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A cascades approach to formation-tracking stabilization of force-controlled autonomous vehicles

We present a cascades-based controller for the problem of formation-tracking control in a group of autonomous vehicles. We consider general models composed of a velocity kinematics equation and a generic force-balance equation. For each vehicle, a local controller ensures tracking of a reference generated by a leader vehicle. One or many vehicles may have access to the reference trajectories; each robot has one leader only, but may have several followers (spanning-tree topology). We establish uniform global asymptotic stability in closed loop for a wide class of controllers. Our analysis relies on the construction of an original strict Lyapunov function for the position tracking error dynamics and an inductive argument based on cascades-systems theory.

I. INTRODUCTION

For a group of autonomous vehicles, the formation-tracking control problem roughly consists in making them form a spatial configuration and move along a reference trajectory while keeping the pattern [START_REF] Oh | A survey of multi-agent formation control[END_REF]. If the reference trajectory is generated by one of the agents we speak of the leader-follower formation-tracking control problem. This is a natural extension of the classical tracking control problem to the multi-agent framework.

For control design, autonomous vehicles are often modeled as unicycle systems, with two Cartesian coordinates for translation and one for orientation; this is the so-called kinematic model. Full models include an additional forces-balance equation, e.g., in Lagrangian form [START_REF] Huang | Adaptive output feedback tracking control of a nonholonomic mobile robot[END_REF] or in Hamiltonian one [START_REF] Vos | Formation control and velocity tracking for a group of nonholonomic wheeled robots[END_REF]. Yet, even at the kinematic level, tracking control imposes certain difficulties when considering generic reference trajectories that stem from the nonholonomy of the robot [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF].

The formation tracking control problem using a full dynamical model of the unicycle has been studied, e.g., in [START_REF] Liang | Leader-following formation tracking control of mobile robots without direct position measurements[END_REF], [START_REF] Sun | A synchronization approach to trajectory tracking of multiple mobile robots while maintaining timevarying formations[END_REF], [START_REF] Wang | Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots[END_REF], [START_REF] Dong | Cooperative control of multiple nonholonomic mobile agents[END_REF], [START_REF] Yoo | Distributed formation tracking of networked mobile robots under unknown slippage effects[END_REF]. In [START_REF] Liang | Leader-following formation tracking control of mobile robots without direct position measurements[END_REF], an output-feedback controller is used under the assumption that the leader translational velocity is separated from zero. Under the assumption that the robot is modeled as a point-mass (second-order integrators), a particular time-varying configuration is considered in [START_REF] Sun | A synchronization approach to trajectory tracking of multiple mobile robots while maintaining timevarying formations[END_REF]. In scenarios involving parametric uncertainty, a distributed formation controller has been proposed in [START_REF] Wang | Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots[END_REF] to solve the formation tracking problem, ensuring error convergence in a practical sense only. See also [START_REF] Dong | Cooperative control of multiple nonholonomic mobile agents[END_REF] where a general balanced directed communication graph is considered under the assumption that the rotational velocity of the leader is persistently exciting and a decentralized control law is proposed. In [START_REF] Yoo | Distributed formation tracking of networked mobile robots under unknown slippage effects[END_REF] skidding, slipping, and collision avoidance are considered under the assumption that the leader translational velocity is separated from zero.

In this note we address the problem of formation tracking control in a leader-follower topological configuration. That is, each robot follows one leader and communicates its coordinates to one or several followers that stand not necessarily physically close. The reference trajectory is generated by a virtual robot, which may be known by only one, or by several robots. In contrast to [START_REF] Maghenem | Formation-tracking control of autonomous vehicles under relaxed persistency of excitation conditions[END_REF], the unicycle's full model is used. Our controllers are based on a recursive repetition of a time-varying nonlinear tracking controller for the kinematics model, based on [START_REF] De Wit | Nonlinear control design for mobile robots[END_REF]. In this case, we establish, via Lyapunov's direct method, that the origin is uniformly globally asymptotically stable. For the complete model, we show that any controller ensuring the stabilization at the force level with sufficiently fast rate of convergence, leads to uniform global asymptotic stability for the global dynamics.

Our main contributions lie in the construction of a strict Lyapunov function for the kinematics model and the proofs of uniform global asymptotic stability. Even though Lyapunov's direct method is also used, e.g., in [START_REF] Do | Nonlinear formation control of unicycle-type mobile robots[END_REF], our main condition is that either the forward or the angular reference velocity is persistently exciting. This condition, which is the same as in [START_REF] Maghenem | Lyapunov-based formationtracking control of nonholonomic systems under persistency of excitation[END_REF] and [START_REF] Maghenem | Formation-tracking control of autonomous vehicles under relaxed persistency of excitation conditions[END_REF], is weaker than what is usually considered in the literature. For instance, neither velocity is required to be separated from zero and one may equal to zero if the other is time-varying non-negative.

Our main results are stated in Section II; firstly for leader-follower tracking control and then, for formation tracking of large groups. The constructive stability proofs are provided in Section III, before concluding with some remarks in Section V.

II. PROBLEM FORMULATION AND ITS SOLUTION

A. Tracking control

Consider the force-controlled model of an autonomous vehicle:

   ẋ = v cos θ ẏ = v sin θ θ = ω (1) v = f1(t, v, ω, z) + u1 ω = f2(t, v, ω, z) + u2 (2) 
where v and ω denote the forward and angular velocities respectively, the first two elements of z := [x y θ] correspond to the Cartesian coordinates of a point on the robot with respect to a fixed reference frame, and θ denotes the robot's orientation with respect to the same frame. The functions f1 and f2 satisfy the Caratheodory conditions for existence of solutions and u1 and u2 denote the two torque control inputs.

Equations (1) correspond to the velocity kinematics model while (2) correspond to the force-balance equations. The control strategy in this paper consists in decoupling the stabilization task at both levels. For (1) we establish robustness results hence, our main statements are valid for any controller that guarantees the stabilization of (2) with "fast" convergence (for instance, but not only, local exponential).

The tracking-control problem consists in making the robot to follow a fictitious reference vehicle modeled by ẋr = vr cos θr ẏr = vr sin θr θr = ωr, and which moves about with reference velocities vr(t) and ωr(t). More precisely, it is desired to steer the differences between the Cartesian coordinates to some values dx, dy, and to zero the orientation angles and the velocities of the two robots, that is, the quantities

p θ = θr -θ, px = xr -x -dx, py = yr -y -dy.
The distances dx, dy define the position of the robot with respect to the (virtual) leader. In general, these may be functions that depend on time and the state or may be assumed to be constant, depending on the desired path to be followed. In this paper, we consider these distances to be defined as piece-wise constant functions -cf. [START_REF] Loría | Leader-follower formation control of mobile robots on straight paths[END_REF].

Then, as it is customary, we transform the error coordinates [p θ , px, py] of the leader robot from the global coordinate frame to local coordinates fixed on the robot, that is, we define

  e θ ex ey   :=   1 0 0 0 cos θ sin θ 0 -sin θ cos θ     p θ px py   . (3) 
In these new coordinates, the error dynamics between the virtual reference vehicle and the follower becomes

ėθ = ωr(t) -ω (4a) ėx = ωey -v + vr(t) cos(e θ ) (4b) 
ėy = -ωex + vr(t) sin(e θ ), (4c) 
in addition to Eqs [START_REF] Huang | Adaptive output feedback tracking control of a nonholonomic mobile robot[END_REF]. Hence, the control problem reduces to steering the trajectories of (4) to zero via the inputs u1 and u2 in [START_REF] Huang | Adaptive output feedback tracking control of a nonholonomic mobile robot[END_REF]. A natural method consists in designing virtual control laws at the kinematics level, denoted w * and v * , and control inputs u1 and u2, depending on w * , v * , ω * , and v * , such that the origin (e, ṽ, w) = (0, 0, 0) with

ṽ := v -v * , ω := ω -ω * , e = [e θ ex ey] , (5) 
is uniformly globally asymptotically stable.

The stabilization problem for (4), that is, setting ω ≡ ω * and v ≡ v * and, hence, neglecting the dynamics (2), has been broadly studied in the literature. For instance, in [START_REF] De Wit | Nonlinear control design for mobile robots[END_REF] the authors proposed the controller v * := vr(t) cos(e θ ) + kxex (6a)

ω * := ωr(t) + k θ e θ + vr(t)kyeyφ(e θ ) (6b) 
where kx, ky and k θ are positive control gains, φ is the so-called 'sinc' function defined by φ(e θ ) := sin(e θ ) e θ [START_REF] Wang | Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots[END_REF] and established (non-uniform) convergence of the tracking errors under the assumption that either vr or ωr has a limit separated from zero. Then, for the same controller but under slightly relaxed conditions, uniform global asymptotic stability for the closed-loop system is established in [START_REF] Maghenem | Lyapunov-based formationtracking control of nonholonomic systems under persistency of excitation[END_REF]. In this paper, the same property is established and, in addition, for the first time a strict Lyapunov function is provided. As in [START_REF] Maghenem | Lyapunov-based formationtracking control of nonholonomic systems under persistency of excitation[END_REF], our standing assumption is that either the forward or the angular reference velocities are persistently exciting that is, that there exist positive numbers µ and T such that

t+T t [ωr(s) 2 + vr(s) 2 ]ds ≥ µ ∀ t ≥ 0. ( 8 
)
The design of the controller ( 6) is motivated by the resulting structure of the error dynamics for the tracking errors, which is reminiscent of nonlinear adaptive control systems. Indeed, by setting ω = ω * and v = v * , we obtain

  ėθ ėx ėy   =   -k θ 0 -vr(t)kyφ(e θ ) 0 -kx ω * (t, e) vr(t)φ(e θ ) -ω * (t, e) 0   Av r (t, e)   e θ ex ey   . (9)
Then, we evaluate the total derivative of V1 : R 3 → R ≥0 , defined as

V1(e) = 1 2 e 2 x + e 2 y + 1 ky e 2 θ ( 10 
)
to obtain

V1(e) = -kxe 2 x -k θ e 2 θ ≤ 0 (11) 
and to conclude that the trivial solution for ( 9) is uniformly globally stable, that is, it is uniformly stable and all solutions are uniformly globally bounded. Furthermore, after [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF], it may be concluded that the origin of this system is uniformly globally asymptotically stable provided that the vector [-vr(t)kyφ(e θ ) ω * (t, e)], subject to e θ = 0, is δpersistently exciting with respect to ey. Roughly, this holds provided that this vector is persistently exciting for any ey = 0; condition which, actually, reduces to [START_REF] Dong | Cooperative control of multiple nonholonomic mobile agents[END_REF]. Thus, our first statement is the following.

Proposition 1 (Kinematic model): For the system (9) assume that (8) holds and there exist ωr, ωr, ν, ν > 0 such that1 

|ωr|∞ ≤ ωr, | ωr|∞ ≤ ωr, |vr|∞ ≤ vr, | vr|∞ ≤ vr. (12)
Then, the origin is uniformly globally asymptotically stable and locally exponentially stable, for any positive values of the control gains kx, ky, and k θ .

Beyond the statement itself, our (first) contribution lies in the original proof of Proposition 1 (see Section III) which is based on Lyapunov's direct method. Concretely, following the methods of [START_REF] Malisoff | Constructions of Strict Lyapunov functions[END_REF], we show that there exists a positive definite radially unbounded function V : R ≥0 × R 3 → R ≥0 defined as the functional V (t, e) := P[3](t, V1)V1(e)-ωr(t)exey+vr(t)P [START_REF] Oh | A survey of multi-agent formation control[END_REF](t, V1)e θ ey [START_REF] Maghenem | Lyapunov-based formationtracking control of nonholonomic systems under persistency of excitation[END_REF] where, for any k ∈ Z, we denote by

P[k] : R ≥0 × R ≥0 → R ≥0 a smooth function such that P[k](•, V1) is uniformly bounded and P[k](t,
•) is a polynomial of degree k, with non-negative coefficients, designed such that the total derivative of V along the trajectories of (9) satisfies

V (t, e) ≤ - µ T V1(e) -kxe 2 x -k θ e 2 θ . (14) 
The value of having a strict Lyapunov function for (9) may not be overestimated. It serves to study the robustness of this error system when ω ≡ ω * and v ≡ v * ; in other words, the robustness of (9) visa-vis of the input (ṽ, ω). The dynamics of these variables are given by the equations (2) in closed loop with control inputs u1 and u2.

In general, such closed-loop equations may be written as

v = f 1cl (t, ṽ, ω, e) (15a) ω = f 2cl (t, ṽ, ω, e) (15b) 
so that the overall error dynamics takes the convenient form

ė = Av r (t, e)e + B(e)η, (16a) 
η = F cl (t, ṽ, ω, e), F cl := [f 1cl f 2cl ], (16b) 
where

B(e) :=   0 -1 -1 ey 0 -ex   , η := ṽ ω . ( 17 
)
Now, for the purpose of analysis, we replace the state e with the trajectories e(t, ζ(t•)) in (16b) so the closed-loop equations may be regarded as a cascaded nonlinear time-varying system with state ζ := [e η ] -cf. [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF]. More precisely, in place of (16b) we write

η = Fcl (t, η) (18) 
where Fcl (t, η) = F cl (t, ṽ, ω, e(t)). Thus, roughly speaking, provided that the origin for the nominal dynamics ė = Av r (t, e) is asymptotically stable, and the input η → 0 sufficiently fast and for any e, a cascades argument applies to establish that e → 0. This reasoning lies at the basis of our first statement: Proposition 2: Consider the system ( 16) with initial conditions 5 . Assume that kx, ky, and k θ are positive and that Inequalities ( 8) and ( 12) hold. In addition, assume that the solutions are complete and for the system (18) the origin, {η = 0}, is uniformly globally asymptotically stable. Assume further that the trajectories t → η are uniformly integrable, that is, there exists φ ∈ K such that

(t•, ζ•) ∈ R ≥0 ×R
∞ t• |η(τ )|dτ ≤ φ(|ζ•|) ∀ t ≥ t• ≥ 0. (19) 
Then, the origin is uniformly globally asymptotically stable.

Proof. From Proposition 1, the origin {e = 0} is uniformly globally asymptotically stable for [START_REF] Yoo | Distributed formation tracking of networked mobile robots under unknown slippage effects[END_REF]. By assumption the same property holds for (16b). Since, moreover, B is linear in e, the result follows from [START_REF] Panteley | On global uniform asymptotic stability of non linear time-varying non autonomous systems in cascade[END_REF]Theorem 2].

Remark 1: The following observations are in order:

• Since Fcl in [START_REF] Panteley | On global uniform asymptotic stability of non linear time-varying non autonomous systems in cascade[END_REF] depends on the trajectories e(t) hence, uniformity is to be understood both with respect to the initial conditions and the trajectories e(t). • Technically, the function Fcl is defined only on the interval of existence of e(t), whence the assumption that the solutions exist on [t•, ∞). Nevertheless, this hypothesis may be dropped if we impose that η → 0 uniformly in e(t) only on the interval of existence. This is considered in our main result later on, Proposition 3.

• An example of feedbacks u1, u2 is given in Section II-C.

B. Formation tracking control

Let us consider now n mobile robots that are required to advance in formation. It is assumed that the ith robot follows a leader, indexed i-1, thereby forming a spanning-tree graph communication topology. That is, each robot has only one leader, but it may have several followers. As previously explained, the geometry of the formation may be defined via the relative distances between any pair of leaderfollower robots, dxi, dyi and it is independent of the communications graph (two robots may communicate independently of their relative positions). Then, the relative position error dynamics is given by a set of equations similar to (4), that is,

ėθi = ωi-1(t) -ωi (20a) ėxi = ωieyi -vi + vi-1(t) cos(e θi ) (20b) ėyi = -ωiexi + vi-1(t) sin(e θi ). (20c) 
For i = 1 we recover the tracking error dynamics for the case of one robot following a virtual leader that is, by definition, v0 := vr and ω0 := ωr. Then, similarly to (6) we introduce the virtual controls

v * i := vi-1 cos(e θi ) + kxiexi (21) 
ω * i := ωi-1 + k θi e θ i + vi-1kyieyiφ(e θi ) (22) 
which serve as references for the actual controls u1i and u2i in

vi = f1i(t, vi, ωi, ei) + u1i (23a) ωi = f2i(t, vi, ωi, ei) + u2i, i ≤ n. (23b) 
Next, let us introduce the velocity errors

ωi := ωi -ω * i , ṽi := vi -v * i
and, for the purpose of analysis only, let us define ∆vj := vj -vr and ∆ωj := ωj -ωr for all j ≤ n (by definition, ∆ω0 = ∆v0 = 0). Then, we replace ωi with ωi + ω * i and, respectively, vi with ṽi + v * i in [START_REF] Do | Formation tracking control of unicycle-type mobile robots[END_REF], and we use

v * i = [∆vi-1 + vr] cos(e θi ) + kxiexi ( 24 
)
ω * i = ∆ωi-1 + ωr + k θi e θ i + [∆vi-1 + vr]kyieyiφ(e θi ). (25) 
It follows that, for each pair of nodes, the error system takes the form 

G :=   0 0 -kyg1 0 0 g2 g1 -g2 0   g1 := ∆vi-1ey i φ(e θ i ) g2 := ∆ωi-1 + ky∆vi-1ey i φ(e θ i )
and B is defined in ( 17) -note that G(t, ei, 0) ≡ 0. Thus, the overall closed-loop system has the convenient cascaded form (in reverse order): ėn = Av r (t, en)en + G(t, en, ξn)en + B(en)ηn (27a) . . .

ė2 = Av r (t, e2)e2 + G(t, e2, ξ2)e2 + B(e2)η2 (27b) ė1 = Av r (t, e1)e1 + B(e1)η1 (27c) 
and these closed-loop equations are complemented by the equations that stem from applying the actual control inputs in [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF], that is,

ηi = Fi cl (t, ṽi, ωi, ei), Fi cl := [fi 1cl fi 2cl ] (28) 
for all i ≤ n.

To underline the good structural properties of the system (27)-(28) and to explain the rationale of our main result, let us argue as follows (precise proofs are given in Section III). By assumption, the control inputs u1i and u2i are such that ηi → 0, independently of the behavior of ei. Furthermore, we see from Equation (27c) that, as η1 → 0, we recover the system (9). Hence, if η1 converges fast enough (according to [START_REF] Maghenem | iISS formation tracking control of autonomous vehicles[END_REF]), using Proposition 2 we may conclude that η1 → 0 implies that e1 → 0. With this in mind, let us observe (27b). We have ξ2 := [∆ω1 ∆v1] where ∆ω1 = ω1 -ωr and ∆v1 = v1 -vr. On the other hand, by virtue of the control design, e1 = 0 implies that ω * 1 = ωr and v * 1 = vr, in which case we have ∆ω1 = ω1 and ∆v1 = ṽ1. It follows that e1 → 0 and η1 → 0 imply that ξ2 → 0. In addition, as η2 → 0 (by the action of the controller at the force level), the terms G(t, e2, ξ2)e2 + B(e2)η2 in (27b) vanish and (27b) becomes ė2 = Av r (t, e2)e2. By Proposition 1 we conclude that e2 also tends to zero. Carrying on by induction, we conclude that e → 0.

Although intuitive, the previous arguments implicitly rely on the robustness of ėi = Av r (t, ei) (i.e., of the system (9)) with respect to the inputs ηi and ξi. More precisely, on the condition that the solutions exist on [t•, ∞) and, moreover, that they remain uniformly bounded during the transient. In our main result, which is presented next, we relax these (technical) assumptions. The proof is presented in Section III. It may also be showed that each subsystem in (27) is integral-input-to-state stable [START_REF] Maghenem | iISS formation tracking control of autonomous vehicles[END_REF].

Proposition 3: For each i ≤ n, let ζi := [e i η i ] and consider the system (20), [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF]. Let conditions ( 8) and ( 12) hold and assume that control control inputs u1i and u2i are given, as functions of the states of the ith robot and its leader i -1st, such that:

[A1] for each i, there exists a function βi ∈ KL such that, on the maximal interval of existence

1 of t → ei, |ηi(t, t•, η1•, ei•)| ≤ β(|ζi•|, t -t•) (29)
and ( 19) holds for some φi ∈ K.

Then, {ζ = 0}, where

ζ := [ζ 1 • • • ζ n ]
, is uniformly globally asymptotically stable. Remark 2: In Proposition 3 the control inputs u1i and u2i, which typically depend on v * i , ω * i , v * i , and ω * i , are not explicitly defined on purpose; the statement is general. For instance, the most obvious choice for u1i and u2i corresponds to the linearizing feedbacks u1i := v * i -f1i(t, vi, ωi, ei)-k1ṽi and u2i = ω * i -f2i(t, vi, ωi, ei)-k2 ωi, but, in general, the design of u1i and u2i depends on the problem setting (parametric uncertainty, partial-state measurements, . . . ) and is beyond the scope of this technical note.

The virtual controls v * i and ω * i are defined as in Eqs. ( 21) and ( 22), as functions of the leader velocities and the leader-follower relative position errors, while the accelerations v * i and ω * i may be computed by differentiating ( 21) and ( 22) and using the leader's velocities and accelerations. Hence, the distributed controllers for each follower depend only on its own measurements and those of the leader; the equivalent expressions ( 24) and ( 25), which exhibit a recursive dependence of the leader's leader variables, are provided for the purpose of analysis only.

• Remark 3: Assumption A1 means that ηi(t) converge uniformly to zero while the trajectories ei(t) exist. In particular, if the system is forward complete A1 imposes uniform global asymptotic stability of (28). Even though this may be a strong hypothesis in a general context of nonlinear systems -see [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF], it may be easily met in the case of formation tracking control, as we show below.

•

C. Example

As explained in the Introduction, the equations (2) correspond to a generic dynamics model which may be expressed, e.g., in Hamiltonian coordinates -see [START_REF] Vos | Formation control and velocity tracking for a group of nonholonomic wheeled robots[END_REF], or in Lagrangian ones -see [START_REF] Huang | Adaptive output feedback tracking control of a nonholonomic mobile robot[END_REF]. The statement of Proposition 3 is general in the sense that it applies to any stabilizing controller for the equations (2). For illustration, let us consider the particular model of a wheeled mobile robot in Lagrangian coordinates -cf. [START_REF] Do | Formation tracking control of unicycle-type mobile robots[END_REF],

ż = J(z)ν (30a) M ν + C( ż)ν + Dν = τ (30b) 
where z = [x, y, θ] corresponds to the Cartesian position coordinates and the orientation, τ is the torque control input, the variable ν := [ν1 ν2] denotes the angular velocities of the two wheels, M is an inertia matrix (hence positive definite, symmetric), C is the matrix of Coriolis forces (which is skew-symmetric), Dν with D = D ≥ 0 represents damping forces, and

J(z) = r 2   cos θ -sin θ sin θ cos θ 1/b -1/b  
where r and b are positive constant parameters of the system. The relation between the wheels' velocities, ν, and the robot's velocities in the fixed frame, ż, is given by

v ω = r 2b b b 1 -1 ν1 ν2 ⇔ ν1 ν2 = 1 r 1 b 1 -b v ω (31) 
which may be used in (30) to obtain the model ( 1), (2) with

u1 u2 = r 2b b b 1 -1 M -1 τ
-see [START_REF] Do | Formation tracking control of unicycle-type mobile robots[END_REF] for more details on this coordinate transformation.

Then, using (31), for any given virtual control inputs v * and ω * , we can compute ν * := [ν * 1 ν * 2 ] and define the torque control input

τ = M ν * + C(J(z)ν)ν * + Dν * -k d ν, k d > 0 (32) 
where ν := ν -ν * . We see that the force error equations yields

M ν + C( ż(t)) + D + k d I ν = 0 (33) 
in which we have replaced ż with the trajectories ż(t) to regard this system as (linear) time-varying, with state ν. Now, due to the skewsymmetry of C(•) the total derivative of

V (ν) = 1 2 ν M ν,
along the trajectories of (33) yields

V (ν) ≤ -k d |ν| 2 . ( 34 
)
Although this inequality holds independently of ż(t), Eq. ( 33) is valid only on the interval of existence of ż(t), denoted [t•, t max ), t max ≤ ∞. Hence, so does (34) and, consequently,

|ν(t)| ≤ κ|ν(t•)|e -λ(t-t•) ∀ t ∈ [t•, t max )
for some κ and λ > 0. From (31) it is clear that a similar bound holds for η(t) = [ṽ(t) ω(t)]. In other words, the velocity errors tend exponentially to zero uniformly in the initial conditions and in the position error trajectories, so condition A1 of Proposition 3 holds. Remark 4: For the controller (32) it is assumed that all the constant lumped parameters are known. However, an adaptive controller for Lagrangian systems, such as the well-known Slotine & Li controller [START_REF] Slotine | Adaptive manipulator control: a case study[END_REF] may be used. Moreover, uniform global asymptotic stability may be ensured (that is, including the convergence of the parameter estimation errors) provided that the reference trajectories v * are persistently exciting -see [START_REF] Loría | Uniform parametric convergence in the adaptive control of mechanical systems[END_REF].

•

III. STABILITY ANALYSIS

A. Proof of Proposition 1

The proof follows via Lyapunov's direct method; it relies on the construction of a Lyapunov function of polynomial type, and it is greatly inspired by the methods in [START_REF] Malisoff | Constructions of Strict Lyapunov functions[END_REF].

Firstly, for any locally integrable function ϕ : R ≥0 → R ≥0 , such that sup t≥0 |ϕ(t)| ≤ φ, let us introduce

Qϕ(t) := 1 + 2 φT - 2 T t+T t m t ϕ(s)dsdm. (35) 
Note that this function satisfies:

Qϕ(t) = - 2 T t+T t ϕ(s)ds + 2ϕ(t), (36) 
1 ≤ Qϕ(t) < Qϕ := 1 + 2 φT.

In the sequel, we use this function with ϕ = v 2 r + ω 2 r . We also introduce several polynomial functions with positive coefficients, denoted by ρi : R ≥0 → R ≥0 . These shall be defined as needed in a manner that the derivative of

V2(t, e) := ρ1(V1)V1 + Q v 2 r (t) + Q ω 2 r (t) V1 -ωr(t)exey +vrρ2(V1)e θ ey + ρ3(V1)V1, (37) 
with V1 defined in [START_REF] Maghenem | Formation-tracking control of autonomous vehicles under relaxed persistency of excitation conditions[END_REF], be negative definite. In addition, note that Finally, we introduce V3(t, e) = V2(t, e) + V1ρ4(V1), which is also positive definite. We shall show that for an appropriate choice of the polynomials ρi, the total derivative of V3 along the trajectories of (9) yields

V2(t, e) ≥ 1 
V3(t, e) ≤ - µ T V1(e)-kxe 2 x -k θ e 2 θ , ∀ (t, e) ∈ R ≥0 ×R 3 . ( 38 
)
To that end, we start by rewriting [START_REF] Yoo | Distributed formation tracking of networked mobile robots under unknown slippage effects[END_REF] 

This partition, which facilitates the analysis, is motivated by the fact that vr[φ(e θ ) -1]B • (ey)e = 0 if e θ = 0. Now we show that the total derivative of V2 along the trajectories of ė = A • vr (t, e)e is negative definite. Firstly, since ρ1 is a polynomial that maps R ≥0 → R ≥0 and V1 satisfies [START_REF] De Wit | Nonlinear control design for mobile robots[END_REF],

d dt {ρ1(V1)V1} ≤ -ρ1(V1) kxe 2 x + k θ e 2 θ . (43) 
Next, we use (36), as well as |e| ≥ |ey| and Qϕ > 0, to obtain 

d dt Q v 2 r + Q ω 2 r ]V1 ≤ - 2 
-e 2 x kxρ1 -ρ7 -ρ5 -v 2 r -ω 2 r -e 2 θ k θ ρ1 -ρ8 -ρ6 - 1 ky v 2 r + ω 2 r . (49) 
Hence, defining

:= T µ ωr ωrk 2 y + kx + k θ + ky vr + ωr + k θ vr + vr ρ1(V1) := 1 + 1 min{kx, k θ } ρ5 + ρ6 + ρ7 + ρ8 + 1 + 1 ky ω 2 r + v 2 r , and 
ρ2(V1) := 1 ky 1 + 2 V1 , we obtain ∂V2 ∂t + ∂V2 ∂e A • vr (t, e)e ≤ - µ T V1(e) -kxe 2 x -k θ e 2 θ . (50) 
That is, V2 is a strict Lyapunov function for the nominal dynamics ė = A • vr (t, e)e. Next, we evaluate the total derivative of V3 along the trajectories of (39) (i.e., including the output injection term). From (50) we obtain We show that W (t, e), defined in (52), is non-positive. To that end, note that A formation-tracking controller for autonomous vehicles that ensures uniform global asymptotic stability of the closed-loop system, under the sole assumption that either the angular or the forward reference velocity is persistently exciting has been presented. Because the tracking problems at the velocity-kinematics and force-dynamics levels are treated separately, the main results apply to any controller at the dynamic level.

Our main contribution lies in providing a strict Lyapunov function for the error dynamics at the kinematics level. This is a fundamental building block to carry on the analysis towards more general cases of interest such as considering parametric uncertainty (adaptive control), output-feedback designs, and collision-avoidance scenarios. Further research in such directions is being carried out.

ėi=

  Av r (t, ei)ei + G(t, ei, ξi)ei + B(ei)ηi (26) -cf. (16a), where ei := [e θ i ex i ey i ] , ηi := [ṽi ωi] ξi := [∆ωi-1 ∆vi-1]

so

  V2 is positive definite and radially unbounded if the matrix in this inequality is positive semidefinite. The latter holds if ρ3 satisfiesρ3(V1) ≥ v2 r ρ2(V1) 2 + ω2 r √ 2 .

•

  in the output-injection form ė = A • vr (t, e)e + vr[φ(e θ ) -1]B • (ey)e (39) vr (t, e) = ωr(t) + k θ e θ + vrkyey.

  vr (t, e)e + W (t, e) (51)W (t, e) := -k θ ρ4(V1)e 2 θ + vr[φ(e θ ) -1] ∂V2 ∂e B • (ey)e (52)for which we used[START_REF] De Wit | Nonlinear control design for mobile robots[END_REF], as well as the positivity of ρ4(V1) and of ∂ρ4/∂V1, to obtaind dt {V1ρ4(V1)} = V1ρ4(V1) + V1 ∂ρ4 ∂V1 V1 ≤ -k θ ρ4(V1)e 2 θ .

[φ(e θ ) - 1 ] ≤ e 2 θx e 2 θ and k d = 15 .Fig. 1 .Fig. 2 .
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  T + kx + k θ + ky vr + ωr + k θ vr + vr e 2

								+ρ8(V1)e 2 θ +	k θ vr + vr 2	e 2 y ,	(48)
								where ρ7 and ρ8 are second-order polynomials of V1 satisfying
								ρ7(V1) ≥ ρ2vr	ωr 2	+ (k θ + ky vr)V1
								+ max{ky, 1}kxvrV1	∂ρ2 ∂V1
								ρ8(V1) ≥	vrρ2(V1) 2	ωr + k θ ( ρ2(V1) + 1) + (ky + 2)vr
								vr 2	ρ2(V1) 2 + vr	∂ρ2 ∂V1	max{ky, 1}k θ V1.
								Now we put all the previous bounds together. Using (8) in (44),
								we obtain, in view of (46) and (48),
								∂V2 ∂t	+	∂V2 ∂e	A • vr (t, e)e ≤ -	2µ T	V1(e) -kyρ2(V1) -1 -2	V1 v 2 r e 2 y
								+	1 2	ωr ωrk	2 y y
								t+T
								ωr(s) 2 + vr(s) 2 ds V1
								t
								+ [ω 2 r + v 2 r ] e 2 x +	1 ky	e 2 θ + e 2 y ]	(44)
	Then, using (40) and (42), we obtain
		-	d dt	{ωrexey} = -ωrexey -ωr -kxexey + ωre 2 y + k θ e θ e 2 y
							+ kyvre 3 y -ωre x -k θ e θ e 2 x -kyvreye 2 x + vre θ ex . (45)
	Now, for the cross-terms we use the inequalities 2exey ≤ e 2 x +
	(1/ )e 2 y and 2e θ e 2 y ≤ V1e 2 θ + (1/ )e 2 y , which hold for any > 0,
	and we regroup some terms to obtain (see [19] for details)
	-	d dt	{ωrexey} ≤ 2	v 2 r V1e 2 y + ρ5(V1)e 2 x + ρ6(V1)e 2 θ
					+	1 2	ω2 r k 2 y + (kx + k θ )ωr + ωrky vr + ωr e 2 y -ω 2 r e 2 y	(46)
	where ρ5 and ρ6 are first-order polynomials of V1 defined as
	ρ5(V1) =	ωr 2	ky vr + 2k θ V1 + kx +	ωr ωr	+ 2ωr + vr
	ρ6(V1) = ωr k θ ( V1 + 1) +	vr 2	.
		Next, we compute
	d dt	{vrρ2(V1)e θ ey} = -ρ2(V1)v 2 r e 2 y -vrρ2(V1) k θ e θ ey + ωrexe θ
							+ k θ e 2 θ ex + kyvreyexe θ + vre 2 θ + ρ2(V1) vreθey
							-vr	∂ρ2 ∂V1	e θ ey kxe 2 x + k θ e 2 θ .	(47)
	Hence, using again the triangle inequality to bound the cross-terms
	and regrouping them, we obtain
							d dt	{vrρ2e θ ey} ≤ -kyv 2 r ρ2(V1)e 2 y + ρ7(V1)e 2 x

For a measurable function t → ψ we use |ψ|∞ := ess sup t≥0 |ψ(t)|.

If necessary, we consider the shortest maximal interval of existence among all the trajectories e i (t), with i ≤ n.

This article is supported by Government of Russian Federation (grant 074-U01)

[0 ey ex]B • (e)e ≤ 2kyV 2 1 + max{ky, 1}V1.

Thus, W (t, e) ≤ 0 if ρ4(V1) ≥ 2vr max{ky, 1} k θ kyρ2vr + ωr V 2 1 + ρ2vr + ωr V1 and (38) follows from (50) and (51).

Remark 5: From the definition of V3 and (38) we see that for each compact M ⊂ R 3 , there exist constants αi > 0 such that α1|e| 2 ≤ V3(t, e) ≤ α2|e| 2 (54) V3(t, e) ≤ -α3|e| 2 (55)

hence, the origin is exponentially stable on M . The computation of these constants in function of the control gains, of µ, and T , may serve, as a guideline for gain tuning. •

B. Proof of Proposition 3

The proof follows along the arguments developed below (28). For i = 1 the closed-loop dynamics, composed of (27c) and

is defined on the interval of existence of e1(t), denoted [t•, tmax), and has a cascaded form. By assumption, η1 satisfies the bound (29) for all t ∈ [t•, tmax) hence, this interval,

where c and c are positive constants of innocuous values, independent of the initial time. Integrating on both sides of the latter from t• to tmax we see that, by continuity of the solutions with respect to the initial conditions, this interval of integration may be stretched to infinity. By the definition of V1(e1) we obtain that e1(t) exists on [t•, ∞). Moreover, since by definition ∆v0 = ∆ω0 = 0, we conclude from ( 24) and (25), that v * 1 and ω * 1 exist along trajectories on [t•, ∞). It follows that the same property holds for v1(t) and ω1(t) and, consequently, for ξ2(t) -recall that ξ2 := v1 -vr ω1 -ωr .

From forward completeness and condition A1 it follows, in turn, that η1 = 0 is uniformly globally asymptotically stable for (56). Now we can apply a cascades argument for the system (27c), (56). Since B in (27c) is linear in e1 and the origin of ė1 = Av r (t, e1) is uniformly globally asymptotically stable, the same property holds for the origin (e1, η1) = (0, 0) -see [START_REF] Panteley | On global uniform asymptotic stability of non linear time-varying non autonomous systems in cascade[END_REF]Theorem 2]. This means that there exists a class KL function β such that

where we recall that ζi = [e i η i ] for all i ≤ n. In particular, e1(t), η1(t) and, consequently, ξ2(t), are uniformly globally bounded. To see this more clearly, we recall that, by definition, ξ2 is a continuous function of the state ζ1 and time and equals to zero if ζ1 = 0. Indeed, ξ2 = ψ1(t, ζ1) where

Next, let i = 2 and consider the closed-loop equations:

Note that we replaced e2 with e2(t) in (28) to obtain the "decoupled" dynamics equation (62c). Then, η2 is regarded as a perturbation to the system

which, in turn, is also in cascaded form. Now, in view of the structure of G, we have

hence, the total derivative of V1 along the trajectories of (62a) yields

with an appropriate redefinition of c and c -cf. Ineq. (57). Completeness of e2(t), and therefore of η2(t), follows using similar arguments as for the case when i = 1. Consequently, by Assumption A1, the origin of (62c) is uniformly globally asymptotically stable.

To analyze the stability of the origin for (62) we invoke again [START_REF] Panteley | On global uniform asymptotic stability of non linear time-varying non autonomous systems in cascade[END_REF]Theorem 2]. To that end, we only need to establish uniform global asymptotic stability for the system (63) (since B is linear and the origin of (62c) is uniformly globally asymptotically stable). For this, we invoke [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF]Theorem 4] as follows: first, we remark that the respective origins of ė2 = Av r (t, e2) and (63b) are uniformly globally asymptotically stable. Second, note that condition A4 in [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF]Theorem 4] is not needed here since we already established uniform forward completeness. Finally, [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF]Ineq. (24)] holds trivially with V = V1, in view of (64). We conclude that (e2, ζ1, η2) = (0, 0, 0) is a uniformly globally asymptotically stable equilibrium of (62). For i = 3 the closed-loop dynamics is ė3 = Av r (t, e3)e3 + G(t, e3, ψ2(t, ζ12)e3 + B(e3)η3 (65a) ζ12 =: which corresponds to ξ3 -cf. (61). The previous arguments, as for the case i = 2, apply now to (65) so the result follows by induction.

IV. A NUMERICAL EXAMPLE

We consider a group of four mobile robots modeled as in [START_REF] Do | Formation tracking control of unicycle-type mobile robots with limited sensing ranges[END_REF] and following a virtual leader. In this simulation, the desired formation shape of the four mobile robots is a diamond configuration that tracks the trajectory of the virtual leader. See Figure 2. We define the reference velocities such that their sum of squares is persistently exciting, that is, vr(t) = sin(0.5t)Mv r (t), ωr(t) = sin(0.6t)Mω r (t),