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Abstract

Hidden Markov Field modeling is widely used for image segmentation. However, it sometimes lacks power to handle complex
situations, e.g. correlated noise, textures or non-stationarities. This is why Pairwise, and then Triplet Markov Fields were introduced
to handle in a generic fashion more complex observations. In this paper, we tackle the problem of anisotropic image modeling by
introducing an Oriented Triplet Markov Field model, able to explicitly deal with oriented structures. Using oriented features in
the framework of Triplet Markov Field modeling, we compare the behavior of this model towards other Markovian modeling on
images containing such oriented pattern. We present experiments on synthetic data for segmentation, and application to real data
from remote sensing images.
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1. Introduction

Markov Random Fields models have been extensively used
in the literature, mainly for image segmentation, retrieving or
denoising. When facing a segmentation problem, we gener-
ally search for an unobserved, hidden random process X from a
noisy observation y. The latter is considered as a realization of
a random process Y, whose stochastic behavior may be due to
poor observation condition, missing information or imperfect
imaging instrument.

This problem has traditionally been handled with Hidden
Markov Fields (HMF) [1, 2, 3]. HMF modeling has been
widely used for Bayesian image segmentation. This includes
color [4] or multispectral [5] images, remote sensing [6], med-
ical [7] or sonar [8] applications. Literature exhibits several
extensions of HMF, including the factorial [9], the double [10],
the pairwise [11] and triplet [12] Markov fields models. Many
other specialized models have also been proposed, e.g. to han-
dle edges [13, 14, 15], hierarchical features [16, 8], multiple
sensors [17] or fuzziness [18].

Pairwise Markov Fields (PMF) [11] modeling is an impor-
tant improvement over HMF modeling. In PMF, the pair (Y,X)
follows a Markov Field distribution. It is in fact a family of
models offering a theoretical framework to perform Bayesian
estimations. As an example, HMF are a particular case of PMF.
The interest of PMF yields in the possibility to handle depen-
dancies between the components of X and Y which are ignored
in HMF. Triplet Markov Fields (TMF) modeling, introduced
in the last decade [12], offer a more general framework. In

∗Corresponding author: jb.courbot@unistra.fr
Present affiliations : INRIA Paris, MOKAPLAN, rue Simone Iff, 75012,
Paris, France and Laboratoire de Météorologie Dynamique, UMR 8539, PSL-
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TMF, a third auxiliary process V is introduced, and the triplet
T = (Y,X,V) is assumed to have a Markov Field distribution.
As we will see later, PMF and thus HMF are particular cases of
TMF. Applications of TMF can be found for example in syn-
thetic aperture radar image segmentation [12, 19, 20] and tex-
ture recognition [21].

In this paper, we investigate the joint Bayesian modeling of
classes and orientations in images. Apart from edge-related
Markov field models [13, 14, 22], few works handle images
with oriented structures using Markovian modeling. We can
only mention [23] in which directional fields are used to seg-
ment fingerprint images. However, considering local orienta-
tions, such as oriented textures, requires a fine modeling to pro-
vide an accurate segmentation. Besides, this would give ad-
ditional information on the image features. Nevertheless, the
problem is non-trivial: the literature exhibits several papers ad-
dressing it using computer vision-related methods (e.g. filter-
ing [24], minimal path [25], or graph cut [26]). In the continu-
ation of these studies, our work on a Markovian modeling aims
at considering directional features in images.

This paper presents a TMF model accounting for local orien-
tations in images. More specifically, we describe:
• the model distribution, and a method to sample it ;
• a SEM-like algorithm to estimate the parameters of the

triplet (Y,X,V) from a realization y of Y only;
• two methods to recover X and V from Y = y only;
• a confidence measure supplementing the segmentation ;
• experiments on synthetic images, providing quantitative

segmentation results showing our TMF modeling is more
robust than the classical HMF ;

• two applications on real-world images presenting direc-
tional features.

This paper extends the preliminary work published in [27] and
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shows results on images from real world.
It is organized as follows. We present in Section 2 the hid-

den, pairwise and triplet Markov Fields, as well as the Bayesian
segmentation in the TMF framework. Then, we introduce a par-
ticular TMF (called OTMF for Oriented Triplet Markov Field)
designed to account for local orientations in Section 3. We also
describe how simulation, confidence estimation and parameter
estimation are made possible. Finally, experimental results are
reported in Section 4, using synthetic and real images to assess
the model performances.

All along this article, a random variable (resp. vector) is
noted A (resp. A), its realization a (resp. a), and its distribution
p(a) (resp. p(a)). S is the image lattice, containing individual
pixels (or sites) s. The image is ruled by a neighboring system
(Ns)s∈S ; Ns being the 8-neighbor set related to s. We also de-
note C the set of cliques of the image, a clique being either a set
of mutually neighbor sites or a singleton.

2. From Hidden to Triplet Markov Fields

TMF is a large family of models, containing in particular
PMF and HMF as simplifications of the most general model.
Indeed, concerning the modeling of the correlations between
the variables of the process (Y,X,V), TMF allow to make fewer
concessions than HMF or PMF. The probabilistic links involved
in the three models are summarized in Fig. 1. The graphs illus-
trate the required concession to restrict the most general TMF
to the most general PMF, and how PMF can be simplified to
obtain HMF. They also show how TMF enrich the most popu-
lar model. In the sequel, in each site s Xs is discretely-valued
in Ωx, and Ys takes values in R. Then, considering an order-
2 clique c, xc ∈ Ω2

x is the set of elements from x in the sites
covered by the clique c ∈ C, and similarly for yc ∈ R2.

2.1. Hidden Markov Fields
Let two processes be X = (Xs)s∈S and Y = (Ys)s∈S. In HMF,

X is assumed to have a Markov field distribution [28]:

p(x)∝ exp

−∑
c∈C

ψc(xc)

 ; (1)

where ψc is a potential function. In the general case ψc depends
on the clique c and on its shape. We consider only the shape of
c and therefore have we have ψc = ψ. A common assumption
in HMF is the independent noise property:

p(y|x) =
∏
s∈S

p(ys|x) and p(ys|x) = p(ys|xs) ∀s ∈ S. (2)

The distribution of (X,Y) is in this case (see also Fig. 1b):

p(x, y)∝ exp

−∑
c∈C

ψ(xc) +
∑
s∈S

ln
[
p(ys|xs)

] . (3)

Then, we deduce the posterior distribution p(x|y):

p(x|y)∝ exp

−∑
c∈C

ψ(xc) +
∑
s∈S

ln
[
p(ys|xs)

] . (4)

The posterior p(x|y) is still a Markov distribution when y is
fixed, enabling a Bayesian segmentation. One can thus per-
form the restoration of X from a given Y = y using criteria
such as the Maximum A Posteriori (MAP) [1] or the Marginal
Posterior Mode (MPM) [3]. The model is ruled by the param-
eters of the prior p(x) and the distributions p(ys|xs). These
parameters will be described later. When they are unknown,
they must be estimated with dedicated methods, e.g. adapta-
tions derived from Expectation-Maximization (EM) [29, 30],
Stochastic EM (SEM) [31] or Iterative Conditional Estimation
(ICE) [32] algorithms.

When considering the image segmentation, HMF are consid-
ered robust to numerous situations [1, 2, 3, 4, 6, 7, 8]. The
modeling is challenged by images presenting textures, fuzzi-
ness or, more generally, when the noise is correlated. This is
likely because the HMF assumptions (2) are too strong to han-
dle complex noise. Works of [18], among others, show that
classical HMF can be extended on a case-by-case basis.

2.2. Pairwise Markov Fields
In PMF, the model of p(y|x) is enriched. Indeed, assuming

that (X,Y) is a PMF means that Z = (X,Y) has a Markov Field
distribution (see Fig. 1c):

p(z) ∆
= p(x, y)∝ exp

−∑
c∈C

Ψ(zc)

 ; (5)

where zc = (xc, yc) ∈ (Ωx × R)2. Let us remark that the HMF
distribution (3) is a particular case of the PMF distribution (5).
Besides, the posterior p(x|y) is still a Markov Field [11], en-
abling a general formulation for the MAP [1] and MPM [3]
estimators. When the parameters are unknown, they must be
estimated using methods generalizing the HMF version of EM,
SEM or ICE for example.

2.3. Triplet Markov Fields
The particularity of TMF resides in the introduction of a third

auxiliary process V = (Vs)s∈S supplementing X and Y, where
Vs is discretely-valued in Ωv.

In TMF, T = (Y,X,V) is a Markov field (see Fig. 1d):

p(t) ∆
= p(y, x, v)∝ exp

−∑
c∈C

φ(yc, xc, vc)

 ; (6)

where vc ∈ Ω2
v . This generalizes PMF since the distribution (5)

is a particular case of (6). Furthermore, the pair (X,Y) is no
longer assumed to be a PMF.

In TMF, the V process may have several interpretations,
which have to be thoroughly specified in the model formula-
tion. For instance, it has been used in the literature to model
textures [12, 21], but could also be used to describe latent phe-
nomena with no direct interpretation in the observed images.

Besides, the posterior p(x, v|y) is a Markov distribution:

p(x, v|y) ∝ exp

−∑
c∈C

φ(yc, xc, vc)

 . (7)
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Figure 1: Dependency graphs for the models mentioned in this paper. (a) Markov field relations within a local neighborhood. The plain links are related to the
central site s, and dotted links handle other connections. (b-d) Subgraph of the links between the central site and one neighbor s′ (in the shaded region of (a))
within each model. Roughly speaking, eliminating a graph edge is equivalent to not account for a variable in one of the conditional distributions ruling the process
(Y,X,V).

This enables the Bayesian segmentation of images [1, 3]. Let
us describe more specifically the MAP criterion [1]:

(x̂, v̂)MAP = arg max
(ω,ν)∈(Ωx×Ωv)|S|

p(X = ω,V = ν|Y = y). (8)

On the other hand, the MPM criterion [3] yields:

∀s ∈ S, (x̂s, v̂s)MPM = arg max
(ω,ν)∈Ωx×Ωv

p(Xs = ω,Vs = ν|Y = y). (9)

The exact distributions p(x, v|y) and p(xs, vs|y) are known
only up to a constant. Realizations can however be simu-
lated, using Gibbs [1, 33] or Metropolis-Hastings [34, 33] al-
gorithms. The MAP segmentation can be approximated by the
iterative conditional modes [2] algorithm, and the MPM seg-
mentation can be computed using an adaptation of Marroquin’s
algorithm [3].

Parameter estimation is not trivial in HMF-based models, and
is harder in TMF-based models. Indeed, let us recall that we
seek at inferring the distribution of (Y,X,V) from the single
Y = y ; and that the triplet distribution is only known up to
a constant. Methods based on the stochastic gradient [35] or
Gibbsian EM [36] propose solutions to estimate parameters.
For robustness reasons [37, 38], we choose to use in this pa-
per a method derived from the stochastic variant of EM called
SEM, which is described later in the OTMF framework.

3. Oriented Triplet Markov Fields

This section introduces a particular TMF designed to model
images presenting directional features. The probabilistic links
involved in this model are reported in Fig. 1e.

3.1. Model
Let T = (Y,X,V) be a stationary TMF (6), where V models

the privileged orientations in X. Since T has a Markov distribu-
tion, it is described in each site s by p(ts|tNs ). We assume that
Ts and YNs are independent given (XNs ,VNs ). Hence:

p(ts|tNs ) = p(ts|xNs , vNs )
= p(ys|xNs , vNs , xs, vs)

× p(xs|xNs , vNs , vs)p(vs|xNs , vNs ).
(10)

Vs and XNs are independent given VNs . The third term of (10)
becomes:

p(vs|xNs , vNs ) = p(vs|vNs ). (11)

Xs and VNs are independent given (XNs ,Vs). The second term
of (10) becomes:

p(xs|xNs , vNs , vs) = p(xs|xNs , vs). (12)

These assumptions are illustrated in Fig. 1e.
We now specify the distributions (11), (12), and the first term

of (10):
• V having a Markov Field distribution, (11) relies on the

following Potts potentials:

p(vs|vNs ) ∝ exp

−α ∑
s′∈Ns

[1 − 2δvs (vs′ )]

 ; (13)

where δvs is the Dirac measure for vs.
• p(x|v) is a Markov Field distribution, so (12) relies on:

p(xs|xNs , vs) ∝ exp

−β ∑
s′∈Ns

ϕs′(vs)[1 − 2δxs (xs′ )]

 . (14)

where the orientation function ϕk is introduced to handle
the orientations within local neighborhood. In the case of
a 8-neighborhood, Ns = {0, . . . , 7} as in Fig. 2. When con-
sidering only slope and order-2 cliques, the contribution of
the orientations can be considered with:

ϕk(v) =

∣∣∣∣∣∣cos
(
v −

kπ
4

)∣∣∣∣∣∣ (15)

Note that we could use ϕk(v) = 1+cos
(
v − kπ

4

)
to consider

both slope and directions.
• To provide a more intuitive formulation of

p(ys|xNs , vNs , xs, vs), we assume that the first term
of (10) can be split into:

p(ys|xNs , vNs , xs, vs) ∝ f (xs, ys)g(xs, vs, xNs , vNs ). (16)

A particular care is required to define f regarding the con-
sidered application: it has to be determined according to
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Figure 2: Neighbor indexing and local orientation measurement within a local
neighborhood. Site darkness is proportional to the output of the orientation
function ϕk with k ∈ Ns from (15) with respect to vs = π/3.

the chosen noise model. In the sequel, f is assumed to
be a Gaussian with mean µxs and variance σ2

xs
, which is

known to be suitable for many natural image segmentation
cases [1, 2, 3].
Besides, g(xs, vs, xNs , vNs ) is a distribution related to neigh-
borhood configurations within X and V (number of neigh-
bors identical to the central site value). We assume it is
written as:

g(xs, vs, xNs , vNs ) ∝
∑

(s′,r′)∈N2
s

δxs,vs (xs′ , vr′ ). (17)

Hence, g allows to weight the contributions of f (xs, ys)
with respect to neighbor configurations, without dramati-
cally raising the complexity of p(ys|xNs , vNs , xs, vs).

Remark 1. The orientation function ϕ (15) can be general-
ized to 3D modeling and a 26-neighborhood for example or
extended to higher-order cliques.

To sum up, the distribution p(ts|tNs ) ruling T is now written:

p(ts|tNs ) ∝ exp
(
−

(ys − µxs )
2

2σ2
xs

) ∑
(s′,r′)∈N2

s

δxs,vs (xs′ , vr′ )

× exp

−α∑
s′∈Ns

[1 − 2δvs (vs′ )] − β
∑
s′∈Ns

ϕs′(vs)
[
1 − 2δxs (xs′ )

] .
(18)

Realizations of T can be performed through Gibbs sampling [1,
33]. In practice, we use the chromatic Gibbs sampler [39], al-
lowing to perform simultaneous sampling on grids (“colors”)
of mutually non-neighbor elements, while preserving the Gibbs
sampler ergodicity.

One can also sample marginals of the triplet distribution.
This is of interest in two cases, among others:

1. sampling the posterior distribution p(x, v|y) from (7) for
segmentation purpose (see Section 2.3);

2. sampling p(x, y|v) to simulate a synthetic image (as in Sec-
tion 4.1).

Remark 2. In the most general case, the triplet distribution
can be written p(t) = p(y, x, v) = p(y|x, v)p(x|v)p(v). In the
proposed model, p(y|x, v), p(x|v), and p(v) are Markov field
distributions.

3.2. Segmentation and confidence

We investigate in this section the use of a point-wise confi-
dence measure. Such a measure can easily be computed thanks
to the MPM framework. By construction, the MPM estimators
of Xs,Vs are the most likely classes with respect to the poste-
rior distribution p(xs, vs|y). This choice is a hard decision, and
therefore does not reflect the confidence of the segmentation.
Indeed, several situations can be encountered, among which:
• the most favorable case: the chosen class is largely more

likely than the other classes,
• harder cases, in which the gap between probabilities is

small.
Hence, we supplement the segmentation by introducing a con-
fidence measure u = (ux,uv) based on the difference between
the MPM output and the others, rejected outputs. ∀s ∈ S:

ux
s = min

ω,x̂MPM
s

[
p(Xs = x̂MPM

s |y) − p(Xs = ω|y)
]

;

uv
s = min

ν,v̂MPM
s

[
p(Vs = v̂MPM

s |y) − p(Vs = ν|y)
]
.

(19)

This yields two confidence maps ux = (ux
s)s∈S and uv = (uv

s)s∈S.
They take values in [0, 1], 0 and 1 corresponding respectively
to the most weakly and strongly confident cases.

Finally, let us remark that the introduced confidence measure
is of particular interest when segmenting orientations from an
image without directional features, hence yielding high uncer-
tainties.

3.3. Parameter Estimation

From (18), the model is ruled by α, β, g and the K = |Ωx|

means µxs and K variances σ2
xs

which parametrize f . We note
Θ the complete parameter set. Let us notice that the parameters
do not depend on the site s since T is stationary.

3.3.1. Supervised Estimation
In this paragraph, the complete (y, x, v) is assumed available.

The K means µxs and variances σ2
xs

are estimated with standard
Maximum Likelihood Estimators (MLE) [40]. Besides, the pa-
rameter α and β are estimated thanks to v and x respectively,
with the least-square estimator of [41]. Lastly, g(xs, vs, xNs , vNs )
is estimated by the normalized histogram:

ĝ(xs, vs, xNs , vNs ) =
1
|S′|

∑
r∈S′

Ihr,Nr =hs,Ns
; (20)

where
hs,Ns =

∑
(s′,r′)∈N2

s

δxs,vs (xs′ , vr′ ) (21)

and S′ is the lattice S without the edge, since the sites on the
edge do not have 8 neighbors.

Remark 3. In practice, the indicator functions sum may be
zero-valued in estimators (20). This can impede simulations by
forbidding rare configurations to occur. Instead, the estimation
is set to a small value.
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Table 1: Experimental segmentation results, averaging over 100 different noise
realizations. We compare four values of the error rate Ex and two values of Ev,
which are all in percent. Measures with a significant improvement (above 1%)
above the other results are reported in bold.

HMF OTMF
MPM MAP MPM MAP

E
xp

.

σ Ex Ex Ex Ev Ex Ev

Su
pe

rv
iz

ed A
0.5 1.24 2.73 1.25 24.00 0.89 28.10
1.0 5.07 4.99 4.62 26.41 1.55 28.14

B
0.5 3.21 2.33 3.11 - 1.54 -
1.0 14.46 12.91 10.29 - 3.57 -

U
ns

up
er

v. A
0.5 1.21 2.40 1.27 24.12 1.30 29.21
1.0 21.96 21.72 17.92 34.33 15.39 34.69

B
0.5 8.24 15.16 3.04 - 7.91 -
1.0 23.93 23.57 22.03 - 20.23 -

(a) Specified v. (b) Realization of p(x|v).(c) Realization of p(y|x,v).

Figure 3: Experiment A with σ = 1.0.

3.3.2. Unsupervised estimation
In image segmentation, complete data are seldom available.

Since only Y = y is available, we use an adaptation of the SEM
algorithm [31] which allows, at each iteration, a parameter re-
estimation directly from complete data thanks to realization of
the missing data, simulated using parameters estimated at the
previous step. At each iteration k, let Θ̂k be the parameter set to
be estimated at this iteration, we have to:

1. compute pΘ̂k−1 (x, v|y) (Expectation step). This distribu-
tion is sampled with the help of several independent Gibbs
sampling ;

2. simulate (xk, vk) along pΘ̂k−1 (x, v|y) (Stochastic step) ;
3. estimate Θ̂k using the estimators described in section 3.3.1.

Remark 4. Strictly speaking, this algorithm only approximates
the SEM algorithm, in which only MLE are used at step 3. Since
MLE are not available for α, β and g(xs, vs, xNs , vNs ) we used
the estimators described in section 3.3.1.

To sum up, one can estimate parameters in the OTMF frame-
work in an unsupervised fashion. Hence, OTMF enables the
joint unsupervised segmentation of orientations and classes in
images.

4. Experiments

This section reports experiments concerning segmentation of
synthetic and real images using the proposed OTMF model.

Considering that removing the auxiliary process V from the
proposed model reduces it to a classical HMF model, we use
the latter as a baseline for comparison.

4.1. Synthetic Images Segmentation

First, we evaluate the model performance by segmenting syn-
thetic images with known ground truths. In this section, we set
Ωx = {ω0, ω1}, Ωv = {ν0, ν1} = {π/4, 3π/4}. Two experiments
are set, increasing the difficulty with respect to the model hy-
pothesis:

A. v has four defined quadrants and x, y are sampled condi-
tionally to v (see Figs. 3a-3c);

B. v is unknown, x is set to present directional features (see
Fig. 4a, 4b).

The noise distribution is a Gaussian mixture with means µ0 = 0,
µ1 = 1, and standard deviations σ0 = σ1 = σ. Several settings
are investigated:
• Supervised vs. unsupervised segmentation ;
• Low (σ = 0.5) and high (σ = 1.0) noise levels (yielding

respectively signal-to-noise ratios of 0.0 dB and −6.0 dB);
• MAP (8) and MPM (9) segmentation criteria.

Segmentations with HMF are also performed in the same condi-
tions. Averaging over 100 noise realizations, the performance
evaluation is based on the error rates, noted Ex and Ev. Fig-
ures 4e–4f exemplify the MPM segmentation results, and the
complete measures are reported in Table 1.

OTMF vs. HMF. In all considered cases, the OTMF-based
segmentation yields equally or significantly better results than
the HMF-based method.

Indeed, in the easier case (Exp. A and σ = 0.5) weak noise
enhances the segmentation for HMF, yielding quite as good re-
sults as OTMF. In the other cases, the improvement gap ranges
from 1.90% to 24.23%.

MAP vs. MPM. Within OTMF, the results suggest that the
MAP segmentation of x outperforms its MPM counterpart in
most cases. Let us remark that this is not true within the HMF
framework; the best HMF results being provided by MPM seg-
mentation. Besides, we also notice that in TMF the best seg-
mentations of v are provided by the MPM, with significant
gains ranging from 1.73% to 5.09%.

Retrieving orientations. Errors on the OTMF-based seg-
mentation of v are non-negligible. However, a precise estima-
tion of the directions seems out of reach: indeed, the baseline in
the easier case (supervised Exp. A, with σ = 0.5) is an average
24.00% error rate. This may be induced by wide, homogeneous
regions presenting low segmentation confidence, meaning that
the choice was harder to perform (see next section). This also
mean that the method is very robust to variations of v, since the
error rates on x are still satisfying.

4.2. Real Images Segmentation

The problem of jointly segmenting x and v can arise in a
remote sensing framework, in which artificial or natural struc-
tures strongly influence the image composition. We present
in this section two segmentation examples using real images,
within the HMF and OTMF framework, and with both MPM

5



(a) Specified x. (b) Realization of p(y|x).

(c) OTMF v̂. (d) OTMF x̂, Ex=9.31%. (e) HMF x̂, Ex=20.01%.

(f) OTMF uv. (g) OTMF ux. (h) HMF ux.

Figure 4: Experiment B with σ = 1.0, and the corresponding unsupervised
results using the MPM criterion. In the confidence maps, black pixels are zero-
valued and white pixels are valued to one. In this case, the OTMF confidence
maps uv and ux clearly depict class contour, related to stationarity changes in
the underlying process.

and MAP segmentation criterion. These examples are compli-
mentary, and show the possible gain over HMF in terms of ori-
entation retrieval and in terms of segmentation quality. We set
|Ωv| = 6 with Ωv = {π/12, 3π/12, . . . , 11π/12}.

4.2.1. Low-pressure System
Figure 5a depicts a remote sensing image of a meteorological

phenomenon called low-pressure system acquired over Iceland
by NASA’s Aqua/MODIS satellite (public domain). Two main
classes are visible: the clouds and the remaining of the image,
so we set |Ωx| = 2. The former is noised by intensity variations,
and the latter by small clouds and Iceland in the bottom right of
the image.

Figures 5g–5i present the segmentation results with the
OTMF model, and the related confidence maps associated to the
MPM segmentations. The HMF segmentations with the same
settings are also reported in Fig. 5b, 5c for comparison. Several
comments can be made :
• both OTMF and HMF segmentations of x seem to detect

the main features of the image. The differences consist
mainly in several small features appearing in the OTMF
segmentation and not in its HMF counterpart;

• the confidence map ux related to the MPM segmentation of
x well describes the difficulties encountered in the Marko-
vian modeling to handle changes in stationarity (e.g., bor-
ders). They also indicate that the regions within these bor-
der should be correctly segmented;

(a) Y = y. (b) HMF/MPM x̂. (c) HMF/MAP x̂.

(d) OTMF/MPM ux. (e) OTMF/MPM x̂. (f) OTMF/MAP x̂.

(g) OTMF/MPM uv. (h) OTMF/MPM v̂. (i) OTMF/MAP v̂.

Figure 5: Low pressure system remote sensing image, covering clouds of vary-
ing direction. In the confidence maps ux and uv, low (resp. high) values are
depicted in black (resp white). The orientations are depicted by the red curves
superimposed Y = y, so that the orientations are tangent to each curve.

• results concerning the orientations retrieval in the OTMF-
based segmentations of v seem particularly striking. In-
deed, most of the segmented orientations seem to capture
features from the original image;

• the confidence map uv (associated to the MPM estimate v̂)
shows the stationarity changes for v. Ambiguous regions
(e.g. bottom left corner) are well captured and may be used
to identify which regions are less relevant to the search for
orientation.

4.2.2. Vine Remote Sensing Images
Figure 6a depicts a panchromatic image of a vineyard from

the Pléiades system [42] acquired over Alsace, France in 2012.
It presents several directional features which seems homoge-
neous within wide image regions, while abruptly varying be-
tween these regions. To account for the various intensities, we
set |Ωx| = 3 classes.

Figures 6b–6i depict the HMF-based segmentation, OTMF-
based segmentations and related confidence maps (when rele-
vant). The following comments can be made:
• the OTMF-based segmentations of x seem to correctly

capture the visible features in the image. The differences
with the HMF segmentation are particularly striking: the
latter seemingly fails to handle a large number of small
features, both with MPM and MAP criterion;

• the OTMF-based segmentations of v present several coher-
ent regions, which seems relevant to both the correspond-

6



(a) Y = y. (b) HMF/MPM x̂. (c) HMF/MAP x̂.

(d) OTMF/MPM ux. (e) OTMF/MPM x̂. (f) OTMF/MAP x̂

(g) OTMF/MPM uv. (h) OTMF/MPM v̂. (i) OTMF/MAP v̂.

Figure 6: Pléiades panchromatic image (0.5m) [42], covering vine crops of dif-
ferent orientation, due to terrain. c©CNES 2012, distribution Astrium Services,
France, all rights reserved. The legend is the same as in Fig. 5

ing stationarities of x̂ and the apparent directional features
of y;

• the confidence map uv provides here also additional infor-
mation: it bolsters the hypothesis of privileged direction in
some regions (the vine crops) in contrast to others (e.g, the
track).

5. Conclusion

In this paper, we presented a TMF model considering jointly,
in a new way, signal classes and orientations within an image.
We detailed how simulation, parameter estimation and joint
signal/orientation segmentation are made possible within the
model we proposed. Additional estimations concerning the seg-
mentation quality were also introduced and experiments show
the model to be relevant to the considered problem, and more
efficient than its HMF counterpart. The algorithm behavior
yields satisfactory results.

Future works on this topic could consider the use of an an
additional “magnitude” component (see e.g. [43]), yielding bi-
variate values for V. If this component is discretely-valued and
bounded, the segmentation and estimation techniques are iden-
tical to those presented in this paper. An other point of inter-
est is the use of continuous values for V, which would require
other techniques for segmentation. In the spirit of research re-
producibility, the source code of our experiments will be made
available online.

Acknowledgements

J.-B. Courbot acknowledges support from the ERC advanced
grant 339659-MUSICOS. This work was funded in part by the
DSIM project under grant ANR-14-CE27-0005. The authors
would like to thank P. De Fraipont (France, ICube–SERTIT)
for providing the vineyard image.

References

[1] S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell. 6
(1984) 721–741.

[2] J. Besag, On the statistical analysis of dirty pictures, J. Roy. Stat. Soc. B.
Met. (1986) 259–302.

[3] J. Marroquin, et al., Probabilistic solution of ill-posed problems in com-
putational vision, J. Am. Stat. Assoc. 82 (397) (1987) 76–89.

[4] Z. Kato, T.-C. Pong, A Markov random field image segmentation model
for color textured images, Image Vis. Comp. 24 (10) (2006) 1103–1114.

[5] F. Salzenstein, C. Collet, Fuzzy Markov random fields versus chains for
multispectral image segmentation, IEEE Trans. Pattern Anal. Mach. In-
tell. 28 (11) (2006) 1753–1767.

[6] R. Fjortoft, et al., Unsupervised classification of radar images using hid-
den Markov chains and hidden Markov random fields, IEEE IEEE Trans.
Geosci. Remote Sens. 41 (3) (2003) 675–686.

[7] Y. Zhang, et al., Segmentation of brain MR images through a hidden
Markov random field model and the expectation-maximization algorithm,
IEEE Trans. Med. Imag 20 (1) (2001) 45–57.

[8] M. Mignotte, et al., Sonar image segmentation using an unsupervised hi-
erarchical MRF model, IEEE Trans. Image Process. 9 (7) (2000) 1216–
1231.

[9] J. Kim, R. Zabih, Factorial Markov random fields, in: ECCV, Springer,
2002, pp. 321–334.

[10] D. E. Melas, S. P. Wilson, Double Markov random fields and Bayesian
image segmentation, IEEE Trans. Signal Process. 50 (2) (2002) 357–365.

[11] W. Pieczynski, A.-N. Tebbache, Pairwise Markov random fields and seg-
mentation of textured images, Machine Graphics and Vision 9 (3) (2000)
705–718.

[12] D. Benboudjema, W. Pieczynski, Unsupervised statistical segmentation
of nonstationary images using triplet Markov fields, IEEE Trans. Pattern
Anal. Mach. Intell. 29 (8) (2007) 1367–1378.

[13] X. Descombes, et al., Fine structures preserving Markov model for image
processing, in: SCIA, 1995.

[14] P. C. Smits, S. G. Dellepiane, Synthetic aperture radar image segmenta-
tion by a detail preserving Markov random field approach, IEEE Trans.
Geosci. Remote Sens. 35 (4) (1997) 844–857.

[15] J. August, S. W. Zucker, Sketches with curvature: The curve indicator
random field and Markov processes, IEEE Trans. Pattern Anal. Mach.
Intell. 25 (4) (2003) 387–400.

[16] M. S. Crouse, et al., Wavelet-based statistical signal processing using hid-
den Markov models, IEEE Trans. Signal Process. 46 (4) (1998) 886–902.

[17] A. Bendjebbour, et al., Multisensor image segmentation using Dempster-
Shafer fusion in Markov fields context, IEEE Trans. Geosci. Remote
Sens. 39 (8) (2001) 1789–1798.

[18] F. Salzenstein, W. Pieczynski, Parameter estimation in hidden fuzzy
Markov random fields and image segmentation, Graphical Models and
Image Processing 59 (4) (1997) 205–220.

[19] P. Zhang, et al., Unsupervised multi-class segmentation of SAR images
using fuzzy triplet markov fields model, Pattern Recog. 45 (11) (2012)
4018–4033.

[20] Y. Wu, et al., Unsupervised multi-class segmentation of SAR images us-
ing triplet Markov fields models based on edge penalty, Pattern Recog.
Lett. 32 (11) (2011) 1532–1540.

[21] J. Blanchet, F. Forbes, Triplet Markov fields for the classification of com-
plex structure data, IEEE Trans. Pattern Anal. Mach. Intell. 30 (6) (2008)
1055–1067.

[22] X. Yang, J. Liu, Unsupervised texture segmentation with one-step mean
shift and boundary Markov random fields, Pattern Recog. Lett. 22 (10)
(2001) 1073–1081.

7



[23] S. C. Dass, Markov random field models for directional field and singular-
ity extraction in fingerprint images, IEEE Trans. Image Process. 13 (10)
(2004) 1358–1367.

[24] R. Rigamonti, V. Lepetit, Accurate and efficient linear structure segmen-
tation by leveraging ad hoc features with learned filters, in: MICCAI,
Springer, 2012, pp. 189–197.

[25] F. Benmansour, L. D. Cohen, Tubular structure segmentation based on
minimal path method and anisotropic enhancement, International Journ.
Comput. Vis. 92 (2) (2011) 192–210.

[26] C. Bauer, et al., Segmentation of interwoven 3D tubular tree structures
utilizing shape priors and graph cuts, Med. Image Anal. 14 (2) (2010)
172–184.

[27] J.-B. Courbot, et al., Oriented Triplet Markov fields for hyperspectral im-
age segmentation, in: WHISPERS, IEEE, 2016.

[28] P. Fieguth, Statistical image processing and multidimensional modeling,
Springer Science & Business Media, 2010.

[29] A. P. Dempster, et al., Maximum likelihood from incomplete data via the
EM algorithm, J. Roy. Stat. Soc. B. Met. (1977) 1–38.

[30] G. McLachlan, T. Krishnan, The EM algorithm and extensions, Vol. 382,
John Wiley & Sons, 2007.

[31] G. Celeux, J. Diebolt, A stochastic approximation type EM algorithm for
the mixture problem, Stochastics: An International Journal of Probability
and Stochastic Processes 41 (1-2) (1992) 119–134.

[32] Y. Delignon, et al., Estimation of generalized mixtures and its application
in image segmentation, IEEE Trans. Image Process. 6 (10) (1997) 1364–

1375.
[33] C. Robert, G. Casella, Monte Carlo statistical methods, 2013.
[34] N. Metropolis, et al., Equation of state calculations by fast computing

machines, The Journal of Chemical Physics 21 (6) (1953) 1087–1092.
[35] L. Younes, Parametric inference for imperfectly observed gibbsian fields,

Probability Theory and Related Fields 82 (4) (1989) 625–645.
[36] B. Chalmond, An iterative Gibbsian technique for reconstruction of m-ary

images, Pattern Recog. 22 (6) (1989) 747–761.
[37] E. Monfrini, W. Pieczynski, Estimation de mélanges généralisés dans les
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[42] Pléiade website, https://pleiades.cnes.fr/en (2017).
[43] B. Rieger, L. J. Van Vliet, A systematic approach to nd orientation repre-

sentation, Image and Vision Computing 22 (6) (2004) 453–459.

8


