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On the estimation of the consensus rate of

convergence in graphs with persistent

interconnections

Nilanjan Roy Chowdhury∗, Srikant Sukumar∗, Mohamed Maghenem† Antonio

Lorı́a†

Abstract

The aim of the current article is to establish myriad convergence rate estimates to consensus for time-

varying graphs with persistent interaction. Several novel analysis methodologies for consensus protocols

employing the notions of persistence of excitation and Lyapunov functions are provided.The estimates

are compared with each other and existing literature [7]. Numerical simulations on test examples are

illustrated to support the theoretical findings.

Index Terms

Consensus, Time-varying systems, Gradient descent, Persistence of excitation, Exponential stability.

I. INTRODUCTION

Estimating the speed at which consensus is reached in a network of dynamical systems, has

drawn significant attention in the past few years. For graphs with time-invariant interconnections

it is determined by the smallest non-zero eigen-value of the Laplacian matrix, referred to as

algebraic connectivity. See, e.g., [9] where an estimate of the convergence rate to consensus
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is established for a class of double-integrator autonomous heterogeneous systems using linear

systems theory.

For graphs with time-varying topologies and/or interconnections, estimating the rate of conver-

gence is a much harder task since the graph dynamics is linear time-varying hence, eigen-value

analysis is insufficient. In [4], for the discrete-time agreement protocol, under the assumption

that the time-varying graph is B-connected (the union of B non-simultaneous “snap shots” of the

graph is connected) and the Laplacian matrix is stochastic at any instant, the rate of convergence

is computed using the joint spectral radius of the Laplacian matrix taken at succesive instances.

An (increasing) estimate of the convergence time in terms of the number of nodes and B is given

in [16]. In [6] the notion of stochastic indecomposable aperiodic matrices is used to estimate

the consensus rate of convergence for discrete-time switching graphs.

For time-varying graphs expressed in continuous time, perhaps the most general result remains

that of the seminal paper [14]. In the latter, consensus is established under the condition that

there exists at least one spanning tree with a persistently-exciting Laplacian. The proof, however,

is rather involved as it uses non-differentiable min-max Lyapunov functions and the rate of

convergence is not established. In [10] consensus is established under the so-called cut-balance

interaction assumption. This means that the ratio of the sums of reciprocal interconnection

weights (that is the weights of interconnections from and to each agent) is bounded. In [12]

this assumption was relaxed to allow for reciprocal interaction weights to be indefinitely far

apart that is, the ratio slowly diverges to infinity. An explicit convergence bound is given for the

maximal difference between any pair of agents’ states.

In [17] is proposed a continuous and a discrete time update law to achieve consensus for single-

integrator agent dynamics communicating via directed persistent graphs that is, graphs for which

the functions that quantify the strength of each interconnection is non-integrable. Furthermore,

under the so-called arc-balance assumption a convergence rate is estimated in function of the

cycle edges i.e., arcs that are not persistent. More recently, inspired by theory of stability for

linear time-varying systems, a convergence rate estimate was provided in [7] for graphs with

persistent connectivity (it is assumed that the weight-functions are persistently exciting [15]).

In this paper, we present several convergence-rate estimates for networks of systems intercon-

nected through persistently-excited graphs. That is, we assume that the agents interact through

time-varying interconnections which, individually, are persistently exciting. Roughly speaking,
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the graph is not guaranteed to be connected for any instant t but only “in average” over a sliding

finite window of time of fixed length. Our results, which apply to both, networks of single

and double-integrator dynamics, rely on stability theory of so-called gradient-descent systems,

known in adaptive control theory. That is, we show how the classical consensus paradigm may

be recasted in a problem of stability analysis for systems with persistency of excitation.

Our analysis relies on the edge-agreement transformation proposed in [7], based on the rela-

tionship between node and edge-agreement protocol [13]. Loosely speaking, this transformation

allows to “extract” the information of an arbitrary underlying spanning tree which defines a

dynamic system whose stability at the origin implies consensus. Four different convergence

estimates are established; three of them follow lines of proof of statements for linear time-

varying systems [5], [1], [11]. The fourth, self-contained, is based on the construction of a strict

Lyapunov function for the gradient system. A preliminary version of some of these results was

presented in [8].

The rest of the paper is organized as follows. In the following section we introduce some

notations and show how the consensus problems for single and double-integrator dynamics may

be recasted in the stability analysis of a unique differential equation: the gradient system. Our

main statements, giving the explicit convergence rates, are presented in Section III. Numerical

simulations that illustrate our theoretical findings are provided in Section IV and the paper is

wrapped up with some concluding remarks in Section V.

II. NETWORK MODEL

A. Preliminaries

Following the notation of [13] a graph G consists a set of vertices and edges; the former

are denoted by vi with i ≤ n and, for each j ≤ m ≤ n(n − 1) (assuming no self-edges) the

edge ej := {vk, vl} links the node vk to vl for some k, l ≤ n (the vertices and edges being

labeled arbitrarily, the indexes k and l do not necessarily coincide with j). The edge is said to

be directed if the sense in which the information flows is important; in which case, the edge

links a tail node to a head node.

A sequence of adjacent vertices {vi, vi+1, · · · , vi+l} with l ≤ n− i forms a path of length l.

A path forms a simple cycle if the path is closed that is, if vi = vi+l. A graph is connected, if

for every pair of vertices there is a path that has them as its end vertices. A tree is defined as a
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connected graph without cycles; it is a spanning tree if it contains all the vertices in the graph.

In this article we use p := n− 1 to denote the number of spanning tree edges.

Without distinction of the flow of information, the graph is said to be undirected. Now, by

arbitrarily assigning an orientation to an otherwise undirected graph G, one may compute the

incidence matrix D(G) ∈ Rn×m which characterizes the graph’s structure. The elements of D,

denoted by dij , are defined as follows. For each edge ej , dij = −1 if vi is the tail of ej , dij = 1

if vi is the head of ej , and dij = 0 if vi 6∈ ej .

In addition to the incidence matrix, the strength of each interconnection is characterized by an

edge weight, denoted by wi(·) with i ≤ m. The edge weights may be constant or functions of time

and the state. These coeeficients are collected in the diagonal matrix W := diag[wi(·)] ∈ Rm×m.

Thus, the graph’s Laplacian matrix L ∈ Rn×n may be defined as a function of the weights ma-

trix and the incidence matrix as L(G) = D(G)WD(G)>. For any arbitrarily oriented undirected

graph the latter equation computes to the same Laplacian matrix. Likewise, the edge Laplacian

L̃e(G) ∈ Rm×m matrix (with W = Im, where Im denotes the identity matrix of dimension m)

is defined as

L̃e(G) = D(G)>D(G). (1)

Clearly, the graph Laplacian matrix is symmetric positive semi-definite; its eigenvalues are

λn(G) ≥ · · · ≥ λ2(G) ≥ λ1(G) = 0. The algebraic multiplicity of the zero eigenvalue of the

graph Laplacian is equal to the number of connected components of the graph. For an undirected

graph describing the connectivity of a network, say of single integrators, the second eigenvalue

λ2(G) > 0 is known as the algebraic connectivity and it determines the convergence rate of the

basic time-invariant consensus algorithm. For time-varying graphs, however, one cannot rely on

eigen-value analysis to determine the rate of consensus convergence [7], [9]. In this paper, we

present diverse exponential-convergence estimates for undirected graphs of single and double-

integrators with time-varying interconnections. Our main statements rely on tools for stability

analysis of linear time-varying systems and the following hypothesis.

Assumption 1. The topology of the time-varying graph G(t) is such that, if the weights matrix

W ≡ Im, then the graph is connected.

Assumption 1 does not state that the interconnections are constant nor that the graph is
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connected for each t ∈ R+ but that the topology is such that if the interconnections were

constant, the graph would be connected.

B. Consensus of single-integrator agents

Consider a set of n vertices vi, which represent single integrators, that is, for all i ≤ n, we

have

ẋi = ui, xi ∈ R (2)

where ui denotes a control input. In the classical consensus paradigm this input is defined by

ui = −k
n∑
j=1

aij(t) (xi − xj) j 6= i (3)

where k > 0 is a scalar gain, aij(t) ≥ 0 represents the strength of the influence of agent j on

agent i, for i, j ≤ n. We assume that the interactions are symmetric, that is, aij(t) = aji(t)

for all i, j ≤ n hence, the graph satisfies is cut-balanced [10]. Now, substituting (3) in (2) and

defining x := [x1, · · · , xn]>, we obtain

ẋ = −kD(G)W (t)D(G)>x. (4)

To obtain the latter equation we have used the fact that the Laplacian matrix, which satisfies

L(G) = D(G)WD(G)>, may also be defined as L := [`ij] where `ij = −aij for all i 6= j and

`ii :=
∑n

j=1,j 6=i aij hence, ẋ = −kL(G)x.

For further analysis, we employ the edge agreement transformation proposed in [7]. To that

end, we recall the relationship between node and edge agreement protocol –see [13, pp. 77-81]

and [7, equation 8]:

xe := D(G)>x. (5)

Hence, differentiating (5) and using (4) we obtain

ẋe = −kL̃e(G)W (t)xe. (6)

On one hand, the transformation (5) makes it clear that the consensus analysis problem for

equation (4) is equivalent to studying the convergence of the edge states xe ∈ Rm to zero.
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On the other hand, it allows, under Assumption 1, to partition xe into states corresponding to

spanning-tree edges, xτ ∈ Rp, and states representing cycle edges, xc ∈ R(m−p) that is,

xe =

xτ
xc

 . (7)

Furthermore, under Assumption 1, we can arbitrarily fix one spanning tree. Then, G may be

described as a union of two sub-graphs as Gτ ∪Gc, where Gτ and Gc represent the spanning tree

and cycle edges of G respectively. Moreover, using an appropriate permutation of the edge-indices

we can partition D(G) as

D(G) =
[
D(Gτ ) D(Gc)

]
(8)

where, D(Gτ ) ∈ Rn×p and D(Gc) ∈ Rn×(m−p) represent respectively, the incidence matrix

corresponding to spanning-tree and cycle edges. Therefore, in terms of the above permutations,

the edge-Laplacian matrix L̃e(G) defined in (1) corresponds to

L̃e(G) =

 L̃e(Gτ ) D(Gτ )>D(Gc)

D(Gc)>D(Gτ ) L̃e(Gc)

 (9)

where L̃e(Gτ ) ∈ Rp×p and L̃e(Gc) ∈ R(m−p)×(m−p) are used to denote the edge-Laplacian matrix

corresponding to spanning tree and cycle edges. Likewise, W (t) ∈ Rm×m may also be partitioned

as

W (t) =

Wτ (t) 0

0 Wc(t)

 (10)

where Wτ (t) ∈ Rp×p and Wc(t) ∈ R(m−p)×(m−p) denote the weight matrices corresponding to

the spanning-tree and cycle edges, respectively. Furthermore, the columns of the cycle edges

D(Gc) ∈ Rn×(m−p) are linearly dependent on the columns of D(Gτ ) ∈ Rn×p. This relationship

can be expressed as

D(Gτ )Z = D(Gc)

where Z ∈ Rp×(m−p) is defined as

Z :=
(
D(Gτ )>D(Gτ )

)−1
D(Gτ )>D(Gc). (11)
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Thus, substituting (9), (10) and (7) in (6) we obtain that the states corresponding to the spanning-

tree edges and to the cycle edges evolve according to

ẋτ = −kL̃e(Gτ )Wτ (t)xτ − kD(Gτ )>D(Gc)Wc(t)xc (12)

ẋc = −kD(Gc)>D(Gτ )Wτ (t)xτ − kL̃e(Gc)Wc(t)xc. (13)

The subset of spanning-tree edges constitutes a minimal representation of the edge states in the

sense that consensus is achieved if and only if xτ → 0. Hence, we shall focus on the study

of the xτ dynamics. Indeed, the cycle-edges states can be reconstructed from the spanning-tree

edge states as xc = Z>xτ hence, we see that (12) is equivalent to

ẋτ = −kL̃e(Gτ )RW (t)R>xτ (14)

where, R :=
[
Ip Z

]
∈ Rp×m. Now, since L̃e(Gτ ) ∈ Rp×p is symmetric positive definite, it can

be decomposed as L̃e(Gτ ) = ΓΛΓ>, where Γ ∈ Rp×p is a unitary matrix and Λ ∈ Rp×p is the

diagonal matrix resulting from the Jordan decomposition (and hence contains eigenvalues) of

the spanning tree edge Laplacian. Using the latter decomposition in the spanning-tree equation

(14) yields

ẋτ = −kΓΛΓ>RW (t)R>xτ

and, using the similarity transformation y := Γ>xτ , we obtain

ẏ = −kΛΓ>RW (t)R>Γy. (15)

Thus, we see that the networked systems achieve consensus if the origin of (15) is uniformly

globally exponentially stable for the latter equation. Through our main results we establish the

latter and, more significantly, explicit convergence rate bounds.

C. Consensus in double-integrator dynamics

We show now that, by applying the edge-agreement protocol [13], the consensus problem for

networks of second-order systems may also be (mainly) recasted into the study of Equation (15).

To that end, let us consider a network of second-order integrators,

ẋi = yi, ẏi = ui, i ≤ n (16)
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under the action of the update algorithm

ui = ui1 + ui2 (17)

where

ui1 = −βyi, β > 0 (18)

is the local velocity feedback and

ui2 = −α
n∑
j=1

aij(t)[xi − xj]− γ
n∑
j=1

aij(t)[yi − yj] (19)

where α > 0 and γ = α/β are positive scalar gains. Incorporating the control laws specified in

(18) and (19), the closed loop dynamics becomes:

ẋ = y

ẏ = −βy − αD(G)W (t)D(G)>x− γD(G)W (t)D(G)>y

where we used L(G) = D(G)W (t)D(G)>. In order to convert the above consensus problem to

a stabilization one we mimic the relationship between the edge and node agreement protocol as

defined in [13, pp. 132-134]. Differentiating

xe1 := D(G)>x (20)

xe2 := D(G)>y. (21)

results in

ẋe1 = xe2 (22)

ẋe1 = −βxe2 − αL̃e(G)W (t)xe1 − γL̃e(G)W (t)xe2 (23)

Now, since the graph G with W ≡ Im is connected, it can be decomposed as Gτ ∪ Gc. Then,

using an appropriate permutation of the edge indices, the edge state vector (xe1 , xe2 ∈ Rm) may

be further subdivided into

xe1 =

xτ1
xc1

 xe2 =

xτ2
xc2

 . (24)

The symbols xτ1 , xτ2 ∈ Rp and xc1 , xc2 ∈ Rm−p denote the spanning-tree and the cycle edge

states, respectively, corresponding to the position and velocity interaction topology associated
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with xi and yi ∈ R. The columns of the cycle edges D(Gc) ∈ Rn×(m−p) are linearly dependent

on the columns of D(Gτ ) ∈ Rn×p that is,

D(Gτ )Z = D(Gc)

where Z ∈ Rp×(m−p) is defined in equation (11). Hence, expanding out (23) we obtain

ẋe2 = −βxe2

− α

 L̃e(Gτ ) D(Gτ )>D(Gc)

D(Gc)>D(Gτ ) L̃e(Gc)

Wτ (t) 0

0 Wc(t)

xe1
− γ

 L̃e(Gτ ) D(Gτ )>D(Gc)

D(Gc)>D(Gτ ) L̃e(Gc)

Wτ (t) 0

0 Wc(t)

xe2 .
Now, as in the single-integrator case, our main interest lies in the behavior of the spanning-tree

edge dynamics. This is given by

ẋτ1 =xτ2 (25)

ẋτ2 = − βxτ2 − αL̃e(Gτ )
[
Wτ + ZWcZ

>]xτ1
− γL̃e(Gτ )

[
Wτ + ZWcZ

>]xτ2 (26)

Moreover, since L̃e(Gτ ) ∈ Rp×p is symmetric and positive definite, it admits the Jordan decom-

position L̃e(Gτ ) = ΓΛΓ>. Using this in (26) we obtain

ẋτ1 = xτ2

ẋτ2 = −
[
β + γΓΛΓ>RW (t)R>

]
xτ2

−αΓΛΓ>RW (t)R>xτ1 (27)

Then, introducing the similarity transformationz1
z2

 =

 Γ> 0

0 Γ>

xτ1
xτ2

 , (28)

the spanning-tree edge dynamics becomes

ż1 = z2 (29a)

ż2 = −
[
β + γΛΓ>RW (t)R>Γ

]
z2

−αΛΓ>RW (t)R>Γz1. (29b)
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From (28), since Γ has full rank, we see that {z = 0} is uniformly globally exponentially

stable for (29) if and only if so is {xτ = 0} for the system (27). Then, to establish exponential

stability of {z = 0} we observe that, defining

ζ := z2 + βz1,

and recalling that β := α/γ, the system’s dynamics (29) is equivalent to

ż1 = −βz1 + ζ (30a)

ζ̇ = −γΛΓ>RW (t)R>Γζ. (30b)

To establish uniform global exponential stability of the origin {(z1, ζ) = (0, 0)} for (30a)-

(30b) we can invoke a simple cascades argument. Indeed, {z1 = 0} is exponentially stable for

ż1 = −βz1 and (30a) is input to state stable with linear gain. It is only left to prove that {ζ = 0}

is uniformly globally exponentially stable for (30b) —cf. Eq. (15).

III. CONVERGENCE ANALYSIS OF TIME-VARYING CONSENSUS PROTOCOLS

In the previous sections we have showed that the consensus analysis problem, for the single-

integrator (respectively, for the double-integrator systems) boils down to a problem of exponential

stability analysis of the origin of an equation of the form (15) (respectively Eq. (30b) ). In this

section we present our main results. We present several statements on uniform global exponential

stability of the origin of (15) and give explicit exponential convergence estimates for the system’s

solutions that is, we establish explicit expressions for κ and γ in

|y(t, t◦, y◦)| ≤ κ|y◦|e−γ(t−t◦) ∀ t ≥ t◦, y(t◦) := y◦ (31)

and all (t, y◦) ∈ R≥0 × Rp.

Furthermore, we remark that the convergence rate γ for the spanning-tree edges trajectories,

xτ (t), and for y(t) as described in (31) are identical. To see this, note that y(t) and xτ (t) are

related to each other via the similarity transformation xτ (t) := Γy(t) with orthogonal matrix Γ,

a simple algebraic manipulation of (31) translates to

|xτ (t)| ≤ |Γ||y(t)| ≤ κ|Γ||y◦|e−γ(t−t◦) ∀ t ≥ t◦.

Our statements rely on the Assumption 1 and on the following hypothesis concerning the

spanning-tree edges interconnections matrix Wτ (t).
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Assumption 2. The function Wτ : R≥0 → Rp×p is persistently exciting that is, there exist µ > 0

and T > 0 such that ∫ t+T

t

Wτ (s)ds ≥ µIp ∀ t ≥ 0. (32)

It is important to emphasize that, since its first appearance in the literature of identification –see

[3], depending of the context in which it is used, persistency of excitation has been (re)defined

in various ways. In this paper we adopt the following.

Definition 1 (persistency of excitation). A locally integrable function φ : R≥0 → Rn×m is said

to be persistently exciting if there exist positive constants µ1 and T such that∫ t+T

t

φ(σ)φ(σ)>dσ ≥ µ1In ∀t ≥ 0. (33)

However, persistency of excitation is sometimes defined as the property that, in addition to

(33), there exist µ2 > 0 such that

µ2In ≥
∫ t+T

t

φ(σ)φ(σ)>dσ ∀t ≥ 0. (34)

Then, since at least [1], under either boundedness of φ or the condition (34), persistency of

excitation is well known to be a necessary and sufficient condition for the origin of adaptive

control systems to be uniformly globally exponentially stable. In particular, this is the case for

the so-called gradient descent equation

ẏ(t) = −φ(t)φ(t)>y(t). (35)

Furthermore, in more recent articles –see [5], [11] explicit exponential convergence rates, as a

function of µ1, µ2, and T , are established. As we shall see, depending on the method of proof,

the choice of the definition of persistency of excitation is not innocuous.

In this paper, we recast the consensus analysis problem for first and second order systems in

that of the stability analysis of (15) and (30b) respectively. Thus, our main statements rely on

the study of these equations or, actually, of (35) with φ(t) :=
√
kΓ>RW (t)1/2. Indeed, note that

if W 1/2
τ is persistently exciting (Assumption 2) so is φ since Γ is full column rank (= p) and
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Wc ≥ 0. Indeed, we have∫ t+T

t

φ(s)φ(s)>ds =

∫ t+T

t

kΓ>RW (s)R>Γds

=

∫ t+T

t

kΓ>Wτ (s)Γds+ kΓ>ZWc(s)Z
>Γds

≥ µkλmin(Γ>Γ) =: µ1. (36)

Whence Assumption 2, which is stated as a hypothesis on the spanning-tree interconnection

weights matrix Wτ .

For simplicity, in the sequel we set k = 1 in (15) and, to compact the notation, we define

λm := λmin(Λ) and λM := λmax(Λ). Our first statement is based on [1] and it was proved in [7].

Theorem 1 (A-estimate). Let Assumptions 1 and 2 hold. Further assume that there exists µ2 > 0

such that (34) holds. Then, (31) holds with

γA = − 1

2T
ln

[
1− 2λmµ1(

1 + λM
√
pµ2

)2
]
, (37)

κ =

[
λMmv

λm

]1/2
, mv :=

1[
1− 2λmµ1

(1+λM
√
pµ2)

2

] .

Notice the dependence of the convergence estimate γA on the system’s dimension, p. As the

latter increases, the rate of convergence decreases.

Our second statement follows the proof-lines in [11].

Theorem 2. (LP-estimate) Assume that W (t) is uniformly bounded and Assumptions 1 and 2

hold. Then, (31) holds with κ =
√
λM/λm and γ = γLP where1

γLP = − 1

2T
ln

[
1− 2λmµ1[

1 + λMδT
]2
]
. (38)

where,

δT := T
∣∣Γ>RW (t)R>Γ

∣∣
∞

1For a function F : R≥0 → Rp×p we use the notation ‖F‖∞ := supt≥0 |F (t)| where |F (t)| denotes the induced Euclidean

matrix norm.
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Remark 1. Note that the stability estimates given by Theorems 1 and 2 are quite similar, even

though these statements rely on different conditions. In the former it is assumed that the φ is

locally integrable –see (34)– while in the latter, it is φ which is assumed to be bounded. If we

set µ = δT and, to avoid the unnecessary conservatism in γA, we set p = 1, both decay rates

are equivalent.

Proof. Consider the Lyapunov function candidate V1 : Rp → R≥0, defined as

V1(y) =
1

2
y>Λ−1y, (39)

whose total derivative along the trajectories of (15) (with k = 1) satisfies

V̇1(y(t)) = −y(t)>Γ>RW (t)R>Γy(t) ≤ 0. (40)

Now, integrating (40) over the interval [t, t+ T ], we get:

V1(y(t+ T ))− V1(y(t)) = −
∫ t+T

t

∣∣W (s)1/2R>Γy(s)
∣∣2ds (41)

On the other hand, solving (15), we have

y(s) = y(t)− Λ

∫ s

t

Γ>RW (τ)R>Γy(τ)dτ. (42)

Hence, substituting the later in (41) we obtain

V1(y(t+ T ))− V1(y(t)) = −
∫ t+T

t

∣∣∣W (s)1/2R>Γy(t)

−W (s)1/2R>ΓΛ

∫ s

t

Γ>RW (τ)R>Γy(τ)dτ
∣∣∣2ds. (43)

Next, we use the inequality

(a− b)2 ≥ ρ

1 + ρ
a2 − ρb2

which holds for any a, b ∈ R and ρ > 0, to obtain

V1(y(t+ T ))− V1(y(t)) ≤

− ρ

1 + ρ
|y(t)|2

∫ t+T

t

∣∣W (s)1/2R>Γ
∣∣ds

+ ρ

∫ t+T

t

∣∣∣W (s)1/2R>ΓΛ

∫ s

t

Γ>RW (τ)R>Γy(τ)dτ
∣∣∣2ds. (44)
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Now, let the condition of persistency of excitation on Wτ (t) generate µ1 > 0 such that (36)

holds with φ(t) := Γ>RW (t)1/2. Then, the first term on the right hand side of (44) satisfies,

−ρ|y(t)|2

1 + ρ

∫ t+T

t

∣∣W (s)1/2R>Γ
∣∣2ds ≤ − ρµ1

1 + ρ
|y(t)|2. (45)

Furthermore, using the Cauchy-Schwartz inequality, we see that the second term satisfies the

following: ∫ t+T

t

∣∣∣W (s)1/2R>ΓΛ

∫ s

t

Γ>RW (τ)R>Γy(τ)dτ
∣∣∣2ds

=

∫ t+T

t

∣∣∣ ∫ s

t

[
W (s)1/2R>ΓΛΓ>RW 1/2(τ)

]
×
[
W 1/2(τ)R>Γy(τ)

]
dτ
∣∣∣2ds

≤
∫ t+T

t

[ ∫ s

t

∣∣W (s)1/2R>ΓΛΓ>RW 1/2(τ)
∣∣2dτ]

×
[ ∫ s

t

∣∣W (τ)1/2R>Γy(τ)|2dτ
]
ds

≤ T sup
s∈[t,t+T ]

[ ∫ s

t

∣∣W (s)1/2R>ΓΛΓ>RW 1/2(τ)
∣∣2dτ]

×
[ ∫ s

t

∣∣W (τ)1/2R>Γy(τ)|2dτ
]

= T

∫ t+T

t

∣∣W (s)1/2R>ΓΛΓ>RW 1/2(τ)
∣∣2dτ

×
∫ t+T

t

|W 1/2(τ)R>Γy(τ)|2dτ

≤ T 2λ2M |Γ>RW (t)R>Γ|2∞ (V1(y(t))− V1(y(t+ T ))) .

Thus, using the latter, (45) and |y(t)|2 ≥ 2λmV1(y(t)) in (44) we obtain

2ρλmµ1

(1 + ρ)
V1(y(t)) ≤

[
ρT 2λ2M

∣∣Γ>RW (t)R>Γ
∣∣2
∞ + 1

]
×
[
V1(y(t))− V1(y(t+ T ))

]
which, in turn, implies that

V1(y(t+ T )) ≤1− 2λmρµ1

(1 + ρ)
(
ρT 2λ2M

∣∣Γ>RW (t)R>Γ
∣∣2
∞ + 1

)
V1(y(t)). (46)
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Hence, defining

ρ :=
[
TλM

∣∣Γ>RW (t)R>Γ
∣∣
∞

]−1
,

we obtain V1(y(t+ T )) ≤ ηV1(y(t) where

η :=

1− 2λmµ1[
TλM

∣∣Γ>RW (t)R>Γ
∣∣
∞ + 1

]2
 (47)

so, setting e−γLPT = η with γLP as in (38) and performing a simple computation, we find that

y(t) satisfies (31) with γ = γLP and κ =
√
λM/λm.

Interestingly enough, if we reconsider the A-estimate obtained using the method of proof of

[1] —cf. [7], considering the boundedness of Γ>RW (t)R>Γ instead of (34) we may recover

the same convergence rate as in Theorem 2 that is, γLP = γA. In other words, the convergence

estimate that stems from [1] seems more conservative since the bound∫ t+T

t

∣∣Γ>RW (s)R>Γ
∣∣ds ≤ tr

(∫ t+T

t

Γ>RW (s)R>Γds

)
≤ pµ2,

which is proportional to the number of agents in the spanning-tree, is used. See [7] for details.

Our next statement follows the method of proof of stability of [5] for the gradient system

(35).

Theorem 3. (B-Estimate) Let Assumptions 1-2 hold and φ(t) := Γ>RW (t)1/2 satisfy inequality

(34). Then, the origin of (15) is uniformly globally exponentially stable and the solutions satisfy

(31) with κ =
√
λM/λm and γ = γB where

γB = − 1

2T
ln

(
1− 2

[
− a+

√
b+ a2

]2
λm

)
(48)

where

a :=
p1/2µ

3/2
2 λ2M

λm
√

2(1 + 2µ1λm)
, b :=

µ1λm
λM [1 + 2µ1λm]

. (49)

Remark 2. The dependence of a on p, above, is to be noted. We remark that when p→∞, the

argument of ln(·) in (48) tends to 1 that is, the convergence rate diminishes as the size of the

graph (number of agents) grows. The same holds for the A-estimate, in (37). The conservatism of

these bounds comes from the fact that in Theorems 1 and 3 it is not assumed that W is bounded,
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as in Theorems 2 and 4 further below, but, instead, the less restrictive local integrability bound

(34) is imposed.

In that regard, it is not difficult to see that the A and LP estimates are of the same order if,

in Theorem 1, it is assumed that W (t) is bounded. Then, (34) holds with µ2 := T |W (t)|∞, for

any p. The B-estimate, however, remains more conservative even if we impose boundedness on

W (t). This is further illustrated in numerical simulations in the next section.

Proof. Define M : R≥0 → Rp×p as

M(t) :=

∫ t

0

Γ>RW (σ)R>Γdσ ∀t ≥ 0. (50)

Since Γ ∈ Rp×p is full column rank, Wτ (t) is persistently exciting, and φ(t) satisfies (34), we

have

0 < µ1Ip ≤M(T ) ≤ µ2Ip <∞. (51)

If necessary, after redefining µ1 and µ2. Next, consider the function V : R≥0×Rp → R defined

as

V2(t, y) = y>M(t)y +
1

2
y>Λ−1y

which is positive definite. Its total derivative along the system’s trajectories satisfies

V̇2(t, y(t)) = −2y(t)>Γ>RW (t)R>ΓΛM(t)y(t).

Now, integrating on both sides of this equation, from 0 to T , we obtain

y(T )>M(T )y(T ) + V1(y(T ))− V1(y(0))

≤
∣∣∣∣2∫ T

0

y(σ)>Γ>RW (σ)R>ΓΛM(σ)y(σ)dσ

∣∣∣∣ (52)

–see (39). Now, since W (t) is non-negative, the term on the right-hand side of (52) satisfies, in

view of Cauchy-Schwartz inequality,∣∣∣∣2 ∫ T

0

[
W (σ)1/2R>Γy(σ)

]>[
W (σ)1/2R>ΓΛM(σ)y(σ)

]
dσ

∣∣∣∣
≤
[
2

∫ T

0

∣∣W (σ)1/2R>Γy(σ)
∣∣2 dσ]1/2

×
[∫ T

0

∣∣∣W (σ)1/2R>ΓΛM(σ)y(σ)
∣∣∣2dσ]1/2 . (53)
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We proceed to compute an upper-bound on the right-hand side of the inequality above. To that

end, we analyze each of the terms in brackets separately. For the first, in view of (40), we have∫ T

0

∣∣W (σ)1/2R>Γy(σ)
∣∣2 dσ = V1(y(0))− V1(y(T )). (54)

On the other hand, in view of (39) and (40) we have |y(t)| ≤ (λM/λm)|y(0)| therefore, the

second factor can be bounded above by[∫ T

0

∣∣W (σ)1/2R>ΓΛM(σ)y(σ)
∣∣2 dσ]1/2

≤ λ2M
λm

[∫ T

0

∣∣W (σ)1/2R>Γ
∣∣2 ∣∣M(σ)

∣∣2dσ]1/2 |y(0)|. (55)

By assumption, M(T ) is bounded by µ2Ip hence, |M(T )| ≤ µ2. Also, |W (σ)1/2R>Γ|2 =

|Γ>RW (σ)R>Γ| hence, in view of (50) and (51) we have[∫ T

0

∣∣W (σ)1/2R>ΓΛM(σ)y(σ)
∣∣2 dσ]1/2 ≤ λ2M

λm

(
pµ3

2

)1/2|y(0)| (56)

Then, putting together (52), (53), (54) and (56) yields,

y(T )>M(T )y(T ) − V1(y(0)) + V1(y(T ))

≤ pµ
3/2
2 λM |y(0)|

√
2
[
V1(y(0))− V1(y(T ))

]1/2
. (57)

Now, to compact the notation, let f(s) :=
[
V1(y(0))− V1(y(s))

]1/2 where V1 is defined in (39).

Then, from
1

λM
|y|2 ≤ y>Λ−1y ≤ 1

λm
|y|2 (58)

and (51), we have y(T )>M(T )y(T ) ≥ 2µ1λmV1(y(T )) ≥ 2µ1[V1(y(0))− f(T )2]. Replacing the

latter in (57) and rearranging the terms we see that the latter inequality is equivalent to

f(T )2 +

√
2p1/2µ

3/2
2 λ2M |y(0)|

λm(1 + 2µ1λm)
f(T ) ≥ µ1λm|y(0)|2

λM
[
1 + 2µ1λm

] . (59)

Solving (59) for f(T ) and using (49) we obtain

f(T ) ≥
[
−a+

√
b+ a2

]
|y(0)| (60)

which, in view of the definition of f and (39), is equivalent to

1

2

[
y(0)>Λ−1y(0)− y(T )>Λ−1y(T )

]
≥
[
−a+

√
b+ a2

]2
|y(0)|2

July 6, 2016 DRAFT



INTERNATIONAL JOURNAL OF CONTROL 18

and, after some algebraic manipulations in which we use (58), we obtain

|y(T )| ≤
[
λM
λm

]1/2 [
1− 2

[
−a+

√
b+ a2

]2
λm

]1/2
|y(0)|

Thus, setting, for any T > 0,

e−γBT :=

[
1− 2

[
−a+

√
b+ a2

]2
λm

]1/2
we obtain (48) and (31) holds on [0, T ]. The interval may be extended to infinity by resetting

the initial time and the initial conditions.

Hence by a simple algebraic manipulation we can conclude that y(t) satisfies (31) with γ = γB

and κ =
√
λM/λm.

Our last statement on uniform global exponential stability for the speed-gradient system has

the merit of relying on Lyapunov’s direct method in addition to providing a stability estimate.

Theorem 4. Let Assumptions 1-2 hold and assume that there exists µ2 > 0 such that (34) holds.

Then, (15) admits the Lyapunov function

V (t, y) =
1

2
y>
[
πΛ−1 +Q(t)

]
y

where

Q(t) := 2δT Ip −
2

T

∫ t+T

t

∫ m

t

Γ>RW (s)R>Γds dm, (61a)

δT := T
∣∣Γ>RW (t)R>Γ

∣∣
∞, (61b)

π := 1 +
2λ2Mδ

3
T

µ1

. (61c)

Therefore, the solutions y(t) satisfy (31) with

κ =

[
π/λm + 2δT

π/λM

]1/2
and γ = γM , where

γM :=
µ2
1λm

2δTT
[
λ2Mδ

2
T + λmµ1

]
+ Tµ1

(62)

Proof. We start by observing that

0 ≤ Q(t) ≤ 2δT Ip
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therefore,
π

2λM
|y|2 ≤ V (t, y) ≤ 1

2

[
π

λm
+ 2δT

]
|y|2. (63)

Next, in view of the fundamental theorem of calculus, we obtain

Q̇(t) = − 2

T

∫ t+T

t

Γ>RW (s)R>Γds+ 2Γ>RW (t)R>Γ (64)

Then, let the condition of persistency of excitation on Wτ generate µ1 > 0 such that (36) holds

with k = 1. Using this and (64), we see that the total derivative of the Lyapunov function V

along trajectories of (15) satisfies

V̇ (t, y) = − πy>Γ>RW (t)R>Γy + y>Γ>RW (t)R>ΓΛQy

− 1

T
y>
[∫ t+T

t

Γ>RW (s)R>Γds

]
y

+ y>Γ>RW (t)R>Γy

≤ − [π − 1]y>Γ>RW (t)R>Γy − µ1

T
|y|2

+ y>Γ>RW (t)R>ΓΛQy

≤ − [π − 1]
∣∣W (t)1/2R>Γy

∣∣2 +
1

2ε

∣∣W (t)1/2R>Γy
∣∣2

− µ1

T
|y|2 +

ε

2

∣∣QΛΓ>RW (t)1/2
∣∣2|y|2

≤− µ1

2T
|y|2 −

[
π − 1− 1

2ε

]∣∣W (t)1/2R>Γy
∣∣2

−
[ µ1

2T
− ε

2

∣∣QΛΓ>RW (t)1/2
∣∣2] |y|2. (65)

Therefore, setting

ε :=
µ1

4δ3Tλ
2
M

and using (61c), we obtain

V̇ (t, y) ≤ − µ1

2T
|y|2

which, in view of (63) implies that

|y|2 ≥ 2λmV (t, y)

π + 2λmδT
.

Therefore,

V̇ (t, y) ≤ − µ1λm
πT + 2λmδTT

V (t, y)
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and, replacing π from (61c) we obtain

V̇ (t, y) ≤ −γMV (t, y)

where γM is defined in (62). The result follows integrating on both sides of the latter and using

(63).

A simple inspection shows that γLP ≥ γM that is, the method of proof in [11] leads to a

tighter estimate of the rate of convergence. However, the indisputable advantage of Theorem

4 is that it provides a strict Lyapunov function and a direct proof. This facilitates Lyapunov

redesign as well as analysis of consensus of networked systems with drifts since, in contrast to

the case of other statements, one does not need to rely on converse theorems.

IV. NUMERICAL SIMULATIONS

A. Examples for time-varying Consensus Protocols

To illustrate our theoretical findings we have performed a series of numerical simulations.

First, we consider a multi-agent system with five agents with single-integrator dynamics –see

Eq. (16). The corresponding network graph (with arbitrary orientation) for the above multi-agent

system is shown in Fig. 1 with wi(t) representing the weights corresponding to edge ei. The

1

3

2 4
w4

w5w1

w2 w3

5

Fig. 1: Interaction graph (GO) between five agents
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incidence matrix, as defined in Section II-A, is

D(G) =



−1 0 0 0 −1

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 1

0 0 0 1 0


The weight matrix is chosen as W (t) = diag[w1(t), w2(t), w3(t), w4(t), w5(t)] where wi(t) =

{square(8(t− di)) + 1} sin(it)2 for i = {1, 2, 3, 4, 5} with a duty cycle of 0.2 and time shift

di = 0, 0.157, 0.316, 0.4724, 0.62 seconds respectively. The initial conditions are set to

x0 = [0.1, 0.2, 0.4, 0.7, 1.1]>. The results obtained from the simulations (for k = 1) are shown

in Fig. 2 from which one can appreciate the exponential rate convergence.

Furthermore, in order to illustrate the statements for the double-integrator case, we consider

the double integrator agent dynamics (16) with the identical incidence D(G) and weight matrix

W (t). The initial position and velocity coordinates are specified as x0 = [0.2, 0.4, 0.6, 0.8, 1.0]>

and y0 = [0.2, 0.4, 0.6, 0.8, 1.0]>. The design parameters are chosen as β = γ = α = 1. The

simulation results for the same is given in, Figs. 3 and 4.

The control laws defined in (3) and (17) direct the five agents with single and double integrator

dynamics, to move from their initial locations to the consensus value shown in Fig. 2 (for single

integrator system) and Fig 3, Fig. 4 (for double integrator system).

Fig. 2: Resulting state trajectories of the five single-intergrator agents

B. Case studies to compare convergence estimates

For the sake of comparison, we have evaluated numerically the convergence estimates in

function of the parameters µ1, µ2 and p. A comparative study of the convergence rates γA,
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Fig. 3: Resulting position trajectories of the five double-intergrator agents

Fig. 4: Resulting velocity trajectories of the five agents

based on [1], and γB, based on [5], is documented in [2] for the case of a single agent (i.e.,

p = n− 1 = 0). For the sake of comparison, consider (37) and let us define

ηA :=
2λmµ1(

1 + λM
√
pµ2

)2 .
Then, from (48) we have

γB = − 1

2T
ln
(
1− ηA

)
− 1

2T
ln
(
J(µ1, µ2, p)

)
(66)

J(µ1, µ2, p) :=
1− 2λm

[
−a+

√
b+ a2

]2
1− ηA

(67)

It follows that J(µ1, µ2, p) > 1 implies that γB < γA and vice versa. Indeed, this is confirmed

by our numerical evaluation which shows that the estimate in (37) is tighter.

In subsequent numerical evaluations we compare the A-estimate, γA, and the B-estimate, γB,

for the single integrator multi-agent system. We reconsider the single-integrator agent dynamics

(2) with the interaction graph given in Fig. 5.
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3

1

2
w2

w3 w1

Fig. 5: Interaction graph (Go) between three agents

The minimum and the maximum spanning tree eigenvalue for the afore-mentioned graph is

given as λm = 1 and λM = 3 respectively. In Fig. 6 we represent the plots of J(p, µ1, µ2) versus

µ1 and different values of µ2 corresponding to p = 2. Since, µ2 ≥ µ1, each curve extends only

up to µ1 = µ2. From the above simulations it can be conclude that γA, based on [1], corresponds

to a tighter bound than that obtained with γB, computed based on [5]. Next, we present one
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Fig. 6: Analysis of J(p, µ2, µ1) for the graph in Fig. 5

case-study to compare the LP-estimate, γLP , and the estimate due to the Lyapunov function

construction, γM (based on Theorem 4). We reconsider the single-integrator agent dynamics

with the interaction graph given in Fig 5.

In Fig. 7 we represent the plot of J(µ1, δT ) := e2(TγLP−TγM ) versus µ1 and different values

of δT . Since, δT ≥ µ1, each curve extends only up to µ1 = δT . From the above simulations it

can be conclude that, the LP-estimate γLP gives a tighter bound than the one due to Lyapunov

function construction γM in the above case.

Finally, we present two case-studies to compare the B-estimate, γB, with respect to the LP -
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Fig. 7: Analysis of J(µ1, δT ) for the graph in Fig. 5
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Fig. 8: Analysis of J1(µ1, δT ) for the graph in Fig.5
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Fig. 9: Analysis of J2(µ1, δT ) for the graph in Fig. 5

estimate, γLP , and the estimate obtained via Lyapunov’s direct method, γM . We reconsider the

single-integrator agent dynamics with the interaction graph as in Fig. 5.
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For the sake of a making a coherent comparison with the B-estimate –see Remark 2, we

normalize the upper-bound on M(t) with respect to p, that is, we set µ2 := δT . In Fig. 8

and Fig. 9 we depict the plot of J1(µ1, δT ) := e2(TγM−TγB) and J2(µ1, δT ) := e2(TγLP−TγB),

respectively, versus µ1 and different values of δT . Since, δT ≥ µ1, each curve extends only up

to µ1 = δT . From the above simulations it may be conclude that, both, the LP-estimate, γLP ,

and that generated via the Lyapunov function, γM , give a tighter bound than the B-estimate.

Note, also, that the A-estimate and the LP-estimate are equivalent for p = 1 and µ2 = δT –see

Remark 1.

V. CONCLUDING REMARKS

In this work, we estimate the convergence rate for a class of consensus algorithms with

persistently excited, undirected interconnection networks. The linear update laws are analyzed

by transforming the node agreement problem to edge agreement by a suitable coordinate trans-

formation. The resulting exponential stability problem for both single and double integrator

agents are analyzed using different approaches based on Lyapunov theory. The aforementioned

techniques allow computation of explicit bounds on convergence rates to consensus for agents

communicating over an undirected, time-varying graph network. Numerical case studies compare

the various estimates of convergence rate with each other. It is concluded that the A and LP

estimates and provide the tightest bound on the convergence rate as compared with the other

estimates proposed in this work.
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