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We solve the leader-follower tracking-agreement control problem for nonholonomic mobile robots with uncertainties; this consists in controlling a group of robots to take a pre-specified configuration (formation) and to move about following a vanishing reference trajectory. We assume that each robot has one unique leader and it is controlled by a local tracking controller that uses relative position and velocity measurements, but each robot may have one or several followers. We also assume that the reference trajectory is available to only one robot (the swarm leader). The control design is based on a δ-persistently exciting controller (for the kinematics model) that is robust to decaying perturbations and an outer control loop at the force-inputs level. Our proofs are constructive as they are based on Lyapunov's direct method; moreover, we establish strong integral input-to-state stability. To the best of our knowledge this is the first result of this nature in the literature of nonholonomic mobile robots.

Introduction

Over the turn of the last century there was a considerable bulk of literature on tracking and stabilization of non-holonomic mobile robots. Remarkable examples include, e.g., the landmark paper [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF], where the authors introduced a follow-the-leader control approach which consists in defining a virtual robot that generates a reference trajectory followed by the controlled robot. Depending on the velocities of the virtual robot, we distinguish, on one hand, the tracking problem, in which the leader velocities are defined by functions of time -see e.g., [START_REF] Samson | Time-varying feedback stabilization of car-like wheeled mobile robots[END_REF][START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF][START_REF] Consolini | Leader-follower formation control of nonholonomic mobile robots with input constraints[END_REF] and, on the other, the set-point stabilization problem, in which case the non-holonomy restriction prevents the use of smooth autonomous feedback hence, one must employ either discontinuous controllers -e.g., [START_REF] Astolfi | Exponential stabilization of a wheeled mobile robot via discontinuous control[END_REF][START_REF] Pourboghrat | Exponential stabilization of nonholonomic mobile robots[END_REF][START_REF] Defoort | A Lyapunov-based design of a modified supertwisting algorithm for the Heisenberg system[END_REF] or smooth time-varying controllers - [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF][START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF][START_REF] Loría | UGAS of skew-symmetric timevarying systems: application to stabilization of chained form systems[END_REF].

For tracking purposes, a sufficient condition recurrently found in the literature is that the reference velocities do not vanish (i.e., the virtual reference robot must not stop). For instance, in [START_REF] Samson | Time-varying feedback stabilization of car-like wheeled mobile robots[END_REF] it is assumed that at least one of the leader velocities is bounded from below in the limit, in [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF] the rotational velocity of the leader is assumed to be persistently exciting, in [START_REF] Consolini | Leader-follower formation control of nonholonomic mobile robots with input constraints[END_REF] the translational leader velocity is assumed to be greater than zero. In the tracking-stabilization problem [START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF][START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF], however, the leader velocities are functions of time that converge asymptotically to zero. Such problem may be regarded as a robust stabilization problem with respect to the leader velocities -see, for example, [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] where it is assumed that either the forward leader velocities is integrable, or the angular velocity is bounded from below.

The tracking-stabilization problem extends to the case of multi-agents control in which, in addition, it is required that the vehicles reach a predefined formation. Depending on the context, the formation can be defined on a caseby-case basis, by determining the positions of the vehicles relative to each other. In [START_REF] Do | Nonlinear formation control of unicycle-type mobile robots[END_REF] the leader follower formation-tracking control problem is solved using a combination of the virtual structure and path-tracking approaches to generate the reference for each agent under the assumption that the translational leader velocity is persistently exciting; in [START_REF] Loría | Leader-follower formation control of mobile robots on straight paths[END_REF] the tracking control of multiple mobile robots advancing in formation along straight-line paths, was addressed. Solutions to the agreement control problem for multiple mobile robots are provided, e.g., in [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF], for the case of undirected graphs, and in [START_REF] Dong | Cooperative control of multiple nonholonomic mobile agents[END_REF], for a swarm of vehicles interconnected via a direct graph. In the former, a distributed discontinuous feedback is used while in the latter a smooth time-varying controller is proposed. In [START_REF] Defoort | Sliding-mode formation control for cooperative autonomous mobile robots[END_REF] sliding-mode controllers are proposed to solve a leader-follower formationtracking control problem, based on the measurement of the relative orientation and Euclidean distance separating the leader and its follower. In [START_REF] Wang | Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots[END_REF] the authors propose a distributed formation control method in which only a handful of robots have information of the reference trajectories, it is assumed that the system's parameters are unknown, and a result of ultimate boundedness on the tracking errors is established. See also [START_REF] Yoo | Distributed formation tracking of networked mobile robots under unknown slippage effects[END_REF].

In this paper we address the leader-follower tracking-agreement control problem for a group of mobile robots. Our control approach is decentralized; for each robot, we design a local δ-persistently exciting controller [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF][START_REF] Loría | UGAS of skew-symmetric timevarying systems: application to stabilization of chained form systems[END_REF] that uses relative velocity and position measurements of the actual robot, with respect to a leader robot. In contrast to most results in the literature, we provide a strict Lyapunov function, the construction of which is based on [START_REF] Malisoff | Constructions of Strict Lyapunov functions[END_REF][START_REF] Mazenc | Strict Lyapunov functions for time-varying systems[END_REF][START_REF] Mazenc | Uniform global asymptotic stability of a class of adaptively controlled nonlinear systems[END_REF]. In addition, we establish, as far as we know for the first time in the literature, strong integral input-to-state stability (strong iISS) -see [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the strong iISS property[END_REF] and the Appendix. The importance of strong iISS is that not only this property guarantees robustness with respect to measurement noise, but it renders the solution to the tracking-agreement problem straightforward under a spanning tree communication topology.

The rest of the paper is organized as follows. In Section 2 we describe the control problem; in Section 3 we present our control approach and the main result on leader-follower tracking-stabilization control problem. In Section 4 we establish robustness results of the proposed controller with respect to the leader's velocities; we extend this result to the case of formation trackingagreement control in Section 5. We provide some illustrative simulation results in Section 6, before concluding with some remarks.

Problem formulation

As for instance in [START_REF] Do | Formation tracking control of unicycle-type mobile robots[END_REF], we consider mobile robots modeled by ż = J(z)ν (1a)

M ν + C( ż)ν = τ (1b)
where z := [x, y, θ] contains the Cartesian coordinates (x, y) and the orientation θ of the robot, τ ∈ R 2 corresponds to the (torque) control input;

ν := [ν 1 ν 2 ]
stands for the angular velocities corresponding to the two robot's wheels, M is the inertia matrix, which is constant, symmetric, and positive definite, and C( ż) is the matrix of Coriolis forces, which is skew-symmetric:

C( ż) = 0 c θ -c θ 0 , c > 0
-see [START_REF] Do | Formation tracking control of unicycle-type mobile robots[END_REF]. for further detail on the model. In addition,

J(z) = r 2   cos(θ) cos(θ) sin(θ) sin(θ) 1/b -1/b  
where r is the radius of either steering wheel and b is the distance from the center of either wheel to the Cartesian point (x, y). The relation between the wheels' velocities, denoted by ν, and the robot's velocities in the fixed frame, denoted by ż, is

v ω := r 2b b b 1 -1 ν 1 ν 2 ⇔ ν 1 ν 2 = 1 r 1 b 1 -b v ω . (2) 
These transformations may be used in (1a) to obtain the familiar model

ẋ = v cos θ ẏ = v sin θ θ = ω,
where v = 1 /2| ẋ ẏ| denotes the forward velocity and ω corresponds to the angular velocity. See [START_REF] Do | Formation tracking control of unicycle-type mobile robots[END_REF] for more details on the model [START_REF] Abdessameud | Leader-follower synchronization of euler-lagrange systems with time-varying leader trajectory and constrained discrete-time communication[END_REF].

The generic tracking problem consists in designing a control law τ * such that z in (1) converges to z r := [x r , y r , θ r ], which corresponds to the trajectories of a reference vehicle with kinematics ẋr = v r cos θ r (3a)

ẏr = v r sin θ r (3b) θr = ω r . ( 3c 
)
According to the tracking-stabilization control goal [START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF][START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF], it is assumed that the reference vehicle follows a vanishing trajectory, i.e.,

lim t→∞ |v r (t)| + |ω r (t)| = 0. ( 4 
)
Remark 1 The latter restriction naturally excludes control methods based on conditions of persistency of excitation hence, it also excludes the more restrictive case in which it is assumed that the references are always separated from zero -cf. [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF][START_REF] Canudas De Wit | Nonlinear control design for mobile robots[END_REF][START_REF] Do | A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots[END_REF][START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF].

From a control viewpoint, the goal is to steer to zero the differences between the Cartesian coordinates of the two robots, as well as orientation angles, that is, the quantities

p x = x r -x -d x p y = y r -y -d y p θ = θ r -θ
where d x , d y are design parameters that determine the relative position of the follower vehicle with respect to that of the leader. Then, according to the approach of [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF], we transform the error coordinates [p x , p y , p θ ] from the global coordinate frame to local coordinates fixed on the robot, to obtain

  e x e y e θ   =   cos θ sin θ 0 -sin θ cos θ 0 0 0 1     p x p y p θ   . (5) 
Hence, in the new coordinates, the error dynamics between the virtual reference vehicle and the follower becomes

ėx = ωe y -v + v r (t) cos(e θ ) (6a) ėy = -ωe x + v r (t) sin(e θ ) (6b) ėθ = ω r (t) -ω (6c) 
and the leader-follower tracking-stabilization control problem comes to designing virtual control laws v * and ω * for the kinematics equations (6) and, using the latter as given references, a "tracking" control law τ * for the force dynamics equation (1b), such that 

The control approach

We address the tracking-stabilization control problem for (1) from a general perspective: we focus on the control design for the kinematics equations [START_REF] Consolini | Leader-follower formation control of nonholonomic mobile robots with input constraints[END_REF] and we establish the convergence of the tracking errors under the action of any controller τ * at the dynamics level, i.e., Eq. (1b). For the sake of completeness, however, we describe first a particular tracking controller τ * guaranteeing that lim t→∞ |ṽ(t)| = 0, lim

t→∞ |ω(t)| = 0, (8) 
where ṽ = v -v * and ω = ω -ω * .

Control at the force level

Let v * and ω * be given smooth functions and consider the dynamics equation (1b) under the assumption that the inertia parameters and the constants contained in C( ż) are unknown while r and b are considered to be known. Let M and Ĉ denote, respectively, the estimates of M and C. Furthermore, let

ν * := [ν * 1 ν * 2 ] , ν * 1 ν * 2 = 1 r 1 b 1 -b v * ω * , (9) 
and let us introduce the certainty-equivalence control law

τ * := M ν * + Ĉ( ż)ν * -k d ν, k d > 0 (10) 
where ν := ν -ν * . Then, let us define M := M -M and C := Ĉ -C, so

τ * := M ν * + C( ż)ν * -k d ν + M ν * + Cν * (11) 
and, setting τ = τ * in (1b), we obtain the closed-loop equation

M ν + [C( ż) + k d I]ν = Ψ( ż, ν * , ν * ) Θ ( 12 
)
where Θ ∈ R m is a vector of constant (unknown) lumped parameters in M and C, Θ denotes the estimate of Θ, Θ := Θ -Θ is the vector of estimation errors, and Ψ : R 3 × R 2 × R 2 → R m×2 is a continuous known function. For this, we used the property that (1b) is linear in the constant lumped parameters. In addition, we use the passivity-based adaptation law -cf. [START_REF] Ortega | Adaptive motion control of rigid robots: A tutorial[END_REF],

Θ = -γΨ( ż, ν * , ν * )ν, γ > 0. ( 13 
)
Then, a direct computation shows that the total derivative of

V (ν, Θ) := 1 2 |ν| 2 + 1 γ | Θ| 2
along the trajectories of ( 12), ( 13), yields

V (ν(t), Θ(t)) ≤ -k d |ν(t)| 2 .
Integrating the latter from 0 to infinity we obtain that ν ∈ L 2 ∩L ∞ and Θ ∈ L ∞ . It follows, e.g., from [18, Lemma 3.2.5], that ν → 0 and, in view of (2), also [START_REF] Defoort | A Lyapunov-based design of a modified supertwisting algorithm for the Heisenberg system[END_REF] holds.

Remark 2 In view of (4) it may not be expected that the estimation error parameters Θ converge to zero since the necessary and sufficient condition of persistency of excitation on Ψ( ż * , ν * , ν * ) is not met -cf. [START_REF] Loría | Uniform parametric convergence in the adaptive control of mechanical systems[END_REF]. Consequently, in the context of the problem studied here, it is not possible to guarantee uniform global asymptotic stability but only that ν → 0, which is a rather weak property.

It is all the more significant that this weak condition suffices to establish the control goal (7).

Control at kinematics level

The controller for ( 6) that we use is

v * = k x e x + v r (t) cos e θ (14a
)

ω * = ω r (t) + k θ e θ + k y e 2 y + e 2 x p(t). (14b) 
Our standing assumption is that ṗ is persistently exciting that is, we assume that there exist µ > 0 and T > 0 such that

t+T t ṗ(s) 2 ds ≥ µ ∀t ≥ 0. ( 15 
)
The controller ( 14) is reminiscent of others in the literature. The control approach goes back to the tracking controller in [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF] where controllers with persistency of excitation were introduced to solve the tracking control problem. As a matter of fact, if we set p ≡ 0, we recover the controller proposed in [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF] which requires that ω r is persistently exciting. Following [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF], other controllers based on persistency of excitation of the reference velocities are reported -see, for instance, [START_REF] Lefeber | Tracking control of nonlinear mechanical systems[END_REF][START_REF] Guo | Adaptive leader-follower formation control for autonomous mobile robots[END_REF][START_REF] Cao | A time-varying cascaded design for trajectory tracking control of non-holonomic systems[END_REF][START_REF] Maghenem | Lyapunov-based formationtracking control of nonholonomic systems under persistency of excitation[END_REF]. In [START_REF] Maghenem | Lyapunov-based formationtracking control of nonholonomic systems under persistency of excitation[END_REF] it is showed, via Lyapunov's direct method, that the control law

ω * = ω r (t) + k θ e θ + k y v r (t)
sin(e θ ) e θ -cf. [START_REF] Canudas De Wit | Nonlinear control design for mobile robots[END_REF], ensures uniform global asymptotic stability of the closed-loop kinematics under the assumption that either v r or ω r is persistently exciting. In all these cases, the restriction (4) is violated.

In the stabilization scenario, that is, if v r = ω r ≡ 0 we recover the so-called δ-persistently exciting (δ-PE) controllers introduced in [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF][START_REF] Loría | UGAS of skew-symmetric timevarying systems: application to stabilization of chained form systems[END_REF], works which are strongly inspired by [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF]. Other articles where δ-PE controllers are used include [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF].

We recall that a function (t, x) → φ is called δ-persistently exciting (with respect to x) if and only if2 , for any δ > 0, there exist µ > 0 and T > 0 such that

|x| ≥ δ =⇒ t+T t |φ(s, x)|ds ≥ µ ∀t ≥ 0. ( 16 
)
For instance, the term φ(t, x) := [e 2 y + e 2 x ]p(t), that appears in (14b), satisfies ( 16) with x = [e x , e y ] and p being persistently exciting. Note that this is a weaker property than persistency of excitation along the state trajectories (as it is sometimes abusively used in adaptive control) since, notably, φ ceases to be exciting as the state trajectories converge, which is the control objective.

To understand the stabilisation mechanism of persistently-exciting controllers it is convenient to inspect the error equations that result after replacing v with ṽ + v * and ω with ω + ω * , and using ( 14) in [START_REF] Consolini | Leader-follower formation control of nonholonomic mobile robots with input constraints[END_REF]. We obtain

ė = A(t, e)e + B(e)η, η := [v r ω r ṽ ω] (17) 
where

A(t, e) :=   -k x ψ(t, e) 0 -ψ(t, e) 0 0 -k y p(t)e x -k y p(t)e y -k θ   , B(e) =   0 e y -1 e y sin(e θ ) -e x 0 -e x 0 0 0 -1   ψ(t, e) := k θ e θ + k y p(t) e 2 y + e 2
x . Therefore, the system (17) may be analysed as a perturbed system with nominal dynamics ė = A(t, e)e

and a perturbation B(e)η that vanishes in view of (4) and provided that the tracking-control problem is resolved (as for instance done in Section 3.1). Hence, the stability of ( 17) relies on that of [START_REF] Ioannou | Robust adaptive control[END_REF]. Then, in order to analyse the latter it is useful to note that it has the feedback interconnection form (illustrated in Figure 1) of two systems that, without inputs, are stable. On one hand, it is clear that Σ 2 is exponentially stable at the origin if u 2 ≡ 0. On the other hand, for u 1 ≡ 0, Σ 1 has the familiar form of model-reference adaptive control systems [START_REF] Narendra | Stable adaptive systems[END_REF], the function ϕ playing the role of a regressor. For such systems, after [START_REF] Loría | An extension of matrosov's theorem with application to stabilization of nonholonomic control systems[END_REF], uniform global asymptotic stability follows, roughly speaking, if ϕ is persistently exciting provided that e x , e y = 0. Formally, this is captured by the property of δ-persistency of excitation; see, for instance, [START_REF] Loría | Leader-follower formation control of mobile robots on straight paths[END_REF] where such a result is established for the particular case in which ω r ≡ 0. See also Proposition 2 in next section, whose original proof relies on Lyapunov's direct method.

Following this rationale we present our main statement.

Proposition 1 (Main result) Let k x , k θ , and k y > 0 and let p and ṗ be bounded and persistently exciting functions. Consider the system (1) in closed loop with any control law τ * guaranteeing that (8) holds. Then, (7) also holds.

Sketch of proof. The detailed proof of Proposition 1 is lengthy hence, for the sake of clarity, it is organized in the following three steps, which are developed in Section 4:

Σ 2 : ėθ = -k θ e θ + u 2 y 1 = ϕ(t, exy) u 2 = ϕ(t, exy) exy := [ex ey] k θ y 2 = e θ u 1 = k θ e θ Σ 1 : ėx ėy = -kx ϕ + u 1 -ϕ -u 1 0 ex ey
Figure 1: "Small-gain" feedback representation of Eq. ( 18) in which we use ϕ(t, exy) := kyp(t) e 2 y + e 2 x .

(1) First, a strict Lyapunov function for ( 18) is constructed -see Proposition 2 below.

(2) With such Lyapunov function it is established small-input-to-state stability (small ISS) with respect to η -see Lemma 1.

(3) Finally, integral input-to-state stability (iISS) of ( 17) with respect to η is proved.

The two properties together, small-ISS and iISS, imply the so-called property of strong iISS [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the strong iISS property[END_REF], in view of which, under the assumption that ( 8) and (4) hold, the result follows.

4. Robust leader-follower tracking and stabilization control 4.1. Stability of the nominal system [START_REF] Ioannou | Robust adaptive control[END_REF] We establish uniform global asymptotic stability for (18) via Lyapunov's direct method. Even though this is only a preliminary step in the construction of the proof of our main result we stress that, to the best of our knowledge, the following statement has no precedent in the literature.

Proposition 2 (set-point stabilization) Let ω r ≡ 0 and v r ≡ 0, let k x , k y , and k θ > 0 be positive constants, and let t → p be once continuously differentiable and satisfy [START_REF] Dong | Cooperative control of multiple nonholonomic mobile agents[END_REF]. Then, the origin {e = 0} for the closed-loop system (6), ( 14) is uniformly globally asymptotically stable. Moreover, it admits the Lyapunov function

V 3 (t, e) := γ 1 V 1 (e) V 1 (e) + V 2 (t, e) + γ 2 V 1 (e) e 2 z ( 19 
)
where

V 1 (e) := e 2 x + e 2 y , V 2 (t, e) := γ 3 V 1 (e) V 1 (e) + Φ(t)V 1 (e) 3 -φ(t)V 1 (e)e x e y (20) 
e z := e θ + φ(t) e 2 y + e 2 x (21) φ = -k θ φ + k y p(t), (22) 
Φ(t) := 1 + φ2 T - 1 T t+T t m t φ(s) 2 dsdm, φ := sup t≥0 |φ(t)|, (23) 
and

γ i (V 1 ) are polynomials of V 1 with positive coefficients. Moreover, V 3 satisfies V3 (t, e) ≤ - µ 8T e 6 y -k θ γ 2 (V 1 )e 2 z -k x e 2 x - µ 4T V 3 1 . ( 24 
)
Proof. Consider the function φ defined in [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF]; this function satisfies

φ = -k θ φ + k y ṗ. ( 25 
)
Hence, since both p and ṗ are persistently exciting and bounded, it follows, in view of ( 22), [START_REF] Loría | Leader-follower formation control of mobile robots on straight paths[END_REF], and [18, Lemma 4.8.3], that φ and φ are also persistently exciting and bounded. Hence, there exist µ, T , and φ > 0 such that

3 t+T t φ(s) 2 ds ≥ µ ∀t ≥ 0. (26) 
Note also that

1 ≤ |Φ(t)| ≤ 1 + φ2 T < ∞.
Next, we use the error coordinate e z defined in [START_REF] Khalil | Nonlinear systems[END_REF], which satisfies

ėz = -k θ e z -2φk x e 2 x . (27) 
Then, in the new coordinates (e x , e y , e z ), the nominal system ė = A(t, e)e becomes

ėx ėy = -k x φV 1 -φV 1 0 e x e y + e z 0 k θ -k θ 0 e x e y (28a) ėz = -k θ e z -2φk x e 2 x . (28b) 
We proceed to show that the statement of Proposition 2 holds with

γ 1 (V 1 ) := µ 16T k x V 2 1 + 1 2 φV 1 + 4k x φ2 k θ γ 2 (V 1 )V 1 + 1 2 , ( 29 
)
γ 2 (V 1 ) := 8T φ2 k θ µ V 1 + 1 ( 30 
)
γ 3 (V 1 ) := φ k x 2 φV 2 1 + 1 4 3k x + 1 V 1 + T φ µ k 2 x + 1 . (31) 
First, we remark that V 2 , hence V 3 , is positive definite and radially unbounded; this follows since

γ 1 (V 1 )V 1 > ( φ/2)V 2 1 and -φ(t)V 1 (e)e x e y + φ 2 V 1 (e) 2 = V 1 2 e x e y φ - φ -φ φ e x e y ≥ 0.
Next, we proceed to compute the total derivative of V 3 . By the fundamental theorem of calculus, we have

Φ(t) = - 1 T t+T t φ(s) 2 ds + φ(t) 2 .
Now, let µ, T > 0 be generated by the assumption that φ is persistently exciting. Then,

Φ(t) ≤ - µ T + φ(t) 2 .
Therefore, the time derivative of V 2 along the trajectories of the system x + e 2 y ] -

ėx ėy = -k x φ[e 2 y + e 2 x ] -φ[e 2 y + e 2 x ] 0 
e x e y (32) satisfies 
V2 ≤ - µ T V 3 1 + φ2 V 3 1 -φ2 e 2 y V 2 1 + k x φe x e y V 1 -2k x γ 3 (V 1 )e 2 x -φe x e y V 1 + 2 φe y k x e 3 x + φ2 V 2 1 e 2 x ≤ - µ 2T V 3 
2k x γ 3 (V 1 )e 2 x -φe x e y V 1 + 2 φe x e y k x e 2 x + φ2 V 2 1 e 2 x .

Now, we use

V 1 = [e 2
x + e 2 y ] and the inequalities

φ2 e 4 x + 3e 2 x e 2 y + 3e 4 y e 2 x ≤ 3 φ2 V 2 1 e 2 x , φ2 e 6 y -φ2 e 2 y V 2 1 ≤ 0, 3 φe x e y k x e 2 x ≤ 3 2 V 1 φk x e 2 x , φe x e y k x e 2 y ≤ φ 2 1 e 6 y + k 2 x e 2 x , -φe x e y [e 2 y + e 2 x ] ≤ φ 2 1 e 6 y + e 2 x + e 2 x V 1 to obtain V2 ≤ - µ 2T V 3 1 - µ 2T - φ e 6 y -2k x γ 3 (V 1 ) -4 φ2 V 2 1 - 3 2 φk x V 1 - φ 2 [k 2 x + 1] - φ 2 V 1 e 2
x so, setting = 4T φ µ and γ 3 (V 1 ) as in [START_REF] Maghenem | Lyapunov-based formationtracking control of nonholonomic systems under persistency of excitation[END_REF], we obtain V2 ≤ -

µ 2T V 3 1 - µ 4T e 6 y . (33) 
Next, we compute the total derivative of V 3 in ( 19) along the trajectories of (28). Using [START_REF] Mazenc | Strict Lyapunov functions for time-varying systems[END_REF], we obtain

V3 ≤ -2γ 1 (V 1 )k x e 2
x -

µ 2T V 3 1 - µ 4T e 6 y + ∂V 2 ∂V 1 ∂V 1 ∂[e x e y ] 0 k θ -k θ 0 e x e y e z - ∂( φV 1 e x e y ) ∂[e x e y ] 0 k θ -k θ 0 e x e y e z +2γ 2 (V 1 )e z [-k θ e z -2φk x e 2
x ] and we use the fact that

∂V 1 ∂[e x e y ] 0 k θ -k θ 0 e x e y = 0 to obtain V3 ≤ - µ 4T e 6 y -k θ φe z [e 4 y -e 4 x ] -2k θ γ 2 (V 1 )e 2 z -4φk x γ 2 (V 1 )e z e 2 x -2γ 1 (V 1 )k x e 2 x - µ 2T V 3 1 .
Now, for any 1 , 2 > 0 we have

-k θ φe z e 4 y ≤ 1 2 1 φk θ e 2 z e 2 y + 1 2 φk θ e 6 y k θ φe z e 4 x ≤ 1 2 1 φk θ e 2 z V 1 + 1 2 φk θ e 2 x V 2 1 -4φk x γ 2 (V 1 )e z e 2 x ≤ 2 φ 2 k x γ 2 (V 1 )e 2 z + 2 2 φk x γ 2 (V 1 )V 1 e 2 x , therefore V3 (t, e) ≤ - µ 4T V 3 1 - µ 4T - 1 2 φk θ e 6 y -2γ 1 (V 1 )k x - 1 2 φk θ V 2 1 -2 2 k x φγ 2 (V 1 )V 1 e 2 x -2k θ γ 2 (V 1 ) - k θ 1 V 1 + 2 2 k x γ 2 (V 1 ) φ e 2 z .
Thus, [START_REF] Liu | Cooperative global robust output regulation for a class of nonlinear multi-agent systems with switching network[END_REF] follows from ( 29)-( 31) and setting

1 := µ 4T φk θ , 2 := 4k x φ k θ .

Small-ISS property of Eq. (18)

We use the Lyapunov function V 3 from Proposition 2 to establish that the nominal system ( 18) is small-input-to-state stable.

Lemma 1 Under the conditions of Proposition 2, the system (17) is smallinput-to-state stable with respect to the input η.

Proof. The proof relies on the function V 3 defined in [START_REF] Ito | A Lyapunov approach to cascade interconnection of integral inputto-state stable systems[END_REF]; specifically, on its order of growth in V 1 . For the purpose of analysis we remark that V 3 satisfies

V 3 (t, e) ≡ V 3 (t, e, V 1 ) (34) 
where

V 3 (t, e, V 1 ) := ρ(t, V 1 )V 1 -φ(t)V 1 e x e y + γ 2 (V 1 )e 2 z ( 35 
)
ρ(t, V 1 ) := γ 1 (V 1 ) + γ 3 (V 1 ) + Φ(t)V 2 1 ( 36 
)
that is, ρ : R ≥0 × R ≥0 → R ≥0 is a smooth function, uniformly bounded in t and, for each t, ρ(t, •) is a polynomial of degree 2 with strictly positive coefficients. Consequently, since Φ(t) ≥ 1,

∂ρ ∂V 1 ≥ 0 ∀ (t, V 1 ) ∈ R ≥0 × R ≥0 . (37) 
Now, by Proposition 2 the time derivative of V 3 along the nominal system (28) satisfies [START_REF] Liu | Cooperative global robust output regulation for a class of nonlinear multi-agent systems with switching network[END_REF] hence, the time derivative of V 3 along the trajectories of ( 17) satisfies

V3 ≤ - µ 4T V 3 1 -k θ γ 2 (V 1 )e 2 z -k x e 2 x - µ 8T e 6 y + ∂V 3 ∂e B(e)η. (38) 
Now, note that B(e)η = K 1 (η)e + K 2 (η, e) where

K 1 (η) :=   0 ω r + ω 0 -(ω r + ω) 0 0 0 0 0   , K 2 (η, e) =   -ṽ v r sin(e θ )
-ω   , so, using ( 34)-( 36), V1 ≤ 0, and the fact that

∂V 1 ∂e K 1 (η)e = 0, we obtain V3 ≤ - µ 4T V 3 1 -k θ γ 2 (V 1 )e 2 z -k x e 2 x - µ 8T e 6 y -φ[ω r + ω]V 1 e 2 y -e 2 x + ∂V 3 ∂e K 2 (η, e) ≤ - µ 4T V 3 1 -k θ γ 2 (V 1 )e 2 z + φ |ω r | + |ω| V 2 1 + ∂V 3 ∂e |K 2 | -k x e 2 x - µ 8T e 6 y . (39) 
On the other hand, from ( 34) and ( 35), we obtain

∂V 3 ∂e ≤ 2 ∂ρ ∂V 1 V 1 + ρ(t, V 1 ) + φV 1 |e y | + |e x | + 2 ∂γ 2 ∂V 1 |e y | + |e x | e 2 z + 4γ 2 (V 1 ) φ |e z | |e y | + |e x | + 2γ 2 (V 1 )|e z |. ( 40 
)
Next, having ρ(t, V 1 ) uniformly bounded in t, let us introduce the positive polynomial of second degree γ 4 : R ≥0 → R ≥0 such that

γ 4 (V 1 ) ≥ ∂ρ ∂V 1 V 1 + ρ(t, V 1 ) + φV 1
and let the positive constant

α := ∂γ 2 ∂V 1
-see [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF], so that, using them in [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF] and observing that

|K 2 | ≤ |η|, we obtain V3 ≤ - µ 4T V 3 1 -k θ γ 2 (V 1 )e 2 z + 2 φ|η|V 2 1 -k x e 2 x - µ 8T e 6 y + 2γ 4 (V 1 )|η| |e y | + |e x | + 2α|η| |e y | + |e x | e 2 z + 4γ 2 (V 1 ) φ|η||e z | |e y | + |e x | + 2γ 2 (V 1 )|η||e z |. ( 41 
)
Then, using the inequality

|e z | |e y | + |e x | ≤ e 2 z + V 1 /2 in (41) we obtain V3 ≤ - µ 4T V 3 1 -k x e 2 x - µ 8T e 6 y -k θ -4 φ|η| γ 2 (V 1 ) -2α|η| |e y | + |e x | -|η| e 2 z + 2 φ|η|V 2 1 + 2γ 4 (V 1 )|η| |e y | + |e x | + 2γ 2 (V 1 ) φ|η|V 1 + γ 2 (V 1 ) 2 |η| ≤ - µ 4T V 3 1 -Φ 1 |η| - k θ 2 γ 2 (V 1 ) -Φ 2 |η| e 2 z -k x e 2 x - µ 8T e 6 y - k θ 2 γ 2 (V 1 )e 2 z ( 42 
)
where

Φ 1 := 2 φV 2 1 + 2γ 4 (V 1 ) |e y | + |e x | + 2γ 2 (V 1 ) φV 1 + γ 2 (V 1 ) 2 , Φ 2 := 4 φγ 2 (V 1 ) + 2α |e y | + |e x | + 1. Then, since |e y | + |e x | ≤ √ 2V 1 , γ 2 (V 1 ) = O(V 1 ), and γ 4 (V 1 ) = O(V 2 1
) there exist positive constants a i , with i ∈ [0, 4], of innocuous values4 , such that

Φ 1 ≤ [a 2 V 2 1 + a 1 V 1 + a 0 ][1 + a 4 V 1/2 1 ] ( 43 
) Φ 2 ≤ a 1 V 1 + a 4 V 1/2 1 + a 0 . (44) Furthermore, since V 1/2 1 ≤ a 0 + a 1 V 1 for all a 0 ≥ 1, a 1 ≥ 1, and V 1 ≥ 0, Φ 1 ≤ a 3 V 3 1 + a 2 V 2 1 + a 1 V 1 + a 0 (45) Φ 2 ≤ a 1 V 1 + a 0 . (46) 
Now, let R > 0 and

|η| ≤ R min V 1 (e) 3 + e 2 z , 1 (47) 
which, in particular, implies that |η| ≤ R. We see that the first factor of e 2 z in ( 42) is non-positive for sufficiently small R. In regards to the term involving Φ 1 in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF], note that in case that

V 1 ≥ 1, since |η| ≤ R, we have Φ 1 |η| ≤ c 1 RV 3 1 for some constant c 1 > 0. Otherwise, if V 1 ≤ 1, there exists c 2 > 0 such that Φ 1 ≤ c 2 and, in view of (47), Φ 1 |η| ≤c 2 R [V 3 1 + e 2 z ]. (48) 
We conclude that, for sufficiently small R, (42) and (47) imply that V3 (t, e) ≤ -

k θ 4 e 2 z -k x e 2 x - µ 8T e 6 y ,
so the system is small-input-to-state stable.

The iISS property

Lemma 2 Under the conditions of Proposition 2, the nominal system (17) is integral input-to-state stable with respect to the input η.

Proof. Consider the proper positive-definite Lyapunov function

W (t, e) = ln 1 + V 3 (t, e) (49) 
and a positive definite function α :

R 3 → R ≥0 satisfying α(e) ≥ 1 1 + V 3 (t, e) k x e 2 x + µ 8T e 6 y + k 2 θ 2 e 2 z ( 50 
)
Then, in view of ( 42), the time derivative of W along the trajectories of ( 17) satisfies

Ẇ (t, e) ≤ -α(e) + Φ 1 + Φ 2 e 2 z 1 + V 3 (t, e) |η|. (51) 
From ( 29) and the fact that V 2 ≥ 0, there exist a 1 , a 2 , and a 3 > 0, such that

V 3 (t, e) ≥ a 3 V 3 1 + a 2 V 2 1 + a 1 V 1 + γ 2 (V 1 )e 2 z ( 52 
)
so, in view of ( 45), (46), and ( 30), the factor of |η| in ( 51) is bounded that is, there exists c > 0 such that Ẇ (t, e) ≤ -α(e)+c|η|, so the system ( 17) is integral input-to-state stable.

Leader-follower tracking-agreement control

We use the previous results to solve the problem of multi-agent trackingagreement control for a group of N robots modelled by (1), i.e., żi = J(z i )ν i (53a)

M νi + C( żi )ν i = τ i , i ≤ N. (53b) 
The control objective is to make the N robots take specific postures and to make the swarm follow a path determined by a virtual reference vehicle; as before, the reference velocities are assumed to converge to zero. Any physically feasible geometrical configuration may be achieved and one can choose any point in the Cartesian plane to follow the virtual reference vehicle. We solve this problem using a slightly modified recursive implementation of the trackingstabilization leader-follower controller of the previous section. For each vehicle the local control law depends on the reference trajectory generated by the virtual leader. From a configuration viewpoint, the robots are interconnected in a spanning-tree topology, that is, the minimal configuration to achieve consensus. Accordingly, each robot has only one leader and may have one or several followers.

The fictitious vehicle, which serves as reference to the swarm, describes a reference trajectory defined by the desired linear and angular velocities v r and w r which are communicated to the swarm leader robot only. According to this communication topology, consensus is achieved if it holds for each and all possible open chains, subsets of the spanning tree. Hence, without loss of generality, in what follows we assume that there exists an open chain composed of all agents, each having one follower and one leader.

Following the setting for tracking control, the formation-agreement control problem reduces to stabilizing the origin of the error systems,

ėxi = ω i e yi -v i + v i-1 cos(e θi ) (54a) ėyi = -ω i e xi + v i-1 sin(e θi ) (54b) ėθi = ω i-1 -ω i (54c) 
at e i = 0 and (53b) at ν i = ν * i . Although it should be clear from the context, we stress that

ν i := 1 r 1 b 1 -b v i ω i , e i := e xi e yi e θi .
We use the index i -1 for the leader of the ith robot. The swarm leader is indexed i = 1 and the reference robot is indexed i = 0 hence, by definition, ω 0 := ω r and v 0 := v r .

Similarly to the controller [START_REF] Do | Nonlinear formation control of unicycle-type mobile robots[END_REF] we define

v * i = v i-1 cos(e θi ) + k xi e xi (55a) 
ω * i = ω i-1 + k θi e θi + k yi p i (t) e 2 yi + e 2 xi ( 55b 
)
where p i : R + → [p mi , p M i ], are bounded and smooth for all i ≤ N with bounded derivatives up to the second. Moreover, we assume that each p i and its first derivative, ṗi , are persistently exciting.

Remark 3 For the ith robot, the local controller depends on the measurement of its leader velocities, v i-1 and ω i-1 , only. The controller for the swarm leader (for which i = 1) is the only one to employ v r and ω r (by convention v 0 = v r and ω 0 = ω r ).

Remark 4 Our control approach may also be used under a general time-varying uni-directional connected communication graph and using distributed exponentiallyconvergent estimators for the leader positions and velocities, as in [START_REF] Liu | Cooperative global robust output regulation for a class of nonlinear multi-agent systems with switching network[END_REF] and [START_REF] Abdessameud | Leader-follower synchronization of euler-lagrange systems with time-varying leader trajectory and constrained discrete-time communication[END_REF].

In this case, the controllers (55) reduce to [START_REF] Do | Nonlinear formation control of unicycle-type mobile robots[END_REF] in which we replace (v r , ω r ) by the estimated leader's velocities and we compute the errors e i with respect to the estimated leader's trajectories.

Proposition 3 For each i ∈ [1, N ], consider the systems (53) in closed loop with the controller defined by

τ * i := Mi ν * i + Ĉi ( żi )ν * i -k di ν, k di > 0 (56a) Θi = -γ i Ψ( żi , ν * i , ν * i )ν i , γ i > 0 (56b) ν * i : = 1 r 1 b 1 -b v * i ω * i , (56c) 
and (55). Let k xi , k yi , k θi > 0 and let p i and ṗi be bounded and persistently exciting. Then, under (4), the property [START_REF] Canudas De Wit | Nonlinear control design for mobile robots[END_REF] holds for e i := [e xi , e yi , e θi ] for all i ≤ N .

Proof. We only analyze the closed-loop equations corresponding to the kinematics since the rest of the equations correspond to

M i νi + [C i ( żi ) + k di I]ν i = Ψ( żi , ν * i , ν * i ) Θi
which is a repetition of [START_REF] Do | A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots[END_REF]. Therefore, we have νi ∈ L ∞ ∩ L 2 and νi → 0 for all i ≤ N . Now, to compact the notation, let us define

V 1i (e i ) := e 2 xi + e 2 yi ( 57 
)
ψ i (t, e i ) := k θ i e θi + k y i p i (t)V 1i so that, replacing v i = v * i + ṽi , ω i = ωi + ω * i , (58) 
and ( 55) in (54) we obtain

ėxi = [ω i + ω i-1 + ψ i ]e yi -ṽi -k xi e xi (59a) ėyi = -[ω i + ω i-1 + ψ i ]e xi + v i-1 sin(e θi ) (59b) ėθi = -ψ i -ωi (59c)
which has exactly the same structure as [START_REF] Guo | Adaptive leader-follower formation control for autonomous mobile robots[END_REF]. Indeed, the equations (59) may be re-written in the compact form ėi = A i (t, e i )e i + B(e i )η i

where e i := [e xi e yi e θi ] ,

A i (t, e i ) :=   -k xi ψ i (t, e i ) 0 -ψ i (t, e i ) 0 0 -k yi p i (t)e xi -k yi p i (t)e yi -k θi   η i := [v i-1 ω i-1 ṽi ωi ] .
For i = 1, the system (60) corresponds to [START_REF] Guo | Adaptive leader-follower formation control for autonomous mobile robots[END_REF] hence, by Proposition 1, e 1 → 0. For i = 2, η 2 := [v 1 , ω 1 , ṽ1 , ω1 ] where

v 1 = ṽ1 + k x1 e x1 + v r cos(e θ1 ) ω 1 = ω r + k θ 1 e θ1 + k y 1 p 1 (t)V 11
hence, η 2 → 0 and, by Proposition 1 we obtain that e 2 → 0. The statement follows by induction.

Simulation results

In order to illustrate our results we have performed some simulation tests under Simulink TM of Matlab TM .

We consider several scenarios: first, the leader-follower tracking-stabilization problem with one leader and only one follower only; then, we consider a group of five mobile robots following each one leader, as explained in Section 5. The physical parameters are the same for all the robots in both simulation casestudies and are taken from [START_REF] Fukao | Adaptive tracking control of a nonholonomic mobile robot[END_REF]: The virtual robot's reference velocities v r and ω r are defined in a way that they converge to zero asymptotically but relatively slowly, i.e.,

M = m 1 m 2 m 2 m 1 , C( ż) = 0 cω -cω 0 , t ( 
v r = 1 √ 400t + 100 , ω r = -1 √ 100t + 25
-see Figure 2.

In addition, in some of the simulation tests, we added noise to the leader's measured variables. The random noise signal that we use is depicted in Figure 3 and the reference velocities, severly affected by the measurement noise, are illustrated in Figure 4. For this first scenario, with only one robot and one virtual leader, the initial conditions are set to [x r (0), y r (0), θ r (0)] = [0, 0, 0] for 5 illustrates the robustness of our controller to measurement noise; the tracking errors remains close to the origin in spite of the noisy measurements. Figure 6 shows the torque response for the follower robot in the presence of measurement noise.

In a second scenario we consider a group of five mobile robots following one leader. The desired formation shape of the six mobile robots is a hexagonal configuration that tracks the trajectory of the leader under slowly converging leader's velocities. The desired distance between the robots is obtained by setting all desired orientation offsets to zero and defining 9.

[d xr,1 , d yr,1 ] = [0.5, -0.5], [d x1,2 , d y1,2 ] = [1, 0] and [d x2,3 , d y2,3 ] = [1/2, 1/2], [d x3,4 , d y3,4 ] = [0.5, -0.5] and [d x4,5 , d y4,5 ] = [1, 0]. See Figure
The initial conditions are set to [x r (0), y r (0), θ r (

0)] = [0, 0, 0], [x 1 (0), y 1 (0), θ 1 (0)] = [1, 3, 4], [x 2 (0), y 2 (0), θ 2 (0)] = [0, 2, 2], [x 3 (0), y 3 (0), θ 3 (0)] = [0, 4, 1], [x 4 (0), y 4 (0), θ 4 (0)] = [2, 2, 1] and [x 5 (0), y 5 (0), θ 5 (0)] = [-2, 2, 1].
In the absence of measurement noise, simulation results are shown in Figures 7-10. In Figures 7 and8, it is showed the convergence of the tracking errors between the agent and its neighborhood and the torque inputs of each agent.

In Figure 9 we illustrate the phase portrait of the six agents, we can see that the group of robots reach the desired formation shape in steady state and track the leader trajectory. The phase portrait is not necessarily smooth even if the trajectories are sufficiently smooth with respect to time, such a behavior occurs since the problem is formulated as a trajectory tracking problem and not as path-following problem.

The estimation parameter errors for each agent are presented in Figure 10, the estimation errors are not converging since the adaptive controller in [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF] guarantees only the convergence of the error velocities and the global boundedness of the estimation errors.

Finally, we present simulation results for a swarm of unicycles and in the presence of measurement noise. As before, we consider that all the exchanged variables, i.e., positions, velocities, and accelerations, are affected by meausurement noise -see Figure 3.

In Figures 11 and12 we show the tracking errors between the agent and its neighborhood and the torque inputs of each agent in the presence of measurement noise. This illustrates the robustness of the controller from Proposition 3. 

Conclusions

We presented a simple decentralized controller for leader-follower trackingagreement problem that is, we consider that the leader velocities converge and we assume that each robot has only one leader and may have one or more followers. Further research is being carried out to incorporate the general directed graph case.

Our control approach is decentralized hence, each robot uses only limited information (from one neighbor) and, in contrast to multiple-tracking control schemes, it has no knowledge of the reference robot. Even though the bulk of needed transmitted information through the communications network is significantly reduced, the price paid for this is that the effect of perturbations to a leader robot may propagate. This might be coped with using switching topologies, in which case, a robot might "decide" to switch to an alternative leader cf. [START_REF] Alvarez-Jarquín | Consensus via non-autonomous links and under time-varying topology[END_REF]. This is an interesting open problem. where α, α, and ρ are class K ∞ functions and α 1 is positive definite. Then, the system ẋ = f (t, x, η) is integral ISS with respect to u.
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 67 Figure 6: Illustration of the torque inputs for the follower robot

Figure 8 :Figure 9 :Figure 10 :Figure 11 :Figure 12 :

 89101112 Figure 8: Illustration of the torque inputs for each agent

Lemma 4 (

 4 Lyapunov characterization of iISS[START_REF] Ito | A Lyapunov approach to cascade interconnection of integral inputto-state stable systems[END_REF])Let V : [0, ∞)×R n → R be a continuously differentiable Lyapunov function such that α (|x|) ≤ V (t, x) ≤ α (|x|) ∂V ∂t + ∂V ∂x f (t, x, η) ≤ -α 1 (|x|) + ρ(|η|)
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The expression (16) is an equivalent characterization (for functions that are uniformly continuous in t) of the property of δ-persistency of excitation, defined in[START_REF] Loría | A nested Matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems[END_REF], that fits the purpose of this paper.

Without loss of generality, we assume that (15) and (26) hold with the same µ and T .

Let, by convention, a i (for any integer i ≥ 0) denote positive coefficients of polynomials so that, without loss of generality, we may implicitly assume that they are redefined as needed, e.g., a i := a i a j + a 2 i -a i . . .

Appendix A.

On input-to-state stability

We recall here some definitions and facts on input-to-state stability.

Definition 1 (Strong iISS [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the strong iISS property[END_REF]) The dynamical system ẋ = f (t, x, η) is said to be strongly integral input-to-state stable (strongly iISS) with respect to η, if it is integral input-to-state stable (iISS) with respect to η, and input to state stable (ISS) with respect to sufficiently small values of η. That is, there exist R > 0, β ∈ KL, as well as µ 1 , µ 1 , and µ, such that

where α, α are K ∞ functions, ρ a class K function, and W is a continuous positive definite function. Then, the system ẋ = f (t, x, η) is ISS with respect to the input η.