniformly chosen among the k offspring.
This equivalent formulation will be used in all the next proofs.

Lemma 4.8. Equation (31) indeed defines a probability distribution.

Proof. We must prove that

+∞∑

k=1

k∧ℓ∑

i=1

∑

(ℓ1,...,ℓi)∈Si,ℓ

qk
ℓ!

µℓ

φ(a/µn+1)k−i

φ(ℓ)(a/µn)

(
k

i

) i∏

j=1

φ(ℓj)(a/µn+1)

ℓj !
= 1.

First remark that formula (26) gives:

∑

(ℓ1,...,ℓi)∈Si,ℓ

i∏

j=1

φ(ℓj)(a/µn+1)

ℓj!
= a

(ℓ)
i (n+ 1).

Now, as M
(ℓ)
n+1,n is a martingale with mean one, we have by taking the expectation

ℓ!

µℓφ(ℓ)(a/µn)

ℓ∑

i=1

a
(ℓ)
i (n+ 1)En

[
Hi(Zn+1)φ(a/µ

n+1)Zn+1−i
]
= 1

⇐⇒
ℓ!

µℓφ(ℓ)(a/µn)

ℓ∑

i=1

a
(ℓ)
i (n+ 1)

+∞∑

k=i

qkHi(k)φ(a/µ
n+1)k−i = 1,

which ends the proof by inverting the sums and noting that Hi(k) =
(k
i

)
. �

Theorem 4.9. For every n0 ≥ 0 the probability measures Q
(p)
n0 end Q

(p)
n0 coincide.
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Proof. To prove the theorem, it suffices to prove that,

(32) ∀n ≥ n0, ∀t ∈ Tn
n0
, Q(p)

n0
(rn(τ) = t) = Q(p)

n0
(rn(τ) = t)

We prove this formula by induction on p.

For p = 0, we have, for every n > n0 (the case n = n0 is trivial as the tree rn(τ) is reduced
to the root),

Q(0)
n0

(rn(τ) = t) =

n−1∏

r=n0

∏

{u∈t,|u|=r}

q0ku(t)(r) =

n−1∏

r=n0

∏

{u∈t,|u|=r}

qku(t)
φ(a/µr+1)ku(t)

φ(a/µr)

=

(
n−1∏

r=n0

φ(a/µr+1)zr+1(t)

φ(a/µr)zr(t)

)
Pn0(rn(τ) = t)

=
φ(a/µn)zn(t)

φ(a/µn0)
Pn0(rn(τ) = t) = Q(0)

n0
(rn(τ) = t)

since zn0(t) = 1.
Let us now suppose that (32) is true for every p′ < p. We prove that the property is true

at rank p by induction on n.
We have already mentioned that the formula is trivially true for n = n0.
Let us now fix n > n0 and let us suppose that the formula is true at rank p for every n′ < n

and let us prove it for n. Let t ∈ T
(n)
n0 and let us denote by k0 the number of offspring of the

root of t. We denote by t1, . . . , tk0 the (ordered) sub-trees of t above the first generation.
By decomposing according to the offspring of the root, we have

Q(p)
n0

(rn(τ) = t) =
p!

µp
qk0

k0∧p∑

i=1

(
k0
i

)
φ(a/µn0+1)k0−i

φ(p)(a/µn0)

∑

(ℓ1,...,ℓi)∈Si,p




i∏

j=1

φ(ℓj)(a/µn0+1)

ℓj!




×
1(
k0
i

)
∑

1≤r1<···<ri≤k0




i∏

j=1

Q
(ℓj)
n0+1(rn(τ) = trj)


×




∏

1≤k≤k0
k 6∈{r1,...,ri}

Q
(0)
n0+1(rn(τ) = tk)


 .

Therefore, as

Pn0(rn(τ) = t) = qk0

k0∏

j=1

Pn0+1(rn(τ) = tj),
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we have

µp(n−n0)Q
(p)
n0 (rn(τ) = t)

Pn0(rn(τ = t))
= p!

k0∧p∑

i=1

φ(a/µn0+1)k0−i

φ(p)(a/µn0)

∑

(ℓ1,...,ℓi)∈Si,p




i∏

j=1

φ(ℓj)(a/µn0+1)

ℓj!




×
∑

1≤r1<···<ri≤k0




i∏

j=1

Q
(ℓj)
n0+1(rn(τ) = trj)

Pn0+1(rn(τ) = tℓj)
µℓj(n−n0−1)




×




∏

1≤k≤k0
k 6∈{r1,...,ri}

Q
(0)
n0+1(rn(τ) = tk)

Pn0+1(rn(τ) = tk)




= p!

k0∧p∑

i=1

φ(a/µn0+1)k0−i

φ(p)(a/µn0)

∑

(ℓ1,...,ℓi)∈Si,p




i∏

j=1

φ(ℓj)(a/µn0+1)

ℓj!




×
∑

1≤r1<···<ri≤k0




i∏

j=1

Q
(ℓj)
n0+1(rn(τ) = trj)

Pn0+1(rn(τ) = tℓj)
µℓj(n−n0−1)




×




∏

1≤k≤k0
k 6∈{r1,...,ri}

Q
(0)
n0+1(rn(τ) = tk)

Pn0+1(rn(τ) = tk)


 .

by the induction assumption on p for ℓj < p (i.e. i 6= 1) and the induction assumption on n

for ℓj = p (i.e. i = 1). By the definition of the measure Q
(k)
n0 , we have

µp(n−n0)Q
(p)
n0 (rn(τ) = t)

Pn0(rn(τ) = t)
= p!

k0∧p∑

i=1

φ(a/µn0+1)k0−i

φ(p)(a/µn0)

∑

(ℓ1,...,ℓi)∈Si,p




i∏

j=1

φ(ℓj)(a/µn0+1)

ℓj!




×
∑

1≤r1<···<ri≤k0




i∏

j=1

ℓj !

φ(ℓj)(a/µn0+1)

ℓj∑

s=1

a
(ℓj)
s (n)φ(a/µn)zn(trj )−sHs(zn(trj ))




×




∏

1≤k≤k0
k 6∈{r1,...,ri}

φ(a/µn)zn(tk)

φ(a/µn0+1)




=
p!

φ(p)(a/µn0)

k0∧p∑

i=1

∑

(ℓ1,...,ℓi)∈Si,p

∑

1≤r1<···<ri≤k0

φ(a/µn)zn(t)

×
i∏

j=1

ℓj∑

s=1

a
(ℓj)
s (n)φ(a/µn)−sHs(zn(trj))
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using that

k0∑

k=1

zn(tk) = zn(t)

=
p!

φ(p)(a/µn0)

k0∧p∑

i=1

∑

(ℓ1,...,ℓi)∈Si,p

∑

1≤r1<···<ri≤k0

φ(a/µn)zn(t)

×

p∑

w=i

∑

(s1,...,si)∈S
+
i,w

i∏

j=1

a
(ℓj)
sj (n)φ(a/µn)−sjHsj(zn(trj ))

=
p!

φ(p)(a/µn0)

p∑

w=1

k0∧w∑

i=1

∑

1≤r1<···<ri≤k0

∑

(s1,...,si)∈Si,w

φ(a/µn)zn(t)−w

×


 ∑

(ℓ1,...,ℓi)∈Si,p

i∏

j=1

a
(ℓj)
sj (n)




i∏

j=1

Hsj(zn(trj)).

Using successively Lemma 4.1 and Lemma 6.1 gives

µp(n−n0)Q
(p)
n0 (rn(τ) = t)

Pn0(rn(τ = t))

=
p!

φ(p)(a/µn0)

p∑

w=1

a(p)w (n)φ(a/µn)zn(t)−w

×




k0∧w∑

i=1

∑

1≤r1<···<ri≤k0

∑

(s1,...,si)∈S
+
i,w

i∏

j=1

Hsj(zn(trj))




=
p!

φ(p)(a/µn0)

p∑

w=1

a(p)w (n)φ(a/µn)zn(t)−wHw(zn(t))

which ends the induction. �

5. The sub-critical case

In this section, we consider a sub-critical offspring distribution q and we assume that there
exists κ > 1 such that f(κ) = κ and f ′(κ) < +∞ (this implies in particular that q admits
moments of any order).

We define f̄(t) = f(κt)/κ for t ∈ [0, 1] and note that f̄ is the generating function of a super-
critical offspring distribution q̄ with q̄n = κn−1qn. The mean µ̄ of q̄ is f ′(κ), the smallest
positive fixed point of f̄ is κ̄ = 1/κ and f̄ ′(κ̄) = µ. Let τ̄ be the corresping genealogical tree.
It is elementary to check that, for every n ∈ N and nonnegative measurable function ϕ, we
have

(33) E[ϕ(rn(τ̄ ))] = E
[
κZn−1ϕ(rn(τ))

]
.

We deduce from Theorem 3.3, Theorem 4.2 and 4.9 the following result:
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Theorem 5.1. Let p ∈ N. Let q be a sub-critical offspring distribution with generating
function f and suppose that there exists a unique κ > 1 such that f(κ) = κ and f (p∨1)(κ) <
+∞. Then for every every n ∈ N and every Λn ∈ Fn, we have

• For every s ∈ [0, κ),

lim
m→+∞

E
[
Hp(Zm+n)s

Zm+n1Λn

]

E [Hp(Zm+n)sZm+n ]
=

{
E [1Λn ] if p = 0,

E

[
Zn

µn 1Λn

]
if p ≥ 1.

• For every a ≥ 0,

lim
m→+∞

E

[
Hp(Zm+n)κ

Zm+ne
−a

Zm+n

f ′(κ)m+n
1Λn

]

E

[
Hp(Zm+n)κZm+ne

−a
Zm+n

f ′(κ)m+n

] = E

[
1

f ′(κ)pn
κZn−1Ḡ(p)

n (Zn)

]
:= E

[
M̄ (p)

n 1Λn

]

where Ḡ
(p)
n is the function defined by (25) associated with the offspring distribution q̄.

Moreover, the probability measure Q
(p)
n0 defined by (30) with M (p) replaced by M̄ (p),

is the probability measure Q̄
(p)
n0 defined in Definition 4.4 with q replaced by q̄.

Proof. We only prove one case, the other ones can be handled in the same way.
Let us consider p ≥ 1 and s ∈ [0, κ). Using Equation (33) then Theorem 3.3 (remark that,

as q is sub-critical, q0 > 0), and then Equation (33) again, we have

lim
m→+∞

E
[
Hp(Zm+n)s

Zm+n1Λn

]

E [Hp(Zm+n)sZm+n ]
= lim

m→+∞

E

[
Hp(Z̄m+n)(s/κ)

Z̄m+n1Λn

]

E
[
Hp(Z̄m+n)(s/κ)Z̄m+n

]

= E

[
Z̄nκ̄

Z̄n−1

f̄ ′(κ̄)n
1Λn

]
= E

[
Z̄n

κZ̄n−1µn
1Λn

]
= E

[
Zn

µn
1Λn

]
.

�

6. Appendix: A technical lemma on the Hilbert polynomials

Lemma 6.1. For every w ≥ 1, for every k ≥ 2 and every integers (t1, . . . , ti), we have

Hw




k∑

j=1

tj


 =

w∧k∑

i=1

∑

1≤r1<···<ri≤k

∑

(s1,...,si)∈Si,w

i∏

j=1

Hsj(trj )

Proof. We prove this formula by induction on k.
First, for k = 2, the right-hand side of the equation is, for every w ≥ 2 (the formula is

obvious for w = 1),

2∑

i=1

∑

1≤r1<···<ri≤2

∑

(s1,...,si)∈Si,w

i∏

j=1

Hsj(trj) = Hw(t1) +Hw(t2) +
w−1∑

s1=1

Hs1(t1)Hw−s1(t2)

=

(
t1
w

)
+

(
t2
w

)
+

w−1∑

s1=1

(
t1
s1

)(
t2

w − s1

)

=

w∑

s1=0

(
t1
s1

)(
t2

w − s1

)
=

(
t1 + t2

w

)
= Hw(t1 + t2).
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Assume now that the formula of the lemma is true for every 2 ≤ k and let us prove it for
k + 1. We have, using first the formula for k = 2,

Hw




k+1∑

j=1

tj


 = Hw




k∑

j=1

tj + tk+1




= Hw




k∑

j=1

tj


+Hw(tk+1) +

w−1∑

s=1

Hs




k∑

j=1

tj


Hw−s(tk+1)

=

w∧k∑

i=1

∑

1≤r1<···<ri≤k

∑

(s1,...,si)∈Si,w

i∏

j=1

Hsj(trj )+

Hw(tk+1) +

w−1∑

s=1

s∧k∑

i=1

∑

1≤r1<···<ri≤k

∑

(s1,...,si)∈Si,s




i∏

j=1

Hsj(trj )


Hw−s(tk+1)

by the induction assumption. Inverting the sums in the last term and setting si+1 = w − s
than i′ = i+ 1 yields

Hw




k+1∑

j=1

tj


 =

w∧k∑

i=1

∑

1≤r1<···<ri≤k

∑

(s1,...,si)∈Si,w

i∏

j=1

Hsj(trj )+

Hw(tk+1) +

(w−1)∧k∑

i=1

∑

1≤r1<···<ri≤k

w−1∑

s=i

∑

(s1,...,si)∈Si,s




i∏

j=1

Hsj(trj)


Hw−s(tk+1)

=

w∧k∑

i=1

∑

1≤r1<···<ri≤k

∑

(s1,...,si)∈Si,w

i∏

r=1

Hsj(trj )+

Hw(tk+1) +

w∧(k+1)∑

i′=2

∑

1≤r1<···<ri′−1≤k

∑

(s1,...,si′)∈Si′,w




i′−1∏

j=1

Hsj(trj )


Hsi′ (tk+1)

=

w∧(k+1)∑

i=1

∑

1≤r1<···<ri≤k+1

∑

(s1,...,si)∈Si,w

i∏

j=1

Hsj(trj )

which is the looked after formula.
�
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time, or of the duration of the excursions. In Séminaire de Probabilités XLII, volume 1979 of Lecture

Notes in Math., pages 331–363. Springer, Berlin, 2009.
[6] P. Debs. Penalisation of the symmetric random walk by several functions of the supremum. Markov

Process. Related Fields, 18(4):651–680, 2012.
[7] K. Fleischmann and V. Wachtel. On the left tail asymptotics for the limit law of supercritical Galton-
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