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Abstract

We solve the leader-follower tracking-agreement control problem for nonholo-
nomic mobile robots with uncertainties; this consists in controlling a group of
robots to take a pre-specified configuration (formation) and to move about fol-
lowing a vanishing reference trajectory. We assume that each robot has one
unique leader and it is controlled by a local tracking controller that uses rela-
tive position and velocity measurements, but each robot may have one or several
followers. We also assume that the reference trajectory is available to only one
robot (the swarm leader). The control design is based on a δ-persistently excit-
ing controller (for the kinematics model) that is robust to decaying perturbations
and an outer control loop at the force-inputs level. Our proofs are constructive
as they are based on Lyapunov’s direct method; moreover, we establish strong
integral input-to-state stability. To the best of our knowledge this is the first
result of this nature in the literature of nonholonomic mobile robots.

Keywords: Tracking control, agreement, leader-follower, nonholonomic
systems

1. Introduction

Over the turn of the last century there was a considerable bulk of literature
on tracking and stabilization of non-holonomic mobile robots. Remarkable ex-
amples include, e.g., the landmark paper [20], where the authors introduced a
follow-the-leader control approach which consists in defining a virtual robot that
generates a reference trajectory followed by the controlled robot. Depending on
the velocities of the virtual robot, we distinguish, on one hand, the tracking
problem, in which the leader velocities are defined by functions of time –see
e.g., [39, 37, 6] and, on the other, the set-point stabilization problem, in which

1The work of the third author is supported by Government of Russian Federation (grant
074-U01).
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case the non-holonomy restriction prevents the use of smooth autonomous feed-
back hence, one must employ either discontinuous controllers –e.g., [3, 38, 8] or
smooth time-varying controllers –[40, 30, 27].

For tracking purposes, a sufficient condition recurrently found in the litera-
ture is that the reference velocities do not vanish (i.e., the virtual reference robot
must not stop). For instance, in [39] it is assumed that at least one of the leader
velocities is bounded from below in the limit, in [37] the rotational velocity of
the leader is assumed to be persistently exciting, in [6] the translational leader
velocity is assumed to be greater than zero. In the tracking-stabilization prob-
lem [13, 42], however, the leader velocities are functions of time that converge
asymptotically to zero. Such problem may be regarded as a robust stabilization
problem with respect to the leader velocities –see, for example, [22] where it is
assumed that either the forward leader velocities is integrable, or the angular
velocity is bounded from below.

The tracking-stabilization problem extends to the case of multi-agents con-
trol in which, in addition, it is required that the vehicles reach a predefined
formation. Depending on the context, the formation can be defined on a case-
by-case basis, by determining the positions of the vehicles relative to each other.
In [14] the leader follower formation-tracking control problem is solved using a
combination of the virtual structure and path-tracking approaches to generate
the reference for each agent under the assumption that the translational leader
velocity is persistently exciting; in [25] the tracking control of multiple mobile
robots advancing in formation along straight-line paths, was addressed. Solu-
tions to the agreement control problem for multiple mobile robots are provided,
e.g., in [10], for the case of undirected graphs, and in [15], for a swarm of vehicles
interconnected via a direct graph. In the former, a distributed discontinuous
feedback is used while in the latter a smooth time-varying controller is proposed.
In [9] sliding-mode controllers are proposed to solve a leader-follower formation-
tracking control problem, based on the measurement of the relative orientation
and Euclidean distance separating the leader and its follower. In [41] the au-
thors propose a distributed formation control method in which only a handful
of robots have information of the reference trajectories, it is assumed that the
system’s parameters are unknown, and a result of ultimate boundedness on the
tracking errors is established. See also [43].

In this paper we address the leader-follower tracking-agreement control prob-
lem for a group of mobile robots. Our control approach is decentralized; for
each robot, we design a local δ-persistently exciting controller [30, 27] that uses
relative velocity and position measurements of the actual robot, with respect
to a leader robot. In contrast to most results in the literature, we provide a
strict Lyapunov function, the construction of which is based on [32, 33, 34]. In
addition, we establish, as far as we know for the first time in the literature,
strong integral input-to-state stability (strong iISS) –see [5] and the Appendix.
The importance of strong iISS is that not only this property guarantees ro-
bustness with respect to measurement noise, but it renders the solution to the
tracking-agreement problem straightforward under a spanning tree communica-
tion topology.
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The rest of the paper is organized as follows. In Section 2 we describe
the control problem; in Section 3 we present our control approach and the
main result on leader-follower tracking-stabilization control problem. In Section
4 we establish robustness results of the proposed controller with respect to
the leader’s velocities; we extend this result to the case of formation tracking-
agreement control in Section 5. We provide some illustrative simulation results
in Section 6, before concluding with some remarks.

2. Problem formulation

As for instance in [11], we consider mobile robots modeled by

ż = J(z)ν (1a)

Mν̇ + C(ż)ν = τ (1b)

where z := [x, y, θ] contains the Cartesian coordinates (x, y) and the orientation
θ of the robot, τ ∈ R2 corresponds to the (torque) control input; ν := [ν1 ν2]
stands for the angular velocities corresponding to the two robot’s wheels, M
is the inertia matrix, which is constant, symmetric, and positive definite, and
C(ż) is the matrix of Coriolis forces, which is skew-symmetric:

C(ż) =

[
0 cθ̇

−cθ̇ 0

]
, c > 0

—see [11]. for further detail on the model. In addition,

J(z) =
r

2

cos(θ) cos(θ)
sin(θ) sin(θ)
1/b −1/b


where r is the radius of either steering wheel and b is the distance from the
center of either wheel to the Cartesian point (x, y). The relation between the
wheels’ velocities, denoted by ν, and the robot’s velocities in the fixed frame,
denoted by ż, is[

v
ω

]
:=

r

2b

[
b b
1 −1

] [
ν1

ν2

]
⇔

[
ν1

ν2

]
=

1

r

[
1 b
1 −b

] [
v
ω

]
. (2)

These transformations may be used in (1a) to obtain the familiar model

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω,

where v = 1/2|ẋ ẏ| denotes the forward velocity and ω corresponds to the angular
velocity. See [11] for more details on the model (1).

3



The generic tracking problem consists in designing a control law τ∗ such that
z in (1) converges to zr := [xr, yr, θr], which corresponds to the trajectories of
a reference vehicle with kinematics

ẋr = vr cos θr (3a)

ẏr = vr sin θr (3b)

θ̇r = ωr. (3c)

According to the tracking-stabilization control goal [13, 42], it is assumed that
the reference vehicle follows a vanishing trajectory, i.e.,

lim
t→∞

|vr(t)|+ |ωr(t)| = 0. (4)

Remark 1 The latter restriction naturally excludes control methods based on
conditions of persistency of excitation hence, it also excludes the more restrictive
case in which it is assumed that the references are always separated from zero
–cf. [30, 7, 12, 22].

From a control viewpoint, the goal is to steer to zero the differences between
the Cartesian coordinates of the two robots, as well as orientation angles, that
is, the quantities

px = xr − x− dx
py = yr − y − dy
pθ = θr − θ

where dx, dy are design parameters that determine the relative position of the
follower vehicle with respect to that of the leader. Then, according to the ap-
proach of [20], we transform the error coordinates [px, py, pθ] from the global
coordinate frame to local coordinates fixed on the robot, to obtainexey

eθ

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

pxpy
pθ

 . (5)

Hence, in the new coordinates, the error dynamics between the virtual reference
vehicle and the follower becomes

ėx = ωey − v + vr(t) cos(eθ) (6a)

ėy = −ωex + vr(t) sin(eθ) (6b)

ėθ = ωr(t)− ω (6c)

and the leader-follower tracking-stabilization control problem comes to designing
virtual control laws v∗ and ω∗ for the kinematics equations (6) and, using the
latter as given references, a “tracking” control law τ∗ for the force dynamics
equation (1b), such that

lim
t→∞

|e(t)| = 0, e := [ex ey eθ]
>. (7)
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3. The control approach

We address the tracking-stabilization control problem for (1) from a general
perspective: we focus on the control design for the kinematics equations (6)
and we establish the convergence of the tracking errors under the action of any
controller τ∗ at the dynamics level, i.e., Eq. (1b). For the sake of completeness,
however, we describe first a particular tracking controller τ∗ guaranteeing that

lim
t→∞

|ṽ(t)| = 0, lim
t→∞

|ω̃(t)| = 0, (8)

where ṽ = v − v∗ and ω̃ = ω − ω∗.

3.1. Control at the force level

Let v∗ and ω∗ be given smooth functions and consider the dynamics equa-
tion (1b) under the assumption that the inertia parameters and the constants
contained in C(ż) are unknown while r and b are considered to be known. Let
M̂ and Ĉ denote, respectively, the estimates of M and C. Furthermore, let
ν∗ := [ν∗1 ν

∗
2 ]>, [

ν∗1
ν∗2

]
=

1

r

[
1 b
1 −b

] [
v∗

ω∗

]
, (9)

and let us introduce the certainty-equivalence control law

τ∗ := M̂ν̇∗ + Ĉ(ż)ν∗ − kdν̃, kd > 0 (10)

where ν̃ := ν − ν∗. Then, let us define M̃ := M̂ −M and C̃ := Ĉ − C, so

τ∗ := Mν̇∗ + C(ż)ν∗ − kdν̃ + M̃ν̇∗ + C̃ν∗ (11)

and, setting τ = τ∗ in (1b), we obtain the closed-loop equation

M ˙̃ν + [C(ż) + kdI]ν̃ = Ψ(ż, ν̇∗, ν∗)>Θ̃ (12)

where Θ ∈ Rm is a vector of constant (unknown) lumped parameters in M and
C, Θ̂ denotes the estimate of Θ, Θ̃ := Θ̂−Θ is the vector of estimation errors,
and Ψ : R3 × R2 × R2 → Rm×2 is a continuous known function. For this, we
used the property that (1b) is linear in the constant lumped parameters. In
addition, we use the passivity-based adaptation law –cf. [36],

˙̂
Θ = −γΨ(ż, ν̇∗, ν∗)ν̃, γ > 0. (13)

Then, a direct computation shows that the total derivative of

V (ν̃, Θ̃) :=
1

2

[
|ν̃|2 +

1

γ
|Θ̃|2

]
along the trajectories of (12), (13), yields

V̇ (ν̃(t), Θ̃(t)) ≤ −kd|ν̃(t)|2.

Integrating the latter from 0 to infinity we obtain that ν̃ ∈ L2∩L∞ and Θ̃ ∈ L∞.
It follows, e.g., from [18, Lemma 3.2.5], that ν̃ → 0 and, in view of (2), also (8)
holds.
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Remark 2 In view of (4) it may not be expected that the estimation error
parameters Θ̃ converge to zero since the necessary and sufficient condition of
persistency of excitation on Ψ(ż∗, ν̇∗, ν∗) is not met —cf. [26]. Consequently,
in the context of the problem studied here, it is not possible to guarantee uniform
global asymptotic stability but only that ν̃ → 0, which is a rather weak property.
It is all the more significant that this weak condition suffices to establish the
control goal (7).

3.2. Control at kinematics level

The controller for (6) that we use is

v∗ = kxex + vr(t) cos eθ (14a)

ω∗ = ωr(t) + kθeθ + ky
[
e2
y + e2

x

]
p(t). (14b)

Our standing assumption is that ṗ is persistently exciting that is, we assume
that there exist µ > 0 and T > 0 such that∫ t+T

t

ṗ(s)2ds ≥ µ ∀t ≥ 0. (15)

The controller (14) is reminiscent of others in the literature. The control
approach goes back to the tracking controller in [37] where controllers with
persistency of excitation were introduced to solve the tracking control problem.
As a matter of fact, if we set p ≡ 0, we recover the controller proposed in [37]
which requires that ωr is persistently exciting. Following [37], other controllers
based on persistency of excitation of the reference velocities are reported —see,
for instance, [23, 17, 4, 31]. In [31] it is showed, via Lyapunov’s direct method,
that the control law

ω∗ = ωr(t) + kθeθ + kyvr(t)
sin(eθ)

eθ

—cf. [7], ensures uniform global asymptotic stability of the closed-loop kine-
matics under the assumption that either vr or ωr is persistently exciting. In all
these cases, the restriction (4) is violated.

In the stabilization scenario, that is, if vr = ωr ≡ 0 we recover the so-called
δ-persistently exciting (δ-PE) controllers introduced in [30, 27], works which are
strongly inspired by [40]. Other articles where δ-PE controllers are used include
[42].

We recall that a function (t, x) 7→ φ is called δ-persistently exciting (with
respect to x) if and only if2, for any δ > 0, there exist µ > 0 and T > 0 such
that

|x| ≥ δ =⇒
∫ t+T

t

|φ(s, x)|ds ≥ µ ∀t ≥ 0. (16)

2The expression (16) is an equivalent characterization (for functions that are uniformly
continuous in t) of the property of δ-persistency of excitation, defined in [28], that fits the
purpose of this paper.
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For instance, the term φ(t, x) := [e2
y + e2

x]p(t), that appears in (14b), satisfies

(16) with x = [ex, ey]> and p being persistently exciting. Note that this is a
weaker property than persistency of excitation along the state trajectories (as
it is sometimes abusively used in adaptive control) since, notably, φ ceases to
be exciting as the state trajectories converge, which is the control objective.

To understand the stabilisation mechanism of persistently-exciting controllers
it is convenient to inspect the error equations that result after replacing v with
ṽ + v∗ and ω with ω̃ + ω∗, and using (14) in (6). We obtain

ė = A(t, e)e+B(e)η, η := [vr ωr ṽ ω̃]> (17)

where

A(t, e) :=

 −kx ψ(t, e) 0
−ψ(t, e) 0 0
−kyp(t)ex −kyp(t)ey −kθ

 ,
B(e) =

 0 ey −1 ey
sin(eθ) −ex 0 −ex

0 0 0 −1


ψ(t, e) := kθeθ + kyp(t)

[
e2
y + e2

x

]
.

Therefore, the system (17) may be analysed as a perturbed system with nominal
dynamics

ė = A(t, e)e (18)

and a perturbation B(e)η that vanishes in view of (4) and provided that the
tracking-control problem is resolved (as for instance done in Section 3.1).

Hence, the stability of (17) relies on that of (18). Then, in order to analyse
the latter it is useful to note that it has the feedback interconnection form
(illustrated in Figure 1) of two systems that, without inputs, are stable. On
one hand, it is clear that Σ2 is exponentially stable at the origin if u2 ≡ 0.
On the other hand, for u1 ≡ 0, Σ1 has the familiar form of model-reference
adaptive control systems [35], the function ϕ playing the role of a regressor. For
such systems, after [29], uniform global asymptotic stability follows, roughly
speaking, if ϕ is persistently exciting provided that ex, ey 6= 0. Formally, this
is captured by the property of δ-persistency of excitation; see, for instance, [25]
where such a result is established for the particular case in which ωr ≡ 0. See
also Proposition 2 in next section, whose original proof relies on Lyapunov’s
direct method.

Following this rationale we present our main statement.

Proposition 1 (Main result) Let kx, kθ, and ky > 0 and let p and ṗ be bounded
and persistently exciting functions. Consider the system (1) in closed loop with
any control law τ∗ guaranteeing that (8) holds. Then, (7) also holds.

Sketch of proof. The detailed proof of Proposition 1 is lengthy hence, for the
sake of clarity, it is organized in the following three steps, which are developed
in Section 4:

7



Σ2 : ėθ = −kθeθ + u2

y1 = ϕ(t, exy)

u2 = ϕ(t, exy)

exy := [ex ey ]>kθ

y2 = eθ

u1 = kθeθ

Σ1 :

[
ėx
ėy

]
=

[
−kx ϕ+ u1
−ϕ− u1 0

][
ex
ey

]

Figure 1: “Small-gain” feedback representation of Eq. (18) in which we use ϕ(t, exy) :=
kyp(t)

[
e2y + e2x

]
.

(1) First, a strict Lyapunov function for (18) is constructed —see Proposition
2 below.

(2) With such Lyapunov function it is established small-input-to-state stabil-
ity (small ISS) with respect to η —see Lemma 1.

(3) Finally, integral input-to-state stability (iISS) of (17) with respect to η is
proved.

The two properties together, small-ISS and iISS, imply the so-called property
of strong iISS [5], in view of which, under the assumption that (8) and (4) hold,
the result follows. �

4. Robust leader-follower tracking and stabilization control

4.1. Stability of the nominal system (18)

We establish uniform global asymptotic stability for (18) via Lyapunov’s
direct method. Even though this is only a preliminary step in the construction
of the proof of our main result we stress that, to the best of our knowledge, the
following statement has no precedent in the literature.

Proposition 2 (set-point stabilization) Let ωr ≡ 0 and vr ≡ 0, let kx, ky,
and kθ > 0 be positive constants, and let t 7→ p be once continuously differ-
entiable and satisfy (15). Then, the origin {e = 0} for the closed-loop system
(6), (14) is uniformly globally asymptotically stable. Moreover, it admits the
Lyapunov function

V3(t, e) := γ1

(
V1(e)

)
V1(e) + V2(t, e) + γ2

(
V1(e)

)
e2
z (19)

where

V1(e) := e2
x + e2

y,

V2(t, e) := γ3

(
V1(e)

)
V1(e) + Φ(t)V1(e)3 − φ̇(t)V1(e)exey (20)
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ez := eθ + φ(t)
[
e2
y + e2

x

]
(21)

φ̇ = −kθφ+ kyp(t), (22)

Φ(t) := 1 + φ̄2T − 1

T

∫ t+T

t

∫ m

t

φ̇(s)2dsdm,

φ̄ := sup
t≥0
|φ(t)|, (23)

and γi(V1) are polynomials of V1 with positive coefficients. Moreover, V3 satisfies

V̇3(t, e) ≤ − µ

8T
e6
y − kθγ2(V1)e2

z − kxe2
x −

µ

4T
V 3

1 . (24)

Proof. Consider the function φ defined in (22); this function satisfies

φ̈ = −kθφ̇+ kyṗ. (25)

Hence, since both p and ṗ are persistently exciting and bounded, it follows, in
view of (22), (25), and [18, Lemma 4.8.3], that φ and φ̇ are also persistently
exciting and bounded. Hence, there exist µ, T , and φ̄ > 0 such that3∫ t+T

t

φ̇(s)2ds ≥ µ ∀t ≥ 0. (26)

Note also that
1 ≤ |Φ(t)| ≤ 1 + φ̄2T <∞.

Next, we use the error coordinate ez defined in (21), which satisfies

ėz = −kθez − 2φkxe
2
x. (27)

Then, in the new coordinates (ex, ey, ez), the nominal system ė = A(t, e)e be-
comes [

ėx
ėy

]
=

[
−kx φ̇V1

−φ̇V1 0

][
ex
ey

]
+ ez

[
0 kθ
−kθ 0

][
ex
ey

]
(28a)

ėz = −kθez − 2φkxe
2
x. (28b)

We proceed to show that the statement of Proposition 2 holds with

γ1(V1) :=
µ

16Tkx
V 2

1 +
1

2
φ̄V1 +

4kxφ̄
2

kθ
γ2(V1)V1 +

1

2
, (29)

γ2(V1) :=
8T φ̄2kθ

µ
V1 + 1 (30)

γ3(V1) :=
φ̄

kx

[
2φ̄V 2

1 +
1

4

[
3kx + 1

]
V1 +

T φ̄

µ

[
k2
x + 1

]]
. (31)

3Without loss of generality, we assume that (15) and (26) hold with the same µ and T .
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First, we remark that V2, hence V3, is positive definite and radially un-
bounded; this follows since γ1(V1)V1 > (φ̄/2)V 2

1 and

−φ̇(t)V1(e)exey +
φ̄

2
V1(e)2 =

V1

2

[
ex
ey

]> [
φ̄ −φ̇
−φ̇ φ̄

] [
ex
ey

]
≥ 0.

Next, we proceed to compute the total derivative of V3. By the fundamental
theorem of calculus, we have

Φ̇(t) = − 1

T

∫ t+T

t

φ̇(s)2ds+ φ̇(t)2.

Now, let µ, T > 0 be generated by the assumption that φ̇ is persistently exciting.
Then,

Φ̇(t) ≤ −µ
T

+ φ̇(t)2.

Therefore, the time derivative of V2 along the trajectories of the system[
ėx
ėy

]
=

[
−kx φ̇[e2

y + e2
x]

−φ̇[e2
y + e2

x] 0

] [
ex
ey

]
(32)

satisfies

V̇2 ≤ −µ
T
V 3

1 + φ̇2V 3
1 − φ̇2e2

yV
2
1 + kxφ̇exeyV1

−2kxγ3(V1)e2
x − φ̈exeyV1 + 2φ̇eykxe

3
x + φ̇2V 2

1 e
2
x

≤ − µ

2T
V 3

1 −
µ

2T
e6
y + φ̇2

(
e4
x + 3e2

xe
2
y + 3e4

y

)
e2
x

+φ̇2e6
y − φ̇2e2

yV
2
1 + kxφ̇exey[e2

x + e2
y]− 2kxγ3(V1)e2

x

−φ̈exeyV1 + 2φ̇exeykxe
2
x + φ̇2V 2

1 e
2
x.

Now, we use V1 = [e2
x + e2

y] and the inequalities

φ̇2
(
e4
x + 3e2

xe
2
y + 3e4

y

)
e2
x ≤ 3φ̄2V 2

1 e
2
x,

φ̇2e6
y − φ̇2e2

yV
2
1 ≤ 0,

3φ̇exeykxe
2
x ≤ 3

2
V1φ̄kxe

2
x,

φ̇exeykxe
2
y ≤ φ̄

2

[1
ε
e6
y + εk2

xe
2
x

]
,

−φ̈exey[e2
y + e2

x] ≤ φ̄

2

[1
ε
e6
y + εe2

x + e2
xV1

]
to obtain

V̇2 ≤ − µ

2T
V 3

1 −
[
µ

2T
− φ̄

ε

]
e6
y
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−
[
2kxγ3(V1)− 4φ̄2V 2

1 −
3

2
φ̄kxV1 −

εφ̄

2
[k2
x + 1]− φ̄

2
V1

]
e2
x

so, setting ε = 4T φ̄
µ and γ3(V1) as in (31), we obtain

V̇2 ≤−
µ

2T
V 3

1 −
µ

4T
e6
y. (33)

Next, we compute the total derivative of V3 in (19) along the trajectories of
(28). Using (33), we obtain

V̇3 ≤ −2γ1(V1)kxe
2
x −

µ

2T
V 3

1 −
µ

4T
e6
y

+
∂V2

∂V1

∂V1

∂[ex ey]>

[
0 kθ
−kθ 0

] [
ex
ey

]
ez

−∂(φ̇V1exey)

∂[ex ey]>

[
0 kθ
−kθ 0

] [
ex
ey

]
ez

+2γ2(V1)ez[−kθez − 2φkxe
2
x]

and we use the fact that

∂V1

∂[ex ey]>

[
0 kθ
−kθ 0

] [
ex
ey

]
= 0

to obtain

V̇3 ≤ − µ

4T
e6
y − kθφ̇ez[e4

y − e4
x]− 2kθγ2(V1)e2

z

−4φkxγ2(V1)eze
2
x − 2γ1(V1)kxe

2
x −

µ

2T
V 3

1 .

Now, for any ε1, ε2 > 0 we have

−kθφ̇eze4
y ≤ 1

2ε1
φ̄kθe

2
ze

2
y +

ε1
2
φ̄kθe

6
y

kθφ̇eze
4
x ≤ 1

2ε1
φ̄kθe

2
zV1 +

ε1
2
φ̄kθe

2
xV

2
1

−4φkxγ2(V1)eze
2
x ≤ 2φ̄

ε2
kxγ2(V1)e2

z + 2ε2φ̄kxγ2(V1)V1e
2
x,

therefore

V̇3(t, e) ≤ − µ

4T
V 3

1 −
[ µ

4T
− ε1

2
φ̄kθ

]
e6
y

−
[
2γ1(V1)kx −

ε1
2
φ̄kθV

2
1 − 2ε2kxφ̄γ2(V1)V1

]
e2
x

−
[
2kθγ2(V1)−

[kθ
ε1
V1 +

2

ε2
kxγ2(V1)

]
φ̄
]
e2
z.

Thus, (24) follows from (29)–(31) and setting

ε1 :=
µ

4T φ̄kθ
, ε2 :=

4kxφ̄

kθ
.

�
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4.2. Small-ISS property of Eq. (18)

We use the Lyapunov function V3 from Proposition 2 to establish that the
nominal system (18) is small-input-to-state stable.

Lemma 1 Under the conditions of Proposition 2, the system (17) is small-
input-to-state stable with respect to the input η.

Proof. The proof relies on the function V3 defined in (19); specifically, on its
order of growth in V1. For the purpose of analysis we remark that V3 satisfies

V3(t, e) ≡ V3(t, e, V1) (34)

where

V3(t, e, V1) := ρ(t, V1)V1 − φ̇(t)V1exey + γ2(V1)e2
z (35)

ρ(t, V1) := γ1(V1) + γ3(V1) + Φ(t)V 2
1 (36)

that is, ρ : R≥0×R≥0 → R≥0 is a smooth function, uniformly bounded in t and,
for each t, ρ(t, ·) is a polynomial of degree 2 with strictly positive coefficients.
Consequently, since Φ(t) ≥ 1,

∂ρ

∂V1
≥ 0 ∀ (t, V1) ∈ R≥0 × R≥0. (37)

Now, by Proposition 2 the time derivative of V3 along the nominal system
(28) satisfies (24) hence, the time derivative of V3 along the trajectories of (17)
satisfies

V̇3 ≤−
µ

4T
V 3

1 − kθγ2(V1)e2
z − kxe2

x −
µ

8T
e6
y +

∂V3

∂e
B(e)η. (38)

Now, note that B(e)η = K1(η)e+K2(η, e) where

K1(η) :=

 0 ωr + ω̃ 0
−(ωr + ω̃) 0 0

0 0 0

 , K2(η, e) =

 −ṽ
vr sin(eθ)
−ω̃

 ,
so, using (34)—(36), V̇1 ≤ 0, and the fact that

∂V1

∂e
K1(η)e = 0,

we obtain

V̇3 ≤ −
µ

4T
V 3

1 − kθγ2(V1)e2
z − kxe2

x −
µ

8T
e6
y

− φ̇[ωr + ω̃]V1

[
e2
y − e2

x

]
+
∂V3

∂e
K2(η, e)

≤− µ

4T
V 3

1 − kθγ2(V1)e2
z + φ̄

[
|ωr|+ |ω̃|

]
V 2

1 +

∣∣∣∣∂V3

∂e

∣∣∣∣ |K2|

12



− kxe2
x −

µ

8T
e6
y. (39)

On the other hand, from (34) and (35), we obtain∣∣∣∣∂V3

∂e

∣∣∣∣ ≤ 2

[
∂ρ

∂V1
V1 + ρ(t, V1) + φ̄V1

] [
|ey|+ |ex|

]
+ 2

∂γ2

∂V1

[
|ey|+ |ex|

]
e2
z

+ 4γ2(V1)φ̄ |ez|
[
|ey|+ |ex|

]
+ 2γ2(V1)|ez|. (40)

Next, having ρ(t, V1) uniformly bounded in t, let us introduce the positive poly-
nomial of second degree γ4 : R≥0 → R≥0 such that

γ4(V1) ≥ ∂ρ

∂V1
V1 + ρ(t, V1) + φ̄V1

and let the positive constant

α :=
∂γ2

∂V1

–see (30), so that, using them in (40) and observing that |K2| ≤ |η|, we obtain

V̇3 ≤−
µ

4T
V 3

1 − kθγ2(V1)e2
z + 2φ̄|η|V 2

1 − kxe2
x −

µ

8T
e6
y

+ 2γ4(V1)|η|
[
|ey|+ |ex|

]
+ 2α|η|

[
|ey|+ |ex|

]
e2
z

+ 4γ2(V1)φ̄|η||ez|
[
|ey|+ |ex|

]
+ 2γ2(V1)|η||ez|. (41)

Then, using the inequality |ez|
[
|ey|+ |ex|

]
≤ e2

z + V1/2 in (41) we obtain

V̇3 ≤−
µ

4T
V 3

1 − kxe2
x −

µ

8T
e6
y

−
[[
kθ − 4φ̄|η|

]
γ2(V1)− 2α|η|

[
|ey|+ |ex|

]
− |η|

]
e2
z

+ 2φ̄|η|V 2
1 + 2γ4(V1)|η|

[
|ey|+ |ex|

]
+ 2γ2(V1)φ̄|η|V1 + γ2(V1)2|η|

≤ −
[ µ

4T
V 3

1 − Φ1|η|
]
−
[kθ

2
γ2(V1)− Φ2|η|

]
e2
z

− kxe2
x −

µ

8T
e6
y −

kθ
2
γ2(V1)e2

z (42)

where

Φ1 := 2φ̄V 2
1 + 2γ4(V1)

[
|ey|+ |ex|

]
+ 2γ2(V1)φ̄V1 + γ2(V1)2,

Φ2 := 4φ̄γ2(V1) + 2α
[
|ey|+ |ex|

]
+ 1.

13



Then, since |ey|+ |ex| ≤
√

2V1, γ2(V1) = O(V1), and γ4(V1) = O(V 2
1 ) there exist

positive constants ai, with i ∈ [0, 4], of innocuous values4, such that

Φ1 ≤ [a2V
2
1 + a1V1 + a0][1 + a4V

1/2
1 ] (43)

Φ2 ≤ a1V1 + a4V
1/2
1 + a0. (44)

Furthermore, since V
1/2
1 ≤ a0 + a1V1 for all a0 ≥ 1, a1 ≥ 1, and V1 ≥ 0,

Φ1 ≤ a3V
3
1 + a2V

2
1 + a1V1 + a0 (45)

Φ2 ≤ a1V1 + a0. (46)

Now, let R > 0 and

|η| ≤ Rmin
{
V1(e)3 + e2

z, 1
}

(47)

which, in particular, implies that |η| ≤ R. We see that the first factor of e2
z in

(42) is non-positive for sufficiently small R. In regards to the term involving Φ1

in (42), note that in case that V1 ≥ 1, since |η| ≤ R, we have Φ1|η| ≤ c1RV
3
1

for some constant c1 > 0. Otherwise, if V1 ≤ 1, there exists c2 > 0 such that
Φ1 ≤ c2 and, in view of (47),

Φ1|η| ≤c2R [V 3
1 + e2

z]. (48)

We conclude that, for sufficiently small R, (42) and (47) imply that

V̇3(t, e) ≤ −kθ
4
e2
z − kxe2

x −
µ

8T
e6
y,

so the system is small-input-to-state stable. �

4.3. The iISS property

Lemma 2 Under the conditions of Proposition 2, the nominal system (17) is
integral input-to-state stable with respect to the input η.

Proof. Consider the proper positive-definite Lyapunov function

W (t, e) = ln
(
1 + V3(t, e)

)
(49)

and a positive definite function α : R3 → R≥0 satisfying

α(e) ≥ 1

1 + V3(t, e)

[
kxe

2
x +

µ

8T
e6
y +

k2
θ

2
e2
z

]
(50)

4Let, by convention, ai (for any integer i ≥ 0) denote positive coefficients of polynomials so
that, without loss of generality, we may implicitly assume that they are redefined as needed,
e.g., ai := aiaj + a2i − ai . . .
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Then, in view of (42), the time derivative of W along the trajectories of (17)
satisfies

Ẇ (t, e) ≤ −α(e) +
Φ1 + Φ2e

2
z

1 + V3(t, e)
|η|. (51)

From (29) and the fact that V2 ≥ 0, there exist a1, a2, and a3 > 0, such that

V3(t, e) ≥ a3V
3
1 + a2V

2
1 + a1V1 + γ2(V1)e2

z (52)

so, in view of (45), (46), and (30), the factor of |η| in (51) is bounded that is,
there exists c > 0 such that Ẇ (t, e) ≤ −α(e)+c|η|, so the system (17) is integral
input-to-state stable. �

5. Leader-follower tracking-agreement control

We use the previous results to solve the problem of multi-agent tracking-
agreement control for a group of N robots modelled by (1), i.e.,

żi = J(zi)νi (53a)

Mν̇i + C(żi)νi = τi, i ≤ N. (53b)

The control objective is to make the N robots take specific postures and
to make the swarm follow a path determined by a virtual reference vehicle;
as before, the reference velocities are assumed to converge to zero. Any physi-
cally feasible geometrical configuration may be achieved and one can choose any
point in the Cartesian plane to follow the virtual reference vehicle. We solve
this problem using a slightly modified recursive implementation of the tracking-
stabilization leader-follower controller of the previous section. For each vehicle
the local control law depends on the reference trajectory generated by the vir-
tual leader. From a configuration viewpoint, the robots are interconnected in
a spanning-tree topology, that is, the minimal configuration to achieve consen-
sus. Accordingly, each robot has only one leader and may have one or several
followers.

The fictitious vehicle, which serves as reference to the swarm, describes a
reference trajectory defined by the desired linear and angular velocities vr and
wr which are communicated to the swarm leader robot only. According to
this communication topology, consensus is achieved if it holds for each and
all possible open chains, subsets of the spanning tree. Hence, without loss of
generality, in what follows we assume that there exists an open chain composed
of all agents, each having one follower and one leader.

Following the setting for tracking control, the formation-agreement control
problem reduces to stabilizing the origin of the error systems,

ėxi
= ωieyi − vi + vi−1 cos(eθi) (54a)

ėyi = −ωiexi
+ vi−1 sin(eθi) (54b)

ėθi = ωi−1 − ωi (54c)
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at ei = 0 and (53b) at νi = ν∗i . Although it should be clear from the context,
we stress that

νi :=
1

r

[
1 b
1 −b

] [
vi
ωi

]
, ei :=

[
exi

eyi eθi
]>
.

We use the index i − 1 for the leader of the ith robot. The swarm leader is
indexed i = 1 and the reference robot is indexed i = 0 hence, by definition,
ω0 := ωr and v0 := vr.

Similarly to the controller (14) we define

v∗i = vi−1 cos(eθi) + kxiexi
(55a)

ω∗i = ωi−1 + kθieθi + kyipi(t)
[
e2
yi + e2

xi

]
(55b)

where pi : R+ → [pmi, pMi], are bounded and smooth for all i ≤ N with
bounded derivatives up to the second. Moreover, we assume that each pi and
its first derivative, ṗi, are persistently exciting.

Remark 3 For the ith robot, the local controller depends on the measurement
of its leader velocities, vi−1 and ωi−1, only. The controller for the swarm leader
(for which i = 1) is the only one to employ vr and ωr (by convention v0 = vr
and ω0 = ωr).

Remark 4 Our control approach may also be used under a general time-varying
uni-directional connected communication graph and using distributed exponentially-
convergent estimators for the leader positions and velocities, as in [24] and [1].
In this case, the controllers (55) reduce to (14) in which we replace (vr, ωr) by
the estimated leader’s velocities and we compute the errors ei with respect to the
estimated leader’s trajectories.

Proposition 3 For each i ∈ [1, N ], consider the systems (53) in closed loop
with the controller defined by

τ∗i := M̂iν̇
∗
i + Ĉi(żi)ν

∗
i − kdi ν̃, kdi > 0 (56a)

˙̂
Θi = −γiΨ(żi, ν̇

∗
i , ν
∗
i )ν̃i, γi > 0 (56b)

ν∗i : =
1

r

[
1 b
1 −b

] [
v∗i
ω∗i

]
, (56c)

and (55). Let kxi, kyi, kθi > 0 and let pi and ṗi be bounded and persistently
exciting. Then, under (4), the property (7) holds for ei := [exi, eyi, eθi] for all
i ≤ N .

Proof. We only analyze the closed-loop equations corresponding to the kine-
matics since the rest of the equations correspond to

Mi
˙̃νi + [Ci(żi) + kdiI]ν̃i = Ψ(żi, ν̇

∗
i , ν
∗
i )>Θ̃i
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which is a repetition of (12). Therefore, we have ν̃i ∈ L∞ ∩ L2 and ν̃i → 0 for
all i ≤ N .

Now, to compact the notation, let us define

V1i(ei) := e2
xi

+ e2
yi (57)

ψi(t, ei) := kθieθi + kyipi(t)V1i

so that, replacing
vi = v∗i + ṽi, ωi = ω̃i + ω∗i , (58)

and (55) in (54) we obtain

ėxi
= [ω̃i + ωi−1 + ψi]eyi − ṽi − kxi

exi
(59a)

ėyi = −[ω̃i + ωi−1 + ψi]exi + vi−1 sin(eθi) (59b)

ėθi = −ψi − ω̃i (59c)

which has exactly the same structure as (17). Indeed, the equations (59) may
be re-written in the compact form

ėi = Ai(t, ei)ei +B(ei)ηi (60)

where ei := [exi
eyi eθi ]

>,

Ai(t, ei) :=

 −kxi
ψi(t, ei) 0

−ψi(t, ei) 0 0
−kyipi(t)exi −kyipi(t)eyi −kθi


ηi := [vi−1 ωi−1 ṽi ω̃i]

>.

For i = 1, the system (60) corresponds to (17) hence, by Proposition 1, e1 → 0.
For i = 2, η2 := [v1, ω1, ṽ1, ω̃1] where

v1 = ṽ1 + kx1
ex1

+ vr cos(eθ1)

ω1 = ωr + kθ1eθ1 + ky1p1(t)V11

hence, η2 → 0 and, by Proposition 1 we obtain that e2 → 0. The statement
follows by induction.

6. Simulation results

In order to illustrate our results we have performed some simulation tests
under Simulink TM of MatlabTM.

We consider several scenarios: first, the leader-follower tracking-stabilization
problem with one leader and only one follower only; then, we consider a group
of five mobile robots following each one leader, as explained in Section 5. The
physical parameters are the same for all the robots in both simulation case-
studies and are taken from [16]:

M =

[
m1 m2

m2 m1

]
, C(ż) =

[
0 cω
−cω 0

]
,
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Figure 2: Unperturbed leader’s velocities vr and ωr
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Figure 3: Measurement noise affecting the information transfer along the network

with m1 = 0.6227, m2 = −0.2577, c = 0.2025, r = 0.15, and b = 0.5. The
control gains were set to kx = kxi

= ky = kyi = 2.5 and kθ = kθi = 1 and
the function p(t) = 20 sin(t/6) + 0.5, which has a persistently exciting time
derivative. The parameters (γ, kd) are taken equal to (10−6, 12), and Θ̂(0) =
(m̂1, m̂2, ĉ) = (0, 0, 0).

The virtual robot’s reference velocities vr and ωr are defined in a way that
they converge to zero asymptotically but relatively slowly, i.e.,

vr =
1√

400t+ 100
, ωr =

−1√
100t+ 25

–see Figure 2.
In addition, in some of the simulation tests, we added noise to the leader’s

measured variables. The random noise signal that we use is depicted in Figure
3 and the reference velocities, severly affected by the measurement noise, are
illustrated in Figure 4. For this first scenario, with only one robot and one
virtual leader, the initial conditions are set to [xr(0), yr(0), θr(0)] = [0, 0, 0] for
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Figure 4: Perturbed leader’s velocities vr and ωr
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Figure 5: Tracking errors in the presence of measurement noise

the leader positions and [x(0), y(0), θ(0)] = [1, 3, 4] for the follower; the offset
between the positions of the two robots is [dxr,1

, dyr,1 ] = [0, 0]. Furthermore,
Figure 5 illustrates the robustness of our controller to measurement noise; the
tracking errors remains close to the origin in spite of the noisy measurements.
Figure 6 shows the torque response for the follower robot in the presence of
measurement noise.

In a second scenario we consider a group of five mobile robots following one
leader. The desired formation shape of the six mobile robots is a hexagonal
configuration that tracks the trajectory of the leader under slowly converging
leader’s velocities. The desired distance between the robots is obtained by set-
ting all desired orientation offsets to zero and defining [dxr,1

, dyr,1 ] = [0.5,−0.5],
[dx1,2

, dy1,2 ] = [1, 0] and [dx2,3
, dy2,3 ] = [1/2, 1/2], [dx3,4

, dy3,4 ] = [0.5,−0.5] and
[dx4,5

, dy4,5 ] = [1, 0]. See Figure 9.
The initial conditions are set to [xr(0), yr(0), θr(0)] = [0, 0, 0], [x1(0), y1(0), θ1(0)]

= [1, 3, 4], [x2(0), y2(0), θ2(0)] = [0, 2, 2], [x3(0), y3(0), θ3(0)] = [0, 4, 1], [x4(0), y4(0),
θ4(0)] = [2, 2, 1] and [x5(0), y5(0), θ5(0)] = [−2, 2, 1].

In the absence of measurement noise, simulation results are shown in Fig-
ures 7–10. In Figures 7 and 8, it is showed the convergence of the tracking errors
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Figure 6: Illustration of the torque inputs for the follower robot
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Figure 7: Convergence of the relative errors (in norm) for each pair leader-follower

between the agent and its neighborhood and the torque inputs of each agent.
In Figure 9 we illustrate the phase portrait of the six agents, we can see

that the group of robots reach the desired formation shape in steady state and
track the leader trajectory. The phase portrait is not necessarily smooth even
if the trajectories are sufficiently smooth with respect to time, such a behavior
occurs since the problem is formulated as a trajectory tracking problem and not
as path-following problem.

The estimation parameter errors for each agent are presented in Figure 10,
the estimation errors are not converging since the adaptive controller in (10)
guarantees only the convergence of the error velocities and the global bounded-
ness of the estimation errors.

Finally, we present simulation results for a swarm of unicycles and in the
presence of measurement noise. As before, we consider that all the exchanged
variables, i.e., positions, velocities, and accelerations, are affected by meausure-
ment noise —see Figure 3.

In Figures 11 and 12 we show the tracking errors between the agent and its
neighborhood and the torque inputs of each agent in the presence of measure-
ment noise. This illustrates the robustness of the controller from Proposition 3.

20



0 1 2 3 4 5 6 7 8 9 10
-2500

-2000

-1500

-1000

-500

0

500

1000

Figure 8: Illustration of the torque inputs for each agent
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Figure 9: Illustration of the path-tracking in formation
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Figure 10: Illustration of the estimation parameter errors for each agent
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Figure 11: The relative errors (in norm) for each pair leader-follower in the presence
of measurement noise
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Figure 12: The torque inputs for each agent in the presence of measurement noise

7. Conclusions

We presented a simple decentralized controller for leader-follower tracking-
agreement problem that is, we consider that the leader velocities converge and
we assume that each robot has only one leader and may have one or more fol-
lowers. Further research is being carried out to incorporate the general directed
graph case.

Our control approach is decentralized hence, each robot uses only limited
information (from one neighbor) and, in contrast to multiple-tracking control
schemes, it has no knowledge of the reference robot. Even though the bulk of
needed transmitted information through the communications network is signif-
icantly reduced, the price paid for this is that the effect of perturbations to a
leader robot may propagate. This might be coped with using switching topolo-
gies, in which case, a robot might “decide” to switch to an alternative leader cf.
[2]. This is an interesting open problem.
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Appendix A.

On input-to-state stability

We recall here some definitions and facts on input-to-state stability.

Definition 1 (Strong iISS [5]) The dynamical system ẋ = f(t, x, η) is said
to be strongly integral input-to-state stable (strongly iISS) with respect to η, if it
is integral input-to-state stable (iISS) with respect to η, and input to state stable
(ISS) with respect to sufficiently small values of η. That is, there exist R > 0,
β ∈ KL, as well as µ1, µ1, and µ, such that

|x(t)| ≤ β(|x◦|, t− t◦) + µ1

(∫ t

t◦

µ2(|η(s)|)ds
)

|η| < R =⇒ |x(t)| ≤ β(|x◦|, t− t◦) + µ(|η|)

Lemma 3 (Lyapunov characterization of ISS [21]) Let V : [0,∞)×Rn →
R be a continuously differentiable Lyapunov function such that:

α (|x|) ≤ V (t, x) ≤ α (|x|)

∂V

∂t
+
∂V

∂x
f(t, x, η) ≤ −W (x), ∀|x| ≥ ρ (|η|) > 0

where α, α are K∞ functions, ρ a class K function, and W is a continuous
positive definite function. Then, the system ẋ = f(t, x, η) is ISS with respect to
the input η.
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Lemma 4 (Lyapunov characterization of iISS [19]) Let V : [0,∞)×Rn →
R be a continuously differentiable Lyapunov function such that

α (|x|) ≤ V (t, x) ≤ α (|x|)

∂V

∂t
+
∂V

∂x
f(t, x, η) ≤ −α1(|x|) + ρ(|η|)

where α, α, and ρ are class K∞ functions and α1 is positive definite. Then, the
system ẋ = f(t, x, η) is integral ISS with respect to u.
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