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Abstract

In data centers, many tasks (services, virtual machines or computational jobs) share a single
physical machine. We explore a new resource management model for such colocation. Our
model uses two parameters of a task—its size and its type—to characterize how a task influences
the performance of the other tasks allocated on the same machine. As typically a data center
hosts many similar, recurring tasks (e.g. a webserver, a database, a CPU-intensive computation),
the resource manager should be able to construct these types and their performance interactions.
In particular, we minimize the total cost in a model in which each task’s cost is a function of the
total sizes of tasks allocated on the same machine (each type is counted separately). We show
that for a linear cost function the problem is strongly NP-hard, but polynomially-solvable in some
particular cases. We propose an algorithm polynomial in the number of tasks (but exponential in
the number of types and machines) and another algorithm polynomial in the number of tasks and
machines (but exponential in the number of types and admissible sizes of tasks). We also propose
a polynomial time approximation algorithm, and, in the case of a single type, a polynomial time
exact algorithm. For convex costs, we prove that, even for a single type, the problem becomes
NP-hard, and we propose an approximation algorithm. We experimentally verify our algorithms
on instances derived from a real-world data center trace. While the exact algorithms are infeasible
for large instances, the approximations and heuristics deliver reasonable performance.

Keywords: Scheduling, Combinatorial optimization, Data center, Heterogeneity, Colocation

1. Introduction

Data centers, composed of tens to hundreds of thousands of machines, packaged as virtual
machines or services and sold under the label of cloud, are now changing the way the industry
(and, to some extent, academia and research) computes. Virtualization packages individual re-
sources into standard chunks with performance guaranteed by Service Level Agreements (SLAs).
Economies of scale make the whole endeavor profitable for huge companies, like Google, or
providers of for-hire computational power (such as Amazon EC2, RackSpace or Google Com-
pute Engine).

Email addresses: fanny.pascual@lip6.fr (Fanny Pascual), krz@mimuw.edu.pl (Krzysztof Rzadca)

Preprint submitted to Elsevier March 27, 2018



There are significant differences between a data center and standard High Performance Com-
puting (HPC) machines. In their great majority, HPC workloads are composed of computation-
ally-intensive batch jobs only (although some recent HPC workloads may also be memory-in-
tensive, which requires changes to HPC resource managers [Klusácek and Rudová, 2014]). The
goal of an HPC scheduler is to order jobs so that they are completed as fast as possible, taking
into account site’s policies, fairness and efficiency. As jobs are computationally-intensive, they
all compete for the same resource—the CPU. So, a single node executes at most as many jobs as
CPU cores.

In contrast, a data center workload is more varied. In the Google trace [Reiss et al., 2012],
just 1.5% of applications contribute 98.5% of CPU usage [Di et al., 2014]. Thus, while there
are some computationally-intensive batch jobs (corresponding to, e.g., Pagerank recalculation),
a large part of the workload is services. Services are varied, from user-facing web applications to
databases to message-passing infrastructure. We will use the term task to denote a single instance
of a service or a single job. We assume that each task executes on a single physical machine.

These new features of data center workloads make HPC models unsuitable for managing
resources of a data center. As tasks require heterogeneous resources [Reiss et al., 2012] (CPU,
memory, hard disk bandwidth, network bandwidth), sharing a single machine among many ser-
vices is reasonable. Ideally, resource requirements of colocated tasks should complement each
other, e.g., a memory-intensive database instance should be allocated with a few IO-intensive
web applications with burst popularity. The goal of the resource manager is also different: in-
stead of completing tasks as fast as possible, the resource manager should optimize the end-user
experience (e.g., a statistic of the response time such as time by which 95 or 99 percent of re-
quests are completed).

The objective of this work is to explore an alternative model of data center resource manage-
ment that captures both complex goal functions and the complex performance relations that tasks
have on each other when they are allocated to the same machine. In classic scheduling, a task’s
influence on other tasks depends solely on its size (which represents its load, or its processing
time). We propose a notion of a type of a task. Each task influences the performance of other
tasks allocated to the same machine. We call such influence the side-effects. The influence is a
function of the size and the type of a task. Thus, the performance of a task assigned to a machine
M is a function of the size of the tasks of each type on that machine. If there are T possible types,
this function takes T arguments. The i-th argument is the total size of the tasks of type i on M.

The paper is organized as follows. We define the problem of Partition with Side Effects (PSE)
in Section 2. Sections 3–7 contain our theoretical results and Section 8 experimental results. In
Section 3 we show that PSE is NP-complete. In Section 4 we present a dominance rule (for any
instance, there is an optimal schedule in which the tasks are ordered by size). In Section 5 we
give an optimal polynomial time algorithm for PSE with a single type. For the general PSE, we
propose two optimal algorithms (polynomial in some parameters, exponential in some others),
and one approximate algorithm in Section 6. In Section 7 we analyze a variant of PSE with
strictly convex cost functions (a function f : X → R is strictly convex if for all x , y ∈ X, for
all t ∈ (0, 1), f (tx + (1 − t)y) < t f (x) + (1 − t) f (y)). We study the performance of the proposed
algorithms by simulation in Section 8. The paper concludes with a brief discussion of related
work (Section 9) and a summary of our results (Section 10).
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2. Theory: proposed colocation model

We consider a system where n tasks J = {1, . . . , n} have to be allocated on a set of m parallel
identical machinesM = {M1, . . . ,Mm}. Each task i has a known size pi ∈ N. This assumption
is analogous to the clairvoyance assumption in the standard scheduling theory. The sizes can
be estimated by the resource manager using previous instances, or users’ estimates. The size
corresponds to the load the task imposes on a machine: for instance, the request rate for a web
server or the CPU load for a CPU-intensive computation. We assume that the tasks are indexed
by non-increasing sizes: p1 ≥ p2 ≥ · · · ≥ pn.

A partition (also called an allocation) is an assignment of each of the n tasks to one of the
m machines. In other words, a partition divides the tasks into at most m subsets, each subset
corresponding to the tasks allocated on the same machine. Given a partition P, we denote by
MP,i ∈ M the machine on which task i is allocated in P.

The main contribution of this paper lies in analyzing side-effects of colocating tasks on a
single machine. Each task influences the performance of other tasks allocated to the same ma-
chine. Specifically, the impact of task i on the performance of another task j is a function of
the task’s size pi and the task’s type ti. Types generalize tasks’ impact on the performance. The
operator of the data center should define types according to observed performance dependencies.
A type could correspond to a specific application (as in [Kim et al., 2015]); but it could also be
more general, gathering, for instance, all webservers under a single type, and all databases under
another one. Let T = {1, . . . ,T } be a set of T different types of tasks. Each task i has type
ti ∈ T . Here we assume that the task’s type is known to the resource manager either by analysis
of previous instances, or by users’ declarations. For each type t ∈ T , we denote by Jt the tasks
which are of type t; by n(t) the number of such tasks (n(t) = |Jt |); by jti the i-th largest task of type
t (ties are broken arbitrarily); and by pt

i this task’s size.
Different types have different influence on the performance of a task. We model performance

by cost (unrelated to the monetary cost). In most of the paper (except Section 7) we use a linear
cost function, i.e., the cost ci of task i varies linearly with the total load of tasks j colocated on
the same machine MP,i. Different types have different impacts. More precisely,

ci =
∑

j on machine MP,i

p jαt j,ti , (1)

where a coefficient αt,t′ ∈ N, defined for each pair of types (t, t′) ∈ T 2, measures the impact
of the tasks of type t on the cost of the tasks of type t′ (allocated on the same machine). If
αt,t′ = 0 then a task of type t has no impact on the cost of a task of type t′. The higher the αt,t′ ,
the larger the impact. Coefficients are not symmetric, i.e., it is possible that αt,t′ , αt′,t. We
consider the linear cost function as it generalizes, by adding coefficients αt,t′ , one of well-known
scheduling models [Koutsoupias and Papadimitriou, 1999, Vöcking, 2007], in which the cost of
a task is the load of its machine (i.e., if ∀(t, t′) ∈ T 2 αt,t′ = 1, the model reduces to the classic
model). The coefficients αt,t′ can be estimated by monitoring tasks’ performance as a function of
their colocation and their sizes, which should be feasible as a data center runs many instances of
similar services [Kim et al., 2015, Podzimek et al., 2015].

We denote by PSE (Partition with Side Effects) the problem of finding a partition P∗ minimiz-
ing the total cost C(P) =

∑n
i=1 ci, with ci defined by the linear cost function. The partition with the

minimal cost minimizes the average cost of a task and thus corresponds to the socially-optimal
outcome in the utilitarian model.
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In Section 7, we study an important generalization of the cost model, in which the cost of a
task is any convex function of the total load of the machine.

3. Complexity

The notion of type increases the complexity of the allocation problem. When all tasks have
the same type, our problem reduces to the problem of [Koutsoupias and Papadimitriou, 1999,
Vöcking, 2007]. As we show in Section 5, the single type problem can be solved in polynomial
time. In contrast, in this section we show that with multiple types PSE is strongly NP-complete
even for two machines and unit-size tasks. The following result is a strong computational moti-
vation for the introduction of the notion of a type. If the problem was polynomial with a large
number of types, we could have a type for each job. However, this result shows that it is benefi-
cial from the computational perspective to generalize a task’s influences into a small number of
distinct types.

Proposition 3.1. The decision version of PSE is strongly NP-complete, and this even if there
are only two machines and if the tasks have unit size. Moreover, there is no polynomial time
r-approximate algorithm for PSE, for any constant r > 1, unless P = NP.

Proof. We reduce the strongly NP-hard Simple Min UnCut problem to PSE. The Simple Min
UnCut problem [Garg et al., 1993] is the following one: given a graph G = (V, E) and a positive
integer K, is there a partition of V into two disjoints sets V1 and V2 such that the number of edges
whose endpoints are both in the same set is at most K? Note that this problem is a complement
to the well-known NP-complete Simple Max Cut problem [Garey and Johnson, 1979]: the sum
of the number of cut edges and uncut edges is equal to the total number of edges in the graph.
Therefore, the SimpleMin UnCut problem is a strongly NP-hard problem.

The decision version of PSE is as follows: given an instance of PSE, and a bound (positive
integer) B, is there a partition with cost at most B? We construct an instance of PSE from an
instance of SimpleMin UnCut as follows: we have two machines M1 and M2, and n = |V | tasks
{1, . . . , n}, each one of size 1. We label the vertices of V by the integers from 1 to n. Each task
i corresponds to vertex i of V . There are n types (one per task). For each i ∈ {1, . . . , n}, we set
ti = i. The values α are defined as follows: for each (i, j) ∈ V2, αi, j = 1

2 if {i, j} ∈ E and αi, j = 0
if {i, j} < E. We fix B = K.

Let us show that there is a solution of cost K of this instance of PSE if and only if there is a
solution of cost K for the corresponding instance of SimpleMin UnCut.

Assume first that there is a solution of cost K to Simple Min UnCut: let V1 and V2 be two
sets such that the number of edges whose both endpoints are in the same set is K. We construct
a partition P for PSE by assigning the tasks corresponding to vertices in V1 to machine M1, and
the tasks of V2 to machine M2.

Let i ∈ {1, . . . , n}. For each task i, let ni =
∑

j on MP,i |{i, j}∈E 1. In other words, for each task i on
M1, ni is the number of neighbors of vertex i in V1, and for each task i on M2, ni is the number of
neighbors of vertex i in V2. The cost of task i is ci =

∑
j on MP,i

α j,i p j = 1
2
∑

j on MP,i |{i, j}∈E 1 = 1
2 ni.

The total cost of partition P is C(P) =
∑n

i=1 ci = 1
2
∑n

i=1 ni. Note that
∑n

i=1 ni is twice the number
of edges for which both endpoints are in the same set (an edge {i, j} between two vertices in the
same set adds 1 to ni and 1 to n j). Since the number of edges for which both endpoints are in the
same set is K, we have C(P) = K. There is thus a solution of cost K to PSE.
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Assume now that there is a partition P of cost K for PSE. We construct a partition P of V by
defining V j = {i ∈ V : task i is assigned to M j}. The total cost C(P) is equal to the sum of the
costs of the tasks. The cost of a task i in P is

∑
j on MP,i

α j,i p j = 1
2
∑

j on MP,i |{i, j}∈E 1. Therefore, the
cost of P is equal to the number of edges which have both endpoints either in V1 or in V2, that is
K: there is a solution of cost K to SimpleMin UnCut.

We have shown that there is a solution of cost K to Simple Min UnCut if and only if there
is a solution of cost K to PSE. As PSE is (trivially) in NP, and as SimpleMin UnCut is strongly
NP-complete, the decision version of PSE is also strongly NP-complete. Moreover, it has been
shown that the Min UnCut1 problem, which is the optimization version of Simple Min UnCut
is APX-hard [Creignou et al., 2001]. An APX-hard problem cannot be approximated within a
constant factor by a polynomial time algorithm, unless P = NP. Above, we show that the cost
of an optimal solution of an instance of Min UnCut has the same cost that an optimal solution of
the corresponding instance of PSE. Thus, PSE is also hard to approximate within some constant
factor.

The best approximate algorithm for the MinUnCut problem is O(
√

log n)-approximate [Agar-
wal et al., 2005]. Note that the reduction used in the proof above shows that a polynomial time
r-approximate algorithm for PSE would imply a polynomial time r-approximate algorithm for
the Min UnCut problem.

4. The ordered sizes (OrS) property

We propose a dominance rule called the OrS (Ordered Sizes) property. Take three tasks
s (small), x (medium), l (large) of the same type and of sizes ps < px < pl. An allocation
breaks the OrS property if s and l are assigned to the same machine and x to another machine.
An allocation fulfills the OrS property if no triple breaks it. We show that there is an optimal
allocation that fulfills this OrS property.

We will use this result in a dynamic programming algorithm, BestOrS, which is optimal
when there is a single type (see Section 5), and in an algorithm CutJuxtapose (Section 6.3),
which is polynomial in the number of tasks, but exponential in the number of types and machines.

Lemma 4.1. For each instance of PSE there exists an optimal allocation which fulfills the OrS
property.

Proof. The proof is by contradiction. Assume that there is an instance I for which there is no
optimal allocation which fulfills the OrS property. Let P be an optimal allocation for I such that
there is a minimal number of triples which break the OrS property. As P does not fulfill the
OrS property, there are three tasks s (small) x (medium) and l (large) of type t ∈ T such that:
(1) ps < px < pl ; and (2) the tasks s and l are in P on the same machine, Mi, and the task
x is on another machine M j , Mi. Let us denote by Ps−x an allocation in which s and x are
exchanged (i.e., task s is on M j, task x is on Mi, and the remaining tasks k < {s, x} are on the
same machines as in P, MPs−x,k = MP,k). Likewise, we denote by Pl−x an allocation in which l
and x are exchanged. We will now show that the costs of the partitions Ps−x and Pl−x are equal
to the cost of P. This result will lead to a contradiction, as either in Ps−x or in Pl−x the number of

1The Min UnCut problem is the following one: given a graph G = (V, E), find a partition of V into two disjoints sets
V1 and V2 such that the number of edges whose both endpoints are in the same set is minimized.

5



triples which break the OrS property is strictly smaller than the number of triples which break
the OrS property in P.

For each type q ∈ T , and for each machine M ∈ M, the number of tasks of type q on M is
the same in P, Ps−x, and Pl−x. Let nq

i and nq
j denote the numbers of tasks of type q on Mi and M j.

For each task a which is not allocated to Mi or M j in P, the cost of a is the same in P, Ps−x,
and Pl−x. Indeed, the cost of a task depends only on the tasks allocated on the same machine,
and the partitions P, Ps−x, and Pl−x are identical on all the machines except machines Mi and
M j. In Ps−x on Mi, the loads of the other types remain the same, so the cost of each task of
type q increases exactly by (px − ps)αt,q compared to its cost in P, since the exchange of s and
x increases on Mi the load of type t by (px − ps). Likewise, in Ps−x on M j, the cost of each task
of type q decreases by (px − ps)αt,q compared to its cost in P, since the exchange of s and x
decreases on M j the load of type t by (px − ps). Therefore, we have:

C(Ps−x) = C(P) +
∑
q∈T

(
(px − ps)αt,qnq

i

)
+

+
∑
q∈T

(
(ps − px)αt,qnq

j

)
= C(P) + (px − ps)

∑
q∈T

(
αt,q(nq

i − nq
j )
)
.

(2)

Likewise,

C(Pl−x) = C(P) +
∑
q∈T

(
(px − pl)αt,qnq

i

)
+

+
∑
q∈T

(
(pl − px)αt,qnq

j

)
= C(P) + (px − pl)

∑
q∈T

(
αt,q(nq

i − nq
j )
)
.

(3)

If
∑

q∈T

(
αt,q(nq

i − nq
j )
)
< 0 then C(Ps−x) < C(P), which is impossible since P is optimal.

Likewise, if
∑

q∈T

(
αt,q(nq

i − nq
j )
)
> 0 then C(Pl−x) < C(P), which again is impossible since P is

optimal. Thus, ∑
q∈T

(
αt,q(nq

i − nq
j )
)

= 0, (4)

and C(P) = C(Pl−x) = C(Ps−x).

5. Special case: single type

We consider in this section that all the tasks are of the same type, t1. We show a polynomial
time algorithm, based on dynamic programming, for allocating tasks to machines. This algo-
rithm, called BestOrS, is optimal for a single type and linear costs. Thus, it finds the socially-
optimal outcome in the [Koutsoupias and Papadimitriou, 1999] model in which the cost of each
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task is the load of its machine. This algorithm will also allow us to solve the special cases of PSE
detailed in the introduction of Section 6.

The cost of each task i is ci = LMP,i , the load of the machine on which task i is allocated (where
L j =

∑
i on machine j pi). For a single type, the cost of a partition P would be αt1,t1

∑n
i=1 LMP,i .

Therefore, without loss of generality, we fix αt1,t1 = 1.
The following dynamic programming algorithm, BestOrS, finds in polynomial time the op-

timal solution of PSE. BestOrS uses the OrS property. We denote by C(x, r) the cost of an
optimal solution of problem PSE when there are r machines and tasks 1, . . . , x (x ∈ {1, . . . , n},
and r ∈ {1, . . . ,m}). When extending an allocation from r to r + 1 machines, BestOrS checks
allocations with 1, 2, . . . , (x− 1) smallest tasks on machine r (we recall that the tasks are indexed
in non-increasing order of loads: p1 ≥ p2 ≥ · · · ≥ pn). More formally, for all x ∈ {1, . . . , n}, and
r ∈ {1, . . . ,m − 1}, we have:

C(x, r + 1) = min
i∈{1,...,x−1}

C(x − i, r) + i
x∑

j=x−i+1

p j

 . (5)

The cost of an allocation on a single machine can be directly computed. For each x ∈
{1, . . . , n}, we have:

C(x, 1) = x
x∑

i=1

pi. (6)

The minimum cost of a solution of PSE is C(n,m). By backtracking, we can deduce from
C(n,m) an allocation of minimum cost (for example, when each value C(x, r) is computed, we
record the tasks which are on the r-th machine).

Proposition 5.1. Algorithm BestOrS computes in O(n2m) an optimal allocation of problem PSE
when there is a single type.

Proof. Let us first show that for each x ∈ {1, . . . , n} and r ∈ {1, . . . ,m}, the value C(x, r) computed
by BestOrS is the minimum cost to allocate the x largest tasks on r machines. Once we have
shown this, we can deduce that C(n,m) is the minimum cost of a solution of PSE, and thus that
this algorithm returns an optimal solution.

The proof is by induction on r, the number of machines. When there is only one machine,
there is only one possible allocation, and its cost is equal to the number of tasks times the load
of the machine. Thus the cost is given by Equation (6).

Let us now assume that for each y ∈ {1, . . . , x − 1}, C(y, r) is the minimum cost to allocate
the y largest tasks of the instance on r machines. Let us show that C(x, r + 1) is the minimum
cost to allocate the x largest tasks of the instance on r + 1 machines. By Lemma 4.1, there exists
an optimal OrS allocation. Thus, there exists an optimal allocation O of the x largest tasks on
r + 1 machines, where the smallest tasks are on the same machine. In O, let i∗ ∈ {1, . . . , n} be
the number of tasks which are on the machine to which the smallest task x is allocated. As O
is an OrS allocation, this machine has the i∗ smallest tasks x − i∗ + 1, . . . , x. The cost of O is
C(x − i∗, r) + i∗

∑x
j=x−i∗+1 p j. Indeed,

∑x
j=x−i∗+1 p j is the cost of each of the i∗ smallest tasks in O

and C(x − i∗, r) is by induction the minimum cost to allocate the other tasks (the x − i∗ largest
tasks on r machines). Equation (5) computes the cost of a feasible solution. If i′ ∈ {1, . . . , n} is
the value of i that minimizes C(x − i, r) + i

∑x
j=x−i+1 p j then Equation (5) computes the cost of a

solution where the i′ smallest tasks are on the same machine, and the other tasks are partitioned
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optimally on the r remaining machines. This value is minimized when i′ = i∗. Thus C(x, r + 1)
is the minimum cost of a partition of the x largest tasks on r + 1 machines.

Therefore, C(n,m) is the cost of an optimal solution of PSE. We now show that C(n,m) can
be be computed in O(n2m). We store the values C(x, r) on an n×m matrix. Each value C(x, r +1)
can be computed in O(n) once the values C(x − i, r) are known. For each x ∈ {2, . . . , n},

∑x
j=2 p j

can be computed at the beginning of the algorithm in O(n). Then, when we compute C(x, r + 1)
we have x ≤ n costs to examine—each cost being computed in O(1) if we start by i = x − 1 and
decrement i until i = 1.

6. Several types

In this section we propose a series of algorithms solving the Partition with Side Effects (PSE)
problem when there are several types. We start with a dynamic programming algorithm poly-
nomial in the number of tasks and machines, but exponential in the number of admissible sizes
of tasks and in the number of types. Then, using the OrS property (derived in Section 4), we
propose an algorithm, called CutJuxtapose (Section 6.3), polynomial in the number of tasks, but
exponential in the number of types and machines. Finally, we show that BestOrS (the algorithm
proposed for a single type in Section 5) is an approximation algorithm for PSE.

Before analyzing the general PSE problem, we mention several special cases that can be
optimally solved using the results presented in Section 5.

Independent types: When for all i , j αi, j = 0, the types are independent. Separately for
each type, we use BestOrS to assign the task of this type to m machines. We obtain an optimal
solution in O(Tn2m).

Equivalent types: If there is a value C such that for each pair of types t and t′ (including
t = t′), αt,t′ = C, then all the types are equivalent. The impact of one task on another does not
depend on its type. By using BestOrS once to allocate all tasks on all machines, we obtain an
optimal solution in O(n2m).

Large influences: If influences are very large for each pair of types t′ , t (i.e., when αt′,t >∑
t∈T (ntαt,t

∑
i∈Jt pi)), and if T ≤ m, then sharing machines between tasks of different types is

inefficient.
∑

t∈T ntαt,t
∑

i∈Jt pi is the cost of a dedicated partition that allocates all tasks of each
type to one of T dedicated machines (types do not share machines). When the influences are
large, if a task shares a machine with a different type, its cost is larger than the total cost of a
dedicated partition.

We call a configuration a mapping from types to the number of machines assigned to each
type, such that the total number of assigned machines is m. Given a configuration, we can
compute an optimal partition in polynomial time by using T times the O(n2m)-algorithm of
Section 5. Thus, an optimal partition is the partition of the minimum cost over all the config-
urations. In order to count the possible configurations, we show how to generate them. Since
there is at least one machine per type, without loss of generality we assign machine m − i + 2
to type i, for each i ∈ {2, . . . ,T } (one machine will be assigned to type 1 later). We assign the
remaining m − T + 1 machines as follows. We pick (T − 1) numbers {k1, . . . , kT−1} such that
1 ≤ k1 ≤ k2 ≤ · · · ≤ kT−1 ≤ m − T + 1. To the first type, we assign machines [1, k1]. To the
second type, if k2 > k1, we assign machines [k1 + 1, k2]; otherwise (k2 = k1), type 2 has no
machines assigned in this phase. We continue with the remaining but the last type. The last type
T is assigned the remaining machines [kT−1 +1,m−T +1]. The number of ways to pick numbers
{k1, . . . , kT−1} from the set {1, . . . ,m− T + 1} is equal to the number of combinations with repeti-
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tion,
(

(m−T+1)+(T−2)
T−1

)
=

(
m−1
T−1

)
. Thus the complexity of our algorithm is O

((
m−1
T−1

)
n2m

)
⊂ O(n2mT ).

This is a polynomial time algorithm when T is a constant.

6.1. Allocation for a fixed number of sizes

We present a dynamic programming algorithm, DynSize, which solves PSE in polynomial
time if the number of types is constant and if the number of possible sizes for the tasks is also
constant.

If the number of possible sizes of each task is fixed, pi ∈ P, where P ⊂ N is the set of
admissible sizes and |P| is a constant (does not depend on the instance). For each type t ∈ T , we
denote by lt the number of different sizes of a task of type t (lt ≤ |P|). We write p j

t for the j-th
size of a task of type t, where j ∈ {1, . . . , lt}. Note that t in subscript distinguishes p j

t from pt
j, the

size of the j-th largest task of type t. We denote by C j
t the set of the tasks which are of type t and

of size p j
t . We put n j

t = |C
j
t |.

By C(y1
1, . . . , y

l1
1 , y

1
2, . . . , y

l2
2 , . . . , y

1
T , . . . , y

lT
T , r) we denote the cost of an optimal solution of

PSE when there are r machines and y j
t tasks of type t and of size p j

t . We will use a shorthand
notation C

(
(y j

t ), r
)

(with t ∈ {1, . . . ,T } and j ∈ {1, . . . , lt}). We prove in Proposition 6.1 that
the following dynamic programming algorithm, DynSize, finds in polynomial time an optimal
solution of PSE.

The cost of an optimal allocation on a single machine is:

C
(
(y j

t ), 1
)

=

T∑
t=1

T∑
t′=1

αt,t′

 lt∑
k=1

yk
t pk

t


 lt′∑

k=1

yk
t′

 . (7)

The cost of an optimal allocation on r ≥ 2 machines is:

C
(
(y j

t ), r
)

= min
(x j

t :x j
t ∈{0,...,y

j
t })

(
C

(
(y j

t − x j
t ), r − 1

)
+ C

(
(x j

t ), 1
))
. (8)

The cost of an optimal solution of PSE is C((n j
t ),m). We can deduce from C(n,m) an allo-

cation of minimum cost by backtracking (for example, when each value C(x, r) is computed, we
record the tasks which are on the r-th machine).

Proposition 6.1. DynSize optimally solves PSE in O(mn2
∑

t∈T lt ).

Proof. When there is a single machine, there is only one possible allocation. Its cost is the sum
over all the pairs of types (t, t′) ∈ T 2 of the cost that the tasks of type t imply on the cost of
the tasks of type t′. This cost is expressed by the right hand side of Equation (7). The value
C

(
(y j

t ), 1
)

is thus valid.

For each t ∈ {1, . . . ,T }, and then for each j ∈ {1, . . . , lt}, let y j
t ∈ {0, . . . , n

j
t } be a number

of tasks of type t and of size p j
t , and let x j

t ∈ {0, . . . , y
j
t }. The expression C

(
(y j

t − x j
t ), r − 1

)
+

C
(
(x j

t ), 1
)

computes the cost of an optimal solution among the solutions where there are x j
t tasks

of type t and of size p j
t on machine Mr, and where there are y j

t −x j
t tasks of type t and of size p j

t on
machines M1 to Mr−1. In any partition of the tasks (y j

t ), the number of tasks of type t and of size
p j

t on Mr is between 0 and y j
t . Thus, the right hand side of Equation (8) computes the minimum
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cost of a partition where there are y j
t tasks of type t and of size p j

t to assign to r machines, and
Equation (8) is valid.

Therefore, by using Equations (7) and (8), we can compute C
(
(n j

t ),m
)
, the cost of an optimal

solution of problem PSE. Let us now analyze the time complexity of this algorithm.
On a given subset of the machines, the number of tasks of type t and size p j

t is between 0 and
n j

t . Thus, the number of possible vectors (y j
t ) is

∏
t∈T , j∈{1,...,lt}(n

j
t + 1) < (n + 1)

∑
t∈T lt . Thus, the

number of possible values of C
(
(y j

t ), r
)

to compute is smaller than m(n + 1)
∑

t∈T lt . Each value

C
(
(y j

t ), 1
)

is computed in O(T 2(maxt lt)2) ⊂ O(T 2n2). To compute C
(
(y j

t ), r
)

with r ≥ 2, we

use stocked vectors C
(
(y j

t ), r − 1
)
. The minimum in Equation (8) checks all valid (non-negative)

vectors (y j
t − x j

t ). The number of such vectors is at most equal to the number of possible vectors
(y j

t ), i.e., (n + 1)
∑

t∈T lt . Therefore the complexity of this dynamic programming algorithm is
O(mn2

∑
t∈T lt ).

Corollary 6.1. If the number of types and the number of possible sizes for the tasks are constant,
the above described dynamic programming algorithm optimally solves PSE in polynomial time.

6.2. Approximation scheme
In this section, we use DynSize, the dynamic programming algorithm introduced in the pre-

vious section, to derive an approximation scheme, ApproxScheme. ApproxScheme has a low
complexity if both the number of types and the size of the largest task are small.

ApproxScheme is defined as follows. Let ε > 0. Let I be an instance of PSE, and let pmax =

maxi∈{1,...,n} pi be the size of the largest task of I. First, construct a new instance I′ by rounding
the size of each job to p′i = (1 + ε)dlog(1+ε)(pi)e. Then, run DynSize (Section 6.1) on I′, and output
the given allocation.

Proposition 6.2. Let ε > 0, and let I be an instance of PSE. Algorithm ApproxScheme(I, ε)
computes in O(mn2T dlog1+ε(pmax)e) a (1 + ε)-approximate solution for PSE.

Proof. Let us show that this algorithm returns a (1 + ε)-approximate solution for PSE. Let P
be an assignment (partition) of the tasks of I to the machines. We denote by C(P) the cost of
solution P when the tasks have their real sizes (the sizes given in I). We denote by C′(P) the cost
of solution P on instance I′. Let O be a partition of the tasks of I which is optimal for PSE for
instance I, and let O′ be a partition which is optimal for I′.

Since O′ is an optimal solution for I′, we have

C′(O′) ≤ C′(O) (9)

At the rounding step, the size of each task is increased by a factor of at most 1+ε. Therefore,
the cost of each task is increased by a factor of at most 1 + ε. Therefore, for each partition P, we
have:

C(P) ≤ C′(P) ≤ (1 + ε)C(P) (10)

Using Inequalities (9) and (10), we get:

C(O′) ≤ C′(O′) ≤ C′(O) ≤ (1 + ε)C(O) (11)

Since the dynamic programming algorithm introduced in Section 6.1 is an exact algorithm, the
solution given by ApproxScheme(I, ε) is O′. This solution is thus a (1 + ε)-approximate solution
of PSE on instance I.
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Let us now show that this algorithm runs in O(mn2T dlog1+ε(pmax)e). The rounding step is done in
O(n). At the end of this step, there are at most dlog1+ε(pmax)e sizes. Thus, for each type t, there
are at most dlog1+ε(pmax)e different sizes of tasks of type t in I′. In I′,

∑
t∈T lt ≤ T dlog1+ε(pmax)e.

The running time of the dynamic programming algorithm on I′ is thus O(n2T dlog1+ε(pmax)em).

Although the complexity of ApproxScheme may be exponential if pmax is very high, its com-
plexity is much lower than the one of the dynamic programming algorithm of Section 6.1. If T
and pmax are constants, then the number of possible sizes is a constant (it is at most T pmax), and
thus the dynamic programming algorithm is a polynomial time algorithm. However, its com-
plexity is huge (O(mn2T pmax )), making it impractical. On the contrary, ApproxScheme, which is
also a polynomial time algorithm in this case, has a complexity of O(mn2T dlog1+ε(pmax)e)

If an instance has many small tasks and a constant number nl of large tasks, in order to reduce
the complexity of the algorithm, it is better to round only the small tasks. Let px be the size of the
largest among the small tasks. We will obtain dlog(1+ε)(px)e rounded sizes. Thus, in the dynamic
programming algorithm of Section 6.1, we will get vectors of size nl + T dlog(1+ε)(px)e instead of
T dlog(1+ε)(pmax)e.

We will give in Section 6.3 an exact algorithm, called CutJuxtapose, with complexity of
O(n(m−1)T (m!)T−1). If m is large, as it is often the case, this algorithm cannot be used in practice.
On the contrary, the complexity of ApproxScheme increases linearly in m. With a large number
of machines, small number of types and relatively homogeneous tasks’ sizes, ApproxScheme
returns acceptable solutions faster than CutJuxtapose.

6.3. CutJuxtapose: partition using the OrS property

We show in this section an optimal algorithm for PSE. This algorithm, called CutJuxtapose,
uses the OrS property (Section 4). CutJuxtapose is exponential in the number of types T and in
the number of machines m, but polynomial in the number of tasks n.

The OrS property specifies, for each type, an optimal ordering of tasks (from the largest to
the smallest). Independently for each type t, CutJuxtapose cuts the ordered sequence of tasks
into a set of at most m sub-sequences. A sub-sequence corresponds to tasks that will be assigned
to the same machine; two sub-sequences of the same type will be assigned to different machines.
Then, CutJuxtapose juxtaposes (combines) sets corresponding to tasks of different types. In the
first phase, CutJuxtapose generates all possible cuts. Then, for each cut, CutJuxtapose tests
all possible combinations of juxtaposing sub-sequences. Therefore, CutJuxtapose examines all
OrS assignments and returns the optimal one.

Proposition 6.3. Algorithm CutJuxtapose computes in O(n(m−1)T (m!)T−1) an optimal allocation
of PSE.

Proof. By Lemma 4.1 there exists an optimal partition which fulfills the OrS property. Algo-
rithm CutJuxtapose considers all possible OrS partitions (cuts and combinations), thus it finds
the one with the minimal cost.

In order to determine the number of partitions examined by CutJuxtapose, let us first observe
that the number of ways to split a sequence S of length n into at most k subsequences S 1, . . . , S k

is at most
(

n+k−1
k−1

)
. One way to show this is the following. Put n + k − 1 squares in a sequence.

Remove k−1 squares to leave n squares and at most k−1 gaps. We now have at most k sequences
of squares. We then match the sequence S to the remaining sequences of squares. The matching
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splits S into at most k subsequences. There are
(

n+k−1
k−1

)
ways to remove the squares and so at most(

n+k−1
k−1

)
ways to split the sequence.

Algorithm CutJuxtapose considers the partitions which fulfill the OrS property, which de-
termines the order of the tasks. Therefore, n(i) tasks of type i form a sequence that is cut into at
most m subsequences (each subsequence corresponds to tasks allocated to the same machine).
Thus there are at most

(
n(i)+m−2

m−1

)
cuts to examine.

Given a most m subsequences for each type, the number of ways to juxtapose these sub-
sequences is at most (m!)T−1 since all the permutations of the subsequences of type t , 1
are computed (without loss of generality we assume that the ith sequence of type 1 is on ma-
chine i). Thus the time complexity of CutJuxtapose is

(∏
i∈{1,...,T }

(
n(i)+m−2

m−1

))
(m!)T−1, which is in

O(n(m−1)T (m!)T−1).
If the number of machines, m, and the number of types, T , are constant, then the complexity

of CutJuxtapose is O(nT (m−1)): it is a polynomial time algorithm.
When there are only two types A and B, juxtaposing reduces to finding the minimum cost

bipartite matching in a bipartite graph ({JA
1 , . . . , J

A
m}, {J

B
1 , . . . , J

B
m}) (i.e. each JA

i has an edge with
each JB

j ). Let LA
i =

∑
j∈JA

i
p j be the load of JA

i , and let LB
j be the load of JB

i . Let M be the
maximum value of |JA

i |αB,ALB
j + |JB

j |αA,BLA
j (i, j ∈ {1, . . . ,m}2). The cost of matching JA

i with JB
j

is equal to M− (|JA
i |αB,ALB

j + |JB
j |αA,BLA

j ). By solving bipartite matching with the Kuhn–Munkres
algorithm [Edmonds and Karp, 1972], the complexity of juxtapose phase is O(m3), and thus the
complexity of the whole CutJuxtapose is O(n2(m−1)m3).

6.4. BestOrS as an approximation algorithm

We demonstrate in this section that BestOrS, the algorithm we proposed for a single type, is
an approximation algorithm for the general case.

Proposition 6.4. Let αmax = max(t,t′)∈T 2 αt,t′ , and αmin = min(t,t′)∈T 2 αt,t′ . Algorithm BestOrS is
an αmax

αmin
-approximate algorithm for PSE, and the bound αmax

αmin
is asymptotically tight.

Proof. Let us consider an instance I of PSE, and let OI be an optimal solution of I, of cost
C(OI). Let I′ be the instance obtained from I by keeping the same tasks (number and lengths)
but by replacing all the αt,t′ by αmin. Let O′

I
be an optimal solution of I′, of cost C(OI′ ). We

have: C(OI) ≥ C(OI′ ). If, in OI′ , we replace all the αmin by the original αt,t′ , then the cost of
the solution is increased by at most αmax

αmin
(the cost of each task is multiplied by at most αmax

αmin
). The

solution OI′ can be obtained by algorithm BestOrS (all the values αt,t′ are equal in this solution).
Since the cost of this solution is at most αmax

αmin
times the minimum cost, C(OI), BestOrS is an αmax

αmin
-

approximate algorithm.
In order to show that the bound is asymptotically tight, let us consider the following instance.

There are m machines and m types. There are m tasks of each type. All the tasks are of size 1.
For each type t, αt,t = αmin, and for each pair of types t and t′ such that t , t′, αt,t′ = αmax ≥ αmin.
The optimal solution has cost m3αmin. In this partition, there is a machine for each type—all
the tasks of the same type are on the same machine. Each of the m2 tasks has a cost mαmin.
BestOrS can return the partition where on each machine there is one task of each type. The cost
of each task is then (m − 1)αmax + αmin, and the cost of the partition is m2((m − 1)αmax + αmin).
The approximation ratio of BestOrS is thus at least m2((m−1)αmax+αmin)

m3αmin
= m−1

m
αmax
αmin

+ 1
m . This tends

towards αmax
αmin

when m tends towards infinity.

12



7. Extension: convex costs

In this section, we study general cost functions, and we focus on the case where there is
a single type. So far, we have studied a linear cost function: if all the tasks have the same
type the cost of each task is proportional to the load of its machine. However, more complex
cost functions are interesting from the systems perspective (e.g., webserver’s response time as a
function of load is convex [Cao et al., 2003, Khanna et al., 2006, Slothouber, 1996]). We show
in Section 7.1 that if the cost function is strictly convex then problem PSE becomes strongly NP-
hard. A concave cost function is not as realistic, since it would mean that, with unit size tasks,
the average cost of a task decreases when the number of tasks on the same machine increases.

More formally, we assume in this section that the cost of task i in partition P is ci = f (LMP,i ),
where f is a strictly convex function (and LMP,i is the load of the machine on which task i is
allocated in P, LMP,i =

∑
j on machine MP,i

p j). Let us denote by PCSE (which stands for Partition
with Convex Side Effects) the following problem (note that this problem has a natural extension
to several types):
Input: n tasks (of different sizes), a number m of machines, and an increasing and strictly convex
cost function f .
Output: a partition which minimizes the sum of the costs

∑n
i=1 ci =

∑n
i=1 f (LMP,i ).

7.1. Complexity for strictly convex cost

In this section, we show that it is NP-hard to minimize costs given by any strictly convex cost
function, even for a single type.

Proposition 7.1. For any cost function f which is increasing and strictly convex, the decision
version of PCSE is strongly NP-complete.

Proof. We reduce from the strongly NP-complete 3-Partition [Garey and Johnson, 1979]. An
instance of the 3-Partition consists of a finite set A of 3q elements, a bound B ∈ Z+, and a size
s(a) ∈ Z+ for each a ∈ A, such that s(a) satisfies B

4 < s(a) < B
2 and such that

∑
a∈A s(a) =

qB. The question is: can A be partitioned into q disjoint sets S 1, . . . , S q such that, for i ∈
{1, . . . , q},

∑
a∈S i

s(a) = B?
We study the decison version of PCSE, which is as follows: given an instance of PCSE, is

there a partition P with total cost C(P) =
∑n

i=1 ci at most K?
From an instance of 3-Partitionwe construct an instance of PCSE as follows. We have m = q

machines {M1, . . . ,Mm} and n = 3q tasks. For each element a ∈ A, we have a task ja of size
pa = s(a). We set the budget K = n f (B).

Let us now show that there is a solution to the 3-Partition if and only if there is a solution to
the corresponding instance of PCSE. Assume first that there is a solution to the 3-Partition. Let
{S 1, . . . , S m} be the sets of the solution. Consider a partition P in which tasks corresponding to
the elements in S i are allocated on Mi. In P, since

∑
a∈S i

s(a) = B, the load on each machine is
equal to B. The cost ci of each task is thus f (B), and the sum of the costs is n f (B). Consequently,
there is a solution of cost n f (B) = K for PCSE.

Let us now assume that there is a solution P to PCSE. We show that there is a solution to the
corresponding instance of the 3-Partition problem. Let ni be the number of tasks on Mi in P,
and let Li be the load of Mi in P. The cost of P is C(P) =

∑m
i=1 ni f (Li).
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We will show that since the cost of the solution P is at most K, then on each machine (1)
there are exactly 3 tasks; and (2) the load is exactly B.

In order to obtain a contradiction, suppose that in P there is a machine Mi such that ni > 3.
If ni > 3 then Li > B, since there are at least 4 tasks on Mi and each task is strictly larger than B

4 .
If there is a machine with ni > 3, then there exists another machine M j with n j < 3. Since all the
tasks are smaller than B

2 , we have L j < B.
Hence,

ni f (Li) + n j f (L j) > (ni − 1) f (Li) + (n j + 1) f (L j)

This argument can be used until nk = 3, for each machine Mk. Therefore, we get C(P) =∑m
k=1 nk f (Lk) >

∑m
k=1 3 f (Lk). Since f is strictly convex,

m∑
k=1

3 f (Lk) ≥ 3m f
(∑m

k=1 Lk

m

)
= 3m f (B) = K.

Thus, C(P) > K, which leads to a contradiction. There are thus exactly three tasks per machine.
We now show that the load of each machine is exactly B. Since there are exactly three tasks

per machine, C(P) = 3
∑m

i=1 f (Li). Since P is a solution to PCSE, C(P) ≤ K = 3m f (B) =

3m f
(
(
∑m

k=1 Lk)/m
)
. We thus have

∑m
i=1 f (Li) ≤ m f

(
(
∑m

k=1 Lk)/m
)
. As f is strictly convex, the

inequality holds only if Li = (
∑m

k=1 Lk)/m for each machine Mi.
Therefore, in P on each machine there are exactly 3 tasks and the load is B. If we denote by

S i the set of elements of A corresponding to the tasks allocated on Mi in P, we have for each set
S i, with i ∈ {1, . . . ,m},

∑
a∈S i

s(a) = B. This defines a solution to the 3-Partition problem.
There is a solution to the 3-Partition if and only if there is a solution to the corresponding

instance of the PCSE. As PCSE is (trivially) in NP, PCSE is thus strongly NP-complete.

Proposition 7.2. For any cost function f which is increasing and strictly convex, the decision
version of PCSE is NP-complete, even if there are only 2 machines.

Proof. We do a reduction from problem EqualPartition, which is NP-complete, to our problem.
The EqualPartition problem is the following one: the input is a finite set A of 2k elements. Each
a ∈ A has size s(a) ∈ N. Let S =

∑
a∈A s(a). The question is: can A be partitioned into two disjoint

sets A1, A2 of equal cardinality k such that
∑

a∈A1
s(a) =

∑
a∈A2

s(a) = S/2? EqualPartition is
an NP-complete variant of the NP-complete Partition problem [Garey and Johnson, 1979] (the
anwer for an instance I of Partition is the answer of the instance of EqualPartition in which we
have the tasks of I and an equal number of artificial tasks of size 0).

The instance of PCSE corresponding to an instance of the EqualPartition is as follows. We
have 2 machines {M1,M2} and n = 2k tasks. For each element a ∈ A, we introduce a task ja of
size pa = 2S + s(a). We set the budget K = 2k f

(
2kS + S

2

)
.

Let us now show that there is a solution to the EqualPartition problem if and only if there is a
solution to the corresponding instance of the PCSE problem. Assume first that there is a solution
A1, A2 to the EqualPartition problem. Let us consider the partition where, for each i ∈ {1, 2}, the
tasks which correspond to the elements of Ai are allocated to Mi. In this partition, since there are
k elements in Ai and since

∑
a∈Ai

s(a) = S
2 , the load on each machine is equal to 2kS + S

2 . The
cost of each task is thus f (2kS + S

2 ), and the sum of the costs is 2k f (2kS + S
2 ) = K.
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Let us now assume that there is a solution P to the PCSE problem, and let us show that there
is a solution to the corresponding instance of the EqualPartition problem. Let n j be the number
of tasks on M j in P, and let L j be the load of M j in P. The cost of P is C(P) = n1 f (L1)+n2 f (L2).

First, we show by contradiction that the number of tasks on each machine is k. Assume that
there is in P a machine Mi such that ni > k. Assume without loss of generality that Mi = M1. In
this case, on the other machine, M2, there are at most k − 1 tasks.

On M1, the load is L1 ≥ (k+1)2S , since there are at least k+1 tasks and each task has a size at
least 2S . Pick a task on M1 of size 2S +r (where r ≥ 0). The load on M2 is L2 ≤ (k−1)2S +(S −r),
since there are at most (k − 1) tasks, each of size 2S + s(a), and

∑
a on M2

s(a) ≤ (S − r). If this
task of size 2S + r is moved to M2 then the load on M1 becomes L′1 ≥ k2S (there are still at least
k tasks of size at least 2S ). On M2, the load after the move is L′2 ≤ (k− 1)2S + (S − r) + (2S + r).
Thus L′2 ≤ k2S + S < L1. After the move, the cost of each of the n1 − 1 ≥ k tasks remaining
on M1 is decreased from f (L1) to f (L′1). The cost of each of the n2 + 1 ≤ k tasks on M2 is
increased by f (L′2) − f (L2) < f (L1) − f (L′1) (the last inequality follows from f being strictly
convex). Therefore, moving a task from M1 to M2 decreases the total cost, which contradicts the
assumption that P is optimal.

Therefore, in an optimal solution of PCSE there are exactly k tasks per machine. We now
analyze the cost of an optimal solution. Assume that the load on M1 is 2kS + ∆, and the load on
M2 is 2kS + ∆′ (with ∆ + ∆′ = S ). The cost of the solution is then k f (2kS + ∆) + k f (2kS + ∆′).
Since f is strictly convex, the cost is minimized when ∆ = ∆′ = S

2 . Therefore, if we denote by
Ai the set of elements of A corresponding to the tasks allocated on Mi in P, we have for each set
Ai, with i ∈ {1, . . . ,m},

∑
a∈S i

s(a) = S
2 . There is thus a solution to the EqualPartition problem.

There is a solution to the EqualPartition if and only if there is a solution to the corresponding
instance of the PCSE. As PCSE is (trivially) in NP, PCSE is thus NP-complete.

7.2. An approximation algorithm for convex costs

Since problem PCSE is strongly NP-complete even with only one type, there is no polynomial
time algorithm to solve it unless P = NP. We analyze the approximation ratio of algorithm
BestOrS, which considers an input of PCSE as an input of PSE with only one type (i.e. the
instance of PSE is are the tasks with sizes equal to ones from PCSE). Let W be the total load in
the system: W =

∑n
i=1 pi. Let ∆ =

f (W)
W . We assume that f (1) = 1 (we can scale the instance such

that this is true).

Proposition 7.3. Algorithm BestOrS is a ∆-approximate algorithm for PCSE.

Proof. Let I be an instance of PCSE. Let P be a partition of the tasks of I on the machines.
We denote by CPCSE(P) the cost of this partition for problem PCSE. We denote by CPSE(P) be
the cost of this partition for problem PSE (in this case the tasks—number and lengths— are the
same as in the instance of PCSE but the convex cost function has been replaced by a linear cost
function).

Given a partition P, the cost of task i for problem PSE is CPSE(i) = LMP,i , where LMP,i is the
load of the tasks on the same machine than i in P. Given this same partition, the cost of task i
for problem PCSE is CPCSE(i) = f (LMP,i ). Since f is an increasing convex function, and since

LMP,i ≤ W, we have
f (LMP,i )
LMP,i

≤
f (W)
W = ∆. Thus f (LMP,i ) ≤ ∆LMP,i . We have:
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CPCSE(P)
CPSE(P)

=

∑n
i=1 CPCSE(i)∑n
i=1 CPSE(i)

=

∑n
i=1 f (LMP,i )∑n

i=1 LMP,i

≤

∑n
i=1 ∆LMP,i∑n
i=1 LMP,i

≤ ∆

(12)

Let OPTPCSE and OPTPSE be optimal solutions of PCSE and PSE on instance I. Since OPTPSE
is an optimal solution of problem PSE, its cost is smaller than or equal to the costs of all the
other partitions: in particular we have CPSE(OPTPSE) ≤ CPSE(OPTPCSE). Furthermore, we have
CPSE(OPTPCSE) ≤ CPCSE(OPTPCSE) since f is an increasing convex function and f (1) = 1. Using
these two inequalities and Equation (12), we have:

CPSEc(OPTPSE) ≤ ∆ CPSE(OPTPSE)
≤ ∆ CPSE(OPTPCSE)
≤ ∆ CPCSE(OPTPCSE)

(13)

Therefore, algorithm BestOrS, which returns solution OPTPSE, is a ∆-approximate algorithm
for PCSE.

This algorithm can be used if the cost function is close to be linear (i.e. if ∆ is close to 1).
However, if the cost function is convex and increases quickly (i.e. if f (x + 1) � f (x)), then
the maximum cost of a task is likely to be minimized. In this case, an optimal algorithm (or an
approximation scheme) for the widely studied scheduling problem which consists in minimizing
the makespan on parallel machines, P||Cmax, can be useful. Indeed, using such an algorithm on
the instance of PCSE (n tasks of size {p1, . . . , pn}) is likely to return a good solution (assignment
of the tasks to the machines) for PCSE. Note that, in the general case, an optimal algorithm for
P||Cmax is n-approximate for PCSE. Indeed, let C∗max be the makespan of an optimal solution of
P||Cmax. In an optimal solution of PCSE, the maximum load is at least C∗max and thus the cost
of an optimal solution of PCSE is at least f (C∗max). In an optimal solution of P||Cmax, the load
on each machine is at most C∗max. The cost of such a solution is thus at most n f (C∗max): it is a
n-approximate solution.

8. Experiments

To experimentally verify the performance of the proposed algorithms, we conducted simu-
lations on a dataset derived from a data center trace published by Google [Reiss et al., 2012].
We first describe our methodology: the algorithms we use, our method of converting the Google
trace to a series of instances of our problem, and two methods we use to normalize the results of
our algorithms. Then, we describe the results of the experiments.
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8.1. Method

8.1.1. Algorithms
We compared CutJuxtapose with the following algorithms.
BestOrS (Section 6.4) converts the instance with multiple types to an instance with a single

type (maintaining task sizes), and then runs the dynamic programming algorithm for a single
type. Then, the resulting assignment is converted back to a multi-type solution (types are as-
signed to tasks in order of type indices).

Hill performs hill-climbing starting from an initial assignment of all tasks to machines.
Given an initial assignment, for each type, the algorithm tries all possible movements of tasks
between machines that maintain the OrS order (analyzing them one by one). If no improvement
is possible, the algorithm stops. Otherwise, the algorithm accepts allocation having the lowest
overall cost and, in the next iteration, tries to improve it. For each type, the algorithm maintains
a list of machines ordered by the size of the largest task assigned to that machine, and a set of
free machines (to which no task of the type is assigned). The following moves are considered:
migrating the smallest task to the previous (in the OrS order) machine; migrating the largest task
to the next machine; migrating the smallest task to any free machine; migrating the largest task
to any free machine.

We used various initial assignments for Hill. BestOrS+hill starts with the allocation re-
turned by BestOrS. one+hill starts with all tasks assigned to a single machine. dedic+hill starts
from an allocation that spreads types on available machines—all tasks of type i are allocated on
machine i mod m.

These algorithms can have large runtimes. In particular, CutJuxtapose is exponential in the
number of machines and types; and hill-climbing can test potentially all possible allocations.
During our experiments, we limited the runtime of each algorithm by limiting to N = 106 the
total number of allocations the algorithm can check. If this limit is reached, the algorithm returns
the best assignment found so far. Hill tests thus at most N moves. In CutJuxtapose, the limit
translates to the number of evaluations of the cost of a tested partition (in the juxtapose phase).
If the limit is reached, the algorithm stops.

8.1.2. Data
We used the Google Cluster Trace [Reiss et al., 2012] as an input data. The trace describes all

tasks running during a month on one of the Google clusters. For each task, the trace reports in its
task record table, among other data, the task’s CPU, memory and disk IO usage averaged over a
5-minute long period. This trace is certainly not ideal for our needs: the trace reports the usage of
raw resources (CPU, memory, network, disk), and not the load of applications. However, to the
best of our knowledge, there are no publicly-available traces describing loads and performance
of applications (in contrast to raw resources).

We generated a random sample of 10, 000 task records. Each task record corresponds to
a task in our model. To generate loads and types, we use data on the mean CPU utilization
and the assigned memory. We normalize CPU and memory utilization by dividing each by its
maximum. We remove 45% of task records that reported less than 0.005 in both normalized CPU
and memory usage. The traces also provide disk IO usage. We do not use it, as for only 3% of the
tasks the normalized disk usage was higher than both normalized CPU and normalized memory
usage. Thus, a great majority of tasks have negligible disk IO usage.

We assign types using ratio ρ of normalized CPU to normalized memory usage. Figure 1
shows a histogram of ρ on our dataset. ρ = 1 (in Figure 1, a dashed line at log(ρ) = 0) partitions
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Figure 1: Ratio of CPU to memory usage in our 10k dataset (histogram of the logarithm of the ratio). Dashed lines
denote boundaries we used to partition the dataset into up to 4 types.
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the dataset in almost equal halves. We use two other tresholds, log(ρ) = −0.66 and log(ρ) = 0.66.
They distinguish tasks for which usage of one resouce clearly dominates the other: 10% of the
tasks are memory-dominated (with log(ρ) < −0.66), while 11% of the tasks are CPU-dominated
(with log(ρ) > 0.66).

To assign types, we use the tresholds defined above. For T = 2, we use treshold ρ1 = 1. For
T = 3, we use thresholds log(ρ1) = −0.66 and log(ρ2) = 0.66. For T = 4 we use thresholds
log(ρ1) = −0.66, ρ2 = 1, and log(ρ3) = 0.66.

We set the coefficients αt,t′ based on how compatible are the resource requirements. After
the conversion process described above, t1 is a type for which memory dominates CPU, while
the for last type, tT , CPU dominates the memory. Thus, the further apart the type numbers,
the more compatible these types are. Coefficients are symmetric (αt,t′ = αt′,t) and normalized
so that αt,t = 1. Then, for two types (T = 2), α1,2 = α2,1 = 0.5; for three types (T = 3),
α1,2 = α2,3 = 0.5, while α1,3 = 0.25; finally, for four types (T = 4), each t, t′ = t + 1 have
αt,t′ = 0.75, each t, t′ = t + 2 have αt,t′ = 0.5, and α1,4 = 0.25.

To assign load to a task, we take the maximum from the weighted CPU and weighted memory,
multiply this maximum by 100 and round to the nearest integer. Figure 2 shows an overview of
the resulting distribution of loads by task types. We label type 1 as memory (10%), type 2 as
memory-CPU (40%), type 3 as CPU-memory (39%), and type 4 as CPU (11%).

To generate an instance of n tasks belonging to T types, we take a random sample of n tasks
from the dataset; thus, the proportions of types in the generated instance are similar to the dataset.
However, a random sample might have less than T types: if this is the case, we remove a task
from the most common type in the instance and add a task of the missing type.

Overall, we generate instances with the number of types T ∈ {2, 3, 4}, the number of tasks
n ∈ {10, 20, 50, 100} and the number of machines m ∈ {2, 3, 5, 10}. For each combination of n, T
and m, we generate 30 instances. We have 1440 instances in total.

8.1.3. Presentation of results
We show the cost C(P) of the partition returned by the algorithms normalized to (i.e., divided

by) the cost of the optimal partition returned by CutJuxtapose. However, as CutJuxtapose is
exponential in the number of types and machines, it does not complete in reasonable time on
larger instances. We thus derive a lower bound on the minimum cost as the cost of the partition
returned by BestOrS on an instance with tasks having the same lengths but belonging to a single
type t∗ with αt∗,t∗ = min(t,t′) αt,t′ .

8.2. Results

CutJuxtapose, the exact algorithm, is exponential in the number of types and machines, and
thus computationally expensive in larger instances. We limited the number of tested assignments
to one million, which resulted in limiting the running time by roughly one minute on our com-
puter. Overall, CutJuxtapose solved 464 instances (out of 1440 tested). CutJuxtapose failed to
solve all instances with m = 10 machines and all but one instance with m = 5 machines. Simi-
larly, for n = 100 tasks, CutJuxtapose solved only the smallest instances with two machines and
two and three types.

Next, we analyzed the quality of the solutions returned by various heuristics on these 464
instances in which CutJuxtapose finished (as in these instances we had the cost of the optimal
solution). Figure 3 shows the results (we use boxplots in which the middle line shows the median
and the box spans between 25th and 75th quantile). BestOrS+hill, hill climbing starting from
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Figure 3: The total cost C(P) of the solutions returned by
various heuristics normalized to the total cost of the solu-
tion returned by CutJuxtapose. 464 instances, in which
CutJuxtapose finished in less than 106 evaluations.
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Figure 4: The total cost C(P) of the solutions returned by
various heuristics and by CutJuxtapose. All algorithms
limited to 106 evaluations. The cost normalized to the
lower bound. All instances.
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Figure 5: The total cost C(P) of the solution returned by
CutJuxtapose. C(P) normalized to the lower bound. 464
instances, in which CutJuxtapose finished in less than 106

evaluations.
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Figure 6: The total cost C(P) of the solution returned by
BestOrS+hill, hill climbing starting from the dynamic
programming solution. The cost normalized to the lower
bound. All instances.

Table 1: Percentage of instances that CutJuxtapose finished analyzing in 106 evaluations; CutJuxtapose finished a single
instance with m = 5 and didn’t finish any instance m = 10.

n→ 10 20 50 100
m T
2 2 100 100 100 100

3 100 100 100 100
4 100 100 77 0

3 2 100 100 0 0
3 100 67 0 0
4 100 0 0 0

20



the dynamic programming algorithm solution performs best, finding the optimal solution in 68%
of the cases (compared to 32% for the dynamic programming without hill climbing). The cost of
the worst solution of BestOrS+hill was within 15% of the cost of the optimum.

To analyze the quality of the solutions on all instances, we start with the analysis of the
tightness of the proposed lower bound. Figure 5 shows the cost of the optimal solutions found
by CutJuxtapose (on 464 instances in which CutJuxtapose finished) normalized by the lower
bound (defined in Section 8.1.3). As CutJuxtapose is optimal, if the lower bound was tight,
these normalized cost should be roughly 1. The average score for two types is 1.54, while for
three types is 3.16, and for four types is 3.15. The main reason for the increased normalized score
is the reduction of the cost of the lower bound. The lower bound uses the minimum coefficient
αt,t′ . For two types the minimum coefficient is 0.5, while for three and four types the minimum
coefficient is 0.25.

Figure 4 shows the cost of the solution returned by all heuristics on all instances (costs nor-
malized to the lower bound). On all instances, CutJuxtapose performs worst, as in 106 evalua-
tions it is not able to find the right area of the (huge) search space (note that if CutJuxtapose is
interrupted, it returns the minimum cost partition found so far). BestOrS+hill performs best,
but only slightly better than the dynamic programming solution.

Figure 6 shows a detailed breakdown of BestOrS+hill performance as a function of the
number of types. By comparing these results to the results of CutJuxtapose (Figure 5), we see
that BestOrS+hill has a performance similar to the performance of CutJuxtapose on smaller
instances: BestOrS+hill average scores for 2, 3 and 4 types are 1.59, 3.27 and 3.23 (compared
to CutJuxtapose scores of 1.54, 3.16 and 3.15, respectively).

Moreover, BestOrS+hill converges quickly. On the average, the heuristics tests 185 config-
urations (standard deviation 345; the maximum number of configurations tested is 2028).

9. Related work

Alternative models of data center resource management. There is no standard model of
data center resource management (standard in the sense in which the parallel job model is stan-
dard for HPC). Existing models can be roughly categorized into variants of multi-dimensional
bin-packing (to model heterogeneous resource requirements), stochastic optimization (to model
uncertainty), and statistical approaches. Other issues include pricing and revenue management [Pschel
et al., 2015] (in our model, the provider does not select jobs to execute); or distributed schedul-
ing [Sebastio et al., 2017] (our model targets a single data center, rather than a distributed cloud).

Multi-dimensional bin-packing. In bin-packing approaches, tasks are modeled as items to be
packed into bins (machines) of known capacity [Coffman Jr et al., 1996, Delorme et al., 2016].
For instance [Gullhav et al., 2017] considers the problem of packing replicated services onto
VMs having various capacities. To model heterogeneous tasks and resources, bin packing is ex-
tended to vector packing: an item’s size is defined as a vector with dimensions corresponding
to requirements on individual resources (CPU, memory, disk or network bandwidth) [Stillwell
et al., 2012]. These are hard optimization problems: bin packing is strongly NP-hard (but has an
asymptotic polynomial time approximation scheme, PTAS [Fernandez de la Vega and Lueker,
1981]), while two-dimensional vector packing does not admit an asymptotic PTAS [Woegin-
ger, 1997] Alternatively, if tasks have unit-size requirements, simpler representations can be
used, such as maximum weighted matching [Beaumont et al., 2013]. However, we claim that
the bin packing is too imprecise to capture performance of tasks in a data center. First, some
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tasks may have better performance when executing on machines with smaller loads [Slothouber,
1996], while the bin packing model implicitly assumes that as long as a bin is not overloaded,
tasks’ performance is the same. Second, bin packing does not permit even small overpacking,
while data center resource managers commonly oversubscribe at least for CPU [Reiss et al.,
2012], leading to probabilistic service level agreements (SLAs, see also stochastic approaches
below). Our cost function permits us to model the gradually worsening performance in function
of the overpacking degree. Third, bin packing ignores performance degeneration resulting from
colocated tasks competing for the shared physical resources, such as processor’s cache or the
bandwidth between the processor and the memory [Kambadur et al., 2012, Kim et al., 2015, Koh
et al., 2007, Podzimek et al., 2015, Xu et al., 2013].

Stochastic versions of combinatorial optimization problems. Stochastic versions of classic
optimization problems [Chen et al., 2011, Goel and Indyk, 1999, Wang et al., 2011] can be
used to model uncertainty of tasks’ resource requirements or their variability in time. In these
representations, some parameters of an instance are random variables, e.g., items’ sizes in bin
packing. A typical goal is to construct an optimal solution (in terms of the number of bins used,
or the value of the items picked to a knapsack) that violates the capacity constraints only with a
small probability. These models, however, rarely lead to practical algorithms, at the same time
requiring restrictive assumptions on the stochastic models of jobs, as usually the algorithms work
only for a certain distribution.

Statistical approaches. [Bobroff et al., 2007] use statistical information on the past CPU load
of tasks (CDF, autocorrelation, periodograms) to predict the load in the following time period;
then they use bin packing to calculate a partition minimizing the number of used bins subject to
a constraint on the probability of overloading servers. [Di et al., 2015] analyze resource sharing
for streams of tasks to be processed by virtual machines. Sequential and parallel task streams
are considered in two scenarios—when there are sufficient resources to run all tasks, and when
the resources are insufficient. For sufficient resources, optimality conditions are formulated. For
insufficient resources, fair scheduling policies are proposed.
Analysis of effects of colocation. [Podzimek et al., 2015] analyze the performance of colocated
CPU-intensive tasks. Their measured performance interference metric is similar to our αt j,ti
coefficient. [Kim et al., 2015] focuses on experimental measures of performance interference
between a few concrete HPC applications. This interference, called the affinity metric, is similar
to our αt j,ti coefficients. They propose a greedy allocation heuristics, but they neither study
the complexity of the problem nor demonstrate the optimality of the solutions found by their
heuristics.
Game-theoretic approaches. There is a strong connection between our model and games, in
which each task is owned by a selfish agent who wants to minimize task’s cost.

Load balancing games. Our model relates to the load-balancing games introduced by [Kout-
soupias and Papadimitriou, 1999], in which the cost of each task is the total load of the machine
to which the task is allocated. This model represents, e.g., a system of servers from which users
download large files: tasks correspond to requests of individual users and each the user aims
at contacting a server with the smallest load [Vöcking, 2007]. This model is analyzed also for
unrelated machines [Azar et al., 2015]. Contrarily to what we do in this paper, the game model
considers that each task is owned by an agent, and that each agent chooses the machine on which
its task will be scheduled. In most papers, the authors aim at minimizing the maximum load over
all the machines (see [Vöcking, 2007] for a survey), but in some papers [Awerbuch et al., 2005,
Christodoulou and Koutsoupias, 2005] the aim is to minimize the average social cost, as we do in
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our paper. However, to the best of our knowledge, no centralized optimal algorithm to minimize
the average cost of the tasks has been studied. In Section 5, we have given a polynomial time
algorithm which solves this problem.

Coalition structure generation. Our model is also related to the coalition structure generation
(CSG, see [Elkind et al., 2013] for a recent overview). CSG consists of the following. The set
of agents (tasks) is partitioned into subsets (called coalitions). Each agent affects the cost of the
coalition she is assigned to (but not the costs of the other coalitions). However, in CSG the aim
is to minimize the total cost of all coalitions (and not the average cost of an agent). Additionally,
in CSG the number of coalitions is not bounded, while we bound the number of subsets by the
number of machines m. [Aziz and De Keijzer, 2011] analyze CSG with players having types.
When the number of types is a constant, they give a polynomial algorithm. However, their notion
of type is more restrictive than ours: two players have the same type if their influence on the costs
of the others is exactly the same.

10. Discussion and conclusions

We propose a new model describing the performance of tasks colocated on machines. Our
model introduces the notion of type. Types describe and allow to deal with tasks’ heterogeneity:
e.g., a computationally-intensive task influences the performance of a webserver in a different
way than a database instance. In our model, a task influences other tasks as a function of its size
and its type.

In this paper (except in Section 7), we consider a linear cost function. Linear costs roughly
correspond to classic optimality measures while non-linear costs model complex end-user per-
formance. In linear cost function, the cost of task i is the sum of the weighted sizes of all tasks
j assigned to machine M. The weight (corresponding to the coefficient αti,t j ), which depends on
i’s and j’s types, measures the compatibility between the two types. Large weights correspond
to types that compete for similar resources. Small weights correspond to types that complement
each other, e.g., a CPU-intensive and a memory-intensive tasks.

Our model has three main advantages. First, it captures tasks’ heterogeneity. Second, it
may optimize the observed (experienced) performance of the tasks, and not just the usage of the
resources. Third, it is a minimal extension of a standard scheduling model. Tasks’ affinities or
interferences, similar to our notion of type, were proposed in recent systems papers on colocation
performance [Kim et al., 2015, Podzimek et al., 2015]. In contrast to bin-packing models [Still-
well et al., 2012], we do not use a strict limit on machines’ capacities. Hardware resources are
limited, but a task does not abruptly fail when, e.g., the total processor usage (or the disk IO,
bandwidth or even memory, with OS swapping) gets to 100%. Instead, tasks’ performance is
gradually degraded, resulting in slower observed response times. Additionally, some tasks (e.g.
webservers [Slothouber, 1996]) have better observed performance if the total processor usage is
20–40%, rather than 90–100%. The aim of our model is to go beyond the crisp constraints of
bin-packing, which unrealistically treats any packing not exceeding the capacity as equally good,
while not permitting even small overpacking.

The notion of type in our model should be expressive enough to describe tasks with heteroge-
neous resource requirements. We show a series of polynomial algorithms. BestOrS (Section 5)
is polynomial in the number of machines and tasks but applicable to instances with a single type,
or with types that are independent, equivalent, or strictly incompatible (Section 6). DynSize
(Section 6.1) is polynomial in the number of machines and tasks but requires a fixed number of
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tasks’ sizes and is exponential in the number of types. ApproxScheme (Section 6.2) uses Dyn-
Size for instances with small number of tasks’ sizes. Finally, CutJuxtapose is polynomial in the
number of tasks, but exponential in the number of machines and types (Section 6.3). The key
to efficiency is thus to define a limited number of types—at most logarithmic in the number of
tasks—as our results show that the problem is strongly NP-complete if we allow for arbitrary
number of types (Section 7.1).

Our experimental results (Section 8) demonstrate that, while CutJuxtapose is feasible for
only few types and machines, BestOrS+hill performs well. BestOrS+hill is a standard local
search algorithm starting from a reasonable configuration and greedily improving it until hitting a
local optimum. Its good performance might suggest that our problem has a regular combinatorial
structure, and thus more complex meta-heuristics (such as taboo search) might further improve
the results.

A general convex cost function, instead of just optimizing the load of the machine, might
model the observed performance of a task, such as the commonly-used 95th percentile response
time for user-facing services. Such a function might thus encapsulate the response-time mod-
els [Cao et al., 2003, Khanna et al., 2006, Slothouber, 1996]. The function might be even derived
from measurements of actual response times of tasks under various loads and various colocation
scenarios. The problem is strongly NP-complete with convex costs (Section 7.1). However, the
complexity stems from the cost function, not the notion of type (as the problem is NP-complete
even for a single type). We also show an approximation algorithm for convex costs (Section 7.2).

We leave open the NP-completeness of Partition with Side Effects with a constant number of
types.

We are currently working on validating our model in a real data center resource manager,
which would open many interesting questions on, e.g., automatic classification of tasks into
types or inferring their coefficients.

In this paper, we minimize the total cost. Another natural research direction is to add weights
to the tasks (and to minimize the weighted total cost), or to minimize the maximum cost. Note
that even for a single type and two machines this last problem is NP-hard since it reduces to the
widely studied scheduling problem of minimizing the makespan on parallel machines (P||Cmax).

The notion of type of a task can also be applied to generalize other problems, as for example
load balancing games (with agents choosing on which machines their tasks will be scheduled).
Similarly, types may be also used to reduce the complexity of coalition structure generation
problems.
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