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Formation-tracking control of autonomous
vehicles under relaxed persistency of excitation

conditions

Mohamed Maghenem Antonio Lorı́a Elena Panteley

Abstract—We present a smooth nonlinear time-varying
formation-tracking controller for autonomous vehicles modeled
as a non-holonomic unicycle. Our first result consists in a leader-
follower tracking controller that guarantees uniform global
asymptotic stability under the standing assumption that either the
rotational or the translational reference velocity is persistently
exciting. Then, we extend this result to the case of formation
control of a swarm of vehicles. We show that this problem may be
solved via decentralized tracking control, under the assumption
that each robot communicates with one leader and one follower.

I. INTRODUCTION

Tracking control of non-holonomic mobile robots was a
very popular research problem in the control community in
the last decades –see e.g., the seminal work [1] where global
stabilization is established via Lyapunov’s second method.
Articles considering parametric uncertainty and constrained
inputs, include [2], [3], and [4]. In [5] a simple cascaded-
based linear time-varying controller was proposed and uniform
global asymptotic stabilization under the condition that the
angular velocity is persistently exciting, was established. This
approach was recently generalized in [6] to solve the problem
of formation tracking control.

In [7] an adaptive controller for simultaneous stabilization
and tracking for force-controlled vehicles was proposed. See
also [8] where a high-gain observer is incorporated to address
the problem via output feedback. In [9] a finite-time tracking
controller was proposed and, based on analysis methods for
cascaded-systems, finite-time stability is concluded for the
overall system.

Some of the previous results have been extended to the case
of formation tracking. See, e.g., [10] where the problem of
reaching a certain geometric configuration using a distributed
control was addressed and necessary and sufficient conditions
were deduced. In [11], [12], [13], and [14], the virtual-
structure and leader-follower approaches were investigated.
See the first for a comparison of the two methods.

In [15], the authors solve the formation tracking problem
using a combination of the virtual structure and path-tracking
approaches to generate the reference for each agent, then an
output feedback control law is designed to track each agent
toward its reference, using an asymptotic observer to estimate
the velocities. This work was extended in [16] and [17],
where the problem formation tracking with collision avoidance
was considered. In [17] the consensus tracking problem was
considered under parameter uncertainty. In [18] two different
scenarios of rendez-vous cooperative control are considered
under conditions of persistency of excitation on the reference
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velocities –see also [19] for the problem of distributed tracking
control.

In this paper we address the problem of formation-tracking
control for a swarm of mobile robots under the assumption that
each of them communicates only with two neighbors hence,
only the leader robot has the reference path information. In the
particular case of tracking control we recover the control laws
proposed in [20] and [21], in which asymptotic convergence of
the tracking errors is ensured under the condition that the limit
of the velocities (angular and forward) in norm is different
from zero. Our contribution with respect to the latter references
is to establish uniform global asymptotic stability of the origin
both for the leader-follower tracking set-up and the general
case of swarms of mobile robots advancing in formation,
under the relaxed condition of persistency of excitation of the
velocities’ norm. This includes the scenario of straight-path
tracking [6], but not of tracking-agreement control, in which
the reference velocities vanish [33]. In addition, as a corollary
of our main results, we also establish exponential convergence
on any ball (some times called K-exponential stability –[22]).
Furthermore, we give an explicit way to compute the rate of
convergence on each compact.

Our proofs are relatively direct. For the case of leader-
follower tracking control, we invoke Matrosov’s theorem,
which is a generalization of Barbashin-Krasovskı̆i’s theorem
to the case of time-varying systems. The proof relies on the
construction of a function with sign-definite derivative for
systems with persistency of excitation. The use of Matrosov’s
theorem leads to a very simple controller with unrestricted
gains and, in our opinion, to a clear and concise stability
proof of uniform global asymptotic stability, as opposed to
convergence of the error trajectories, as often established in
related literature. Then, for the general case of formation
tracking we employ a recursive cascades argument which, we
believe, is fairly intuitive.

The rest of the paper is organized as follows. In Section
II we present our original solution to the leader-follower
tracking control problem that is, for one robot following a
virtual vehicle. In Section III we present our second result,
the extension to the case of formation tracking under a
spanning-tree interconnection topology. Numerical simulations
that illustrate our main results are presented in Section IV,
before concluding with some remarks in Section V.

II. A SINGLE AGENT CASE

Consider the kinematic model of a mobile robot, i.e.,

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω,

where x, y ∈ R are the Cartesian coordinates of a fixed point in
the robot, θ ∈ R denotes its orientation with respect to a fixed
frame, and (v, ω) denote the forward and angular velocities;
they also correspond to the two control inputs. The tracking
control problem consists in following a fictitious reference
vehicle

ẋr = vr cos θr (1a)
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ẏr = vr sin θr (1b)
θ̇r = ωr (1c)

which moves about with reference velocities vr(t) and ωr(t).
From a control viewpoint, the goal is to steer the differences
between the Cartesian coordinates of the two robots to some
constant values dx, dy —cf. [6], and the orientation angles to
zero, i.e.,

px = xr − x+ dx

py = yr − y + dy

pθ = θr − θ.

Then, as in [23] and many other succeeding works, we
transform the error coordinates [px, py, pθ] of the leader
robot from the global coordinate frame to local coordinates
fixed on the robot that is,exey

eθ

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 px
py
pθ

 . (2)

In the new coordinates, the error dynamics between the
virtual reference vehicle and the follower becomes

ėx = ωey − v + vr(t) cos(eθ) (3a)
ėy = −ωex + vr(t) sin(eθ) (3b)
ėθ = ωr(t)− ω. (3c)

Therefore, the follow-the-leader tracking control problem of
mobile robots amounts to a stabilization problem, at the origin,
for the system (3).

In [5] persistency of excitation was explicitly used for the
first time as a necessary and sufficient condition to guarantee
global exponential stabilization of the origin for the tracking-
error dynamics. In that reference the following simple linear
time-varying controller was proposed:

v∗ = vr(t) +Kxex, Kx > 0 (4a)
ω∗ = ωr(t) +Kθeθ, Kθ > 0. (4b)

Besides the simplicity of this controller, it is to be remarked
that the closed-loop system (with v = v∗, ω = ω∗) has the
convenient cascaded form[

ėx
ėy

]
=

[
−Kx ωr(t)
−ωr(t) 0

] [
ex
ey

]
+ g(t, e) (5a)

ėθ = −Kθeθ (5b)

where e = [ex ey eθ]
> and

g(t, e) :=

[
v0(t)

[
cos(eθ)− 1

]
+Kθeθey

v0(t) sin(eθ)−Kθeθex

]
. (6)

As it is showed in [5], for this system, uniform global
asymptotic stability may be established via the following
cascades argument (see e.g., [24]): first, we observe that
because Kθ > 0, eθ converges exponentially fast; then, we
recognize that g(t, e) has linear growth in ex and ey and it
is uniformly bounded in t. Finally, for the equations (5a)
with g ≡ 0, the origin is exponentially stable provided that
the reference angular velocity is persistently exciting that is,
assuming that there exist µ, T > 0 such that

∫ t+T

t

ωr(s)
2ds ≥ µ, ∀ t ≥ 0. (7)

The latter argument for system (5a) relies on a large bulk of
literature on stability of linear time-varying (adaptive) control
systems. Notice, indeed, that the system (5a) with g ≡ 0
has the structure of model-reference-adaptive-control systems.
However, for this to hold it is necessary for the angular
velocity to satisfy ωr 6≡ 0; such condition excludes straight-
path trajectories. In [6] a modified version of this controller,
using a condition of persistency of excitation tailored for
nonlinear systems, was proposed for the case of tracking on
straight-line paths.

Here, for the particular case of leader-follower tracking
control problem we use the nonlinear time-varying controller

v = vr(t) cos(eθ) +Kxex (8a)
ω = ωr(t) +Kθeθ + vr(t)Kyeyφ(eθ) (8b)

where φ is the so-called ‘sync’ function defined by

φ(eθ) :=
sin(eθ)

eθ
. (9)

This function has several useful properties: it is smooth,
bounded and locally positive, actually, |φ(s)| > 0 for any
|s| < π. For this controller, it was established in [21], [25]
that the tracking errors converge to zero asymptotically under
the condition that

limt→∞ vr(t) 6= 0 or limt→∞ ωr(t) 6= 0. (10)

Our standing assumption here is that either the angular or the
forward reference velocity is persistently exciting. In partic-
ular, straight-line reference paths, in which case wr(t) ≡ 0,
are admissible if vr is persistently exciting. This allows to
establish uniform global asymptotic stability, in contrast to
asymptotic convergence of the tracking errors.

The control design approach is motivated by the result-
ing structure of the closed-loop system, which includes a
persistently-excited matrix with a convenient structure:

ė = A(t, e)e, e> := [ex ey eθ] (11)

A(t, e) :=

 −Kx ω(t, e) 0

−ω(t, e) 0 vr(t)φ(eθ)

0 −vr(t)Kyφ(eθ) −Kθ

 .
Theorem 1 Assume that vr, ωr, v̇r and ω̇r are bounded. If,
moreover,

√
v2r + ω2

r is persistently exciting, that is, if there
exist µ and T > 0 such that∫ t+T

t

[ωr(s)
2 + vr(s)

2]ds ≥ µ ∀ t ≥ 0, (12)

the origin of (11) in closed loop with the controller (8) is
uniformly globally asymptotically stable, for any positive gains
Kx, Ky and Kθ.

Proof: Consider first the Lyapunov function candidate V :
R≥0 × R3 → R≥0 defined as

V (t, e) =
1

2

[
e2x + e2y +

1

Ky
e2θ

]
. (13)
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This function satisfies

c1|e|2 ≤ V (t, e) ≤ c2|e|2

with c1 := min{1/2, 1/2Ky} and c2 := max{1, 1/Ky}.
Moreover, its total time derivative along trajectories of (11) is
negative semidefinite, indeed,

V̇ (t, e) = −Kxe
2
x −Kθe

2
θ ≤ 0. (14)

Integrating on both sides of V̇ (t, e(t)) ≤ 0 and defining
c3 :=

√
c2/c1 we obtain

|e(t)| ≤ c3|e(t◦)| ∀ t ≥ t◦ ≥ 0. (15)

That is, the origin is uniformly globally stable with linear
growth. In particular, for any r > 0 the solutions generated by
|e◦| ≤ r remain in a ball BR :=

{
x ∈ Rn : |x| ≤ R := c3r}.

Therefore, it is only left to establish uniform global
convergence to the origin. We do this using Matrosov’s
theorem which, for the purposes of this paper, is paraphrased
below in a slightly more restrictive form than original,
following [26] and [27].

Theorem 2 (“Matrosov”) Consider the system ẋ = f(t, x).
Let Bρ :=

{
x ∈ Rn : |x| < ρ}. Suppose that, for each

ρ > 0, there exist three functions, V : R≥0 × Bρ → R, V ∗ :
Bρ → R and W : R≥0 × Bρ → R, which are continuously
differentiable. Assume further that, for each R ∈ (0, ρ),

a) there exist L > 0 such that

max {|W (t, x)|, |f(t, x)|} ≤ L

for all1 (t, x) ∈ R≥0 × B̄R;
b) there exist class K functions α1 and α2 such that, for all

(t, x) ∈ R≥0 × B̄ρ:

α1(|x|) ≤ V (t, x) ≤ α2(|x|)
V̇ (t, x) ≤ V ∗(x) ≤ 0 ;

c) the function Ẇ (t, x) is non-zero definite on M := {x ∈
BR : V ∗(x) = 0} that is, there exists α3 ∈ K such that

|Ẇ (t, x)| ≥ α3(|x|) ∀ (t, x) ∈ R≥0 ×M.

Then, every solution such that x(t, t◦, x◦) ∈ BR for all t ≥ t◦
tends uniformly to 0 as t→∞.

We construct a function W satisfying the conditions of The-
orem 2. For any locally integrable function f : R≥0 → R≥0
such that supt≥0 |f(t)| ≤ f̄ , following [28], let us define

Qf (t) := 1 + 2f̄T − 2

T

∫ t+T

t

∫ m

t

f(s)ds dm. (16)

Note that this function satisfies

1 ≤ Qf (t) < Q̄f := 1 + 2f̄T

Q̇f (t) = − 2

T

∫ t+T

t

f(s)ds+ 2f(s).

Next, let the function W : R≥0 × R3 → R≥0 be defined as

W (t, e) := −ωr(t)exey + αvr(t)eθey

1We denote by B̄R a closed ball of radius R centered at the origin.

+
1

2

[
Kyφ(eθ)Qv2r (t) +Qω2

r
(t)
]
e2y (17)

where α and γ are positive constants to be defined. In view
of the boundedness of vr(t), ωr(t), and φ(eθ) for any α > 0,
there exists c′2 > 0 such that

|W (t, e)| ≤ c′2|e|2

for all t ≥ 0 and all e ∈ R3. In view of this, of the continuity
of A(t, e) with respect to e and uniform boundedness with
respect to t, item a) of Theorem 2 holds —boundedness and
continuity of A comes from the boundedness assumption on
the reference trajectories. Furthermore, item b) holds with V
as defined in (13) and V ∗(e) := −Kxe

2
x −Kθe

2
θ.

To verify item c) we evaluate the total time derivative of W
along the closed-loop trajectories of (11), to obtain

Ẇ = ω2
re

2
x + v2rαφ(eθ)e

2
θ

+ Ψxy(t, e)exey + Ψθy(t, e)eyeθ + Ψθx(t, e)exeθ

−

[∫ t+T

t

1

T
v2r(s)ds

]
φ(eθ)Kye

2
y

− [α− 1]v2rKye
2
yφ(eθ)−

∫ t+T

t

1

T
ω2
r(s)dse2y

−
[
ωr +

cos(eθ)− φ(eθ)

eθ
Qv2rKy

]
Kyvrφ(eθ)e

3
y

where

Ψxy = −ω̇r + ωrKx +Kyvrωrexφ(eθ)

−
[
Kyφ(eθ)Qv2r +Qω2

r

]
× [ωr +Kθeθ + eyKyvrφ(eθ)]

Ψθx = ωrexKθ − vrωrφ(eθ)− vrαωr
−v2rαyKyφ(eθ)− vrαKθeθ

Ψθy = −ωrKθey − αvrKθ + αv̇r

+
[
Kyφ(eθ)Qv2r +Qω2

r

]
vrφ(eθ)

−
(

cos(eθ)− φ(eθ)

eθ

)
Qv2rKyKθey.

The functions Ψxy , Ψθx and Ψθy are uniformly bounded
for any R > 0 and all (t, e) ∈ R≥0 × BR. Let R > 0 be
arbitrary but fixed and define

M :=
{
e ∈ R3 : |e| ≤ R, ex = eθ = 0

}
.

Then, since φ(0) = 1 and

lim
eθ→0

(
cos(eθ)− φ(eθ)

eθ

)
= 0

we have, for all t ≥ 0 and all e ∈ BR,

Ẇ (t, e) ≤−

[∫ t+T

t

1

T
ω2
r(s)ds+Ky

∫ t+T

t

1

T
v2r(s)ds

]
e2y

− [α− 1]Kyv
2
re

2
y + ωrKyvre

3
y. (18)

Note, moreover, that the last term on the right hand side may
be bounded, for any R and λ > 0, as

ωrKyvre
3
y ≤

λ

2
[ωrKyR]2e2yv

2
r +

e2y
2λ
.
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Then, let α ≥ 1 +Ky[ωrR]2λ/2. It follows from this and the
assumption of persistency of excitation on

√
v2r + w2

r , that
there exist µ > 0 and T > 0 such that

|Ẇ (t, e)| ≥
[
µ

T
min{1, Ky} −

1

2λ

]
e2y ∀ (t, e) ∈ R≥0×M.

Note that the factor of e2y is positive for a sufficiently large
value of λ. Item c) of Matrosov’s theorem follows. Since the
previous arguments hold for any choice of R > 0 without
restricting the control gains nor the parameters µ and T , the
origin is uniformly globally attractive. The result follows.

Another original worthy statement may be established
based on the auxiliary function introduced in (17). Indeed, the
following theorem, which is proved in the preliminary version
of this paper —[29], provides a strict Lyapunov function for
the closed-loop system on each compact set in R3. This leads
to the computation of an estimate of the convergence rate.
Theorem 3 The origin of the closed-loop system (8), (11)
is globally K-exponentially stable, under the conditions of
Theorem 1.

Moreover, for each r > 0 one can compute explicitly
positive constants γr and αr depending only on r, such that

V2(t, e) = γrV1(t, e)− ωr(t)exey + αrvr(t)eθeyφ(eθ)

+ 1
2

[
Kyφ

2(eθ)Qv2r (t) +Qω2
r
(t)
]
e2y,

where Qf (t) is defined in (16), is a strict Lyapunov function
for the closed-loop system. In particular, for all |e(t0)| ≤ r
and t ≥ t0 ≥ 0,

V̇2(t, e(t)) ≤ −min
{
Kx,Kθ,

µ

2T

}
|e(t)|2 .

III. FORMATION-TRACKING CONTROL

We address now the following formation-tracking control
problem. Given a swarm of robots with models

ẋi = vi cos (θi) (19a)
ẏi = vi sin (θi) (19b)
θ̇i = wi, i ∈ [1, n] (19c)

it is required that they assume a prescribed formation pattern,
determined by constant relative distances dxi−1,i and dyi−1,i.
In contrast to a multi-agent tracking scenario in which each
robot tracks the reference trajectory, we assume that only one
robot, designated swarm leader, has access to the reference
velocities vr and ωr, as well as to the states of the fictitious
vehicle (1). Then, each robot follows one leader that is,
we assume that the vehicles are interconnected according
to a spanning-tree topology, which is necessary to achieve
consensus.

Similarly to the case of one-leader-one-follower tracking-
control scenario studied in the previous section we define

pxi = xi−1 − xi − dxi−1,i
pyi = yi−1 − yi − dyi−1,i
pθi = θi−1 − θi i ∈ [1, n]

and we apply a coordinate transformation to define the errors
between any pair of vehicles asexieyi

eθi

 =

 cos θi sin θi 0
− sin θi cos θi 0

0 0 1

 pxi
pyi
pθi


which satisfy the dynamics equations

ėxi = wieiy − vi + vi−1 cos(eθi) (20a)
ėyi = −wieix + vi−1 sin(eθi) (20b)
ėθi = wi−1 − wi. (20c)

Remark 1 Note that many swarm-formations are possible
by adequately defining the distance parameters d(·), but this
problem is out of the paper’s scope.

The formation-tracking control problem for n robots re-
duces to the stabilization of the origin in the space of e :=
[e>x , e

>
y , e

>
θ ]> where we redefined e(·) := [e(·)1, · · · e(·)n]>.

To that end, for each i ∈ [1, n] we propose the controller

vi = vi−1 cos(eθi) +Kxiexi (21a)
ωi = ωi−1 +Kθieθi + vi−1Kyieyiφ(eθi). (21b)

Remark 2 Our control approach may also be used under a
general time-varying uni-directional connected communication
graph and using distributed exponentially-convergent estima-
tors for the leader trajectories, as in [30] and [31]. In this case,
the controllers (21) reduce to (8) in which we replace (vr, ωr)
by the estimated leader’s velocities and we compute the errors
ei with respect to the estimated leader’s trajectories.

Theorem 4 Under the conditions of Theorem 1 on vr and
ωr, the origin of the closed-loop system (20)–(21) is K-
exponentially stable, for any positive gains Kxi, Kyi and Kθi.

Proof: The closed-loop dynamics isėxiėyi
ėθi

 =

 −Kxi ωi(t, ei) 0

−ωi(t, ei) 0 vi−1φ(eθi)

0 −vi−1Kyiφ(eθi) −Kθi


︸ ︷︷ ︸

Ai(ei, vi−1, ωi)

exieyi
eθi



which has exactly the same structure as (11). Notably, for each
i ≤ n, the Lyapunov function

Vi(t, ei) =
1

2

[
e2xi + e2θi +

1

Kyi
e2yi

]
(22)

satisfies

V̇i(t, ei) = −
[
Kxi|exi|2 +Kθi|eθi|2

]
(23)

hence, the function V : R≥0 × R3n → R≥0, defined as

V (t, e) :=

n∑
i=1

Vi(t, ei),

is positive definite, radially unbounded and satisfies

V̇ (t, e) = −
n∑
i=1

[
Kxi|exi|2 +Kθi|eθi|2

]
≤ 0.
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It follows that the origin is uniformly globally stable with
linear gain that is, (15) holds with an appropriate redefinition
of c3. In particular, the solutions are uniformly globally
bounded.

Next, we exhibit the important fact that, by design, the
closed-loop dynamics has a triangular structure composed by
a cascade of n dynamical systems. This, and uniform global
boundedness of the solutions, allows to invoke an inductive
cascades argument.

To that end, let us introduce the variables ṽi = vi − vi−1
and ω̃i = ωi − ωi−1. Then, for each i ≥ 1, we have

ṽi = vi−1 [cos(eθi)− 1] +Kxiexi (24a)
ω̃i = Kθieθi + vi−1Kyiφ(eθi)eyi, (24b)

and the closed-loop system takes the form:

ėxi = $ieyi −Kxiexi +

[
i−1∑
k=1

ω̃k

]
eyi

+

[
i−1∑
k=1

ṽk

]
Kyiφ(eθi)e

2
yi

ėyi = −$iexi + vr(t) sin(eθi)−

[
i−1∑
k=1

ω̃k

]
exi

−

[
i−1∑
k=1

ṽk

] [
Kyiφ(eθi)exieyi + sin(eθi)

]
ėθi = −$i + ωr(t)−

[
i−1∑
k=1

ṽk

]
Kyiφ(eθi)eyi +

[
i−1∑
k=1

ω̃k

]
where

$i = Kθieθi + ωr(t) + vrKyiφ(eθi)eyi. (25)

With these notations, the error dynamics takes the form

ėi = Āi(t, ei)ei +Mi(t, ei)gi(t, e1, · · · , ei−1) (26)

where

Āi(t, ei) :=

 −Kxi $i(t, ei) 0

−$i(t, ei) 0 vr(t)φ(eθi)

0 −vr(t)Kyiφ(eθi) −Kθi



Mi(t, ei) :=

 Kyiφ(eθi)e
2
yi eyi

−Kyiφ(eθi)exieyi − sin(eθi) −exi
−Kyiφ(eθi)eyi 1


and

gi(t, e1, · · · , ei−1) :=

i−1∑
k=1

[
ṽk
ω̃k

]
,

[
ṽk
ω̃k

]
= Bk(t, e)ξ(ek)

with

Bk(t, e) :=

[
Kxk 0 vk−1 0

0 vk−1Kykφ(eθk) 0 Kθk

]
ξ(ek) :=

[
exk eyk cos(eθk)− 1 eθk

]>
.

Notice that for each k ≤ i − 1, Bk only depends on
[e1 · · · ei−1] that is, ṽk and ω̃k are independent of ei hence,
the closed-loop equations have the triangular structure:

Σ′n : ėn = Ān(t, en)en +Mn(t, en)gn(t, e1, · · · , en)
...

Σi


ėi = Āi(t, ei)ei +Mi(t, ei)gi(t, e1, · · · , ei−1)

...
ė2 = Ā2(t, e2)e2 +M2(t, e2)g1(t, e1)

ė1 = Ā1(t, e1)e1

Now, for each i ∈ [1, n], the equation Σ′i forms a cascaded
system with Σi hence, we can invoke [24, Lemma 2] and an
inductive argument. To that end, we first note that the solutions
are uniformly globally bounded for any n ≥ 1. Firstly, let n =
2 and consider the two bottom equations. The two nominal
systems ėi = Āi(t, ei) with i ∈ {1, 2} have exactly the form
(11) —note that this is true for any i— hence, by Theorem
1 each of these systems is uniformly globally asymptotically
stable at {ei = 0}. By [24, Lemma 2] the same holds for
the equilibrium {(e1, e2) = (0, 0)} of the system Σ2. Next,
let n = 3 and consider the cascaded system composed of Σ′3
with Σ2. The solutions are uniformly globally bounded and, in
view of Theorem 1, the origin for ė3 = Ā3(t, e3) is uniformly
globally asymptotically stable. Hence the same holds for the
overall cascaded system. The argument applies for any value
of n.

Corollary 1 Under the conditions of Theorem 4 the origin of
the system (20) in closed loop with (21) is exponentially stable
in the large on any compact2.

IV. SIMULATIONS

To illustrate our results we have performed simulation tests
under SimulinkTM of MatlabTM. We consider a group of four
mobile robots following a virtual leader. In this simulation,
the desired formation shape of the four mobile robots is a
diamond configuration that tracks the trajectory of the virtual
leader. See Figure 2. We define the reference velocities vr and
ωr in a way that the condition on persistency of excitation (12)
holds –see Figure 1.

The initial conditions are set to [xr(0), yr(0), θr(0)] =
[0, 0, 0], [x1(0), y1(0), θ1(0)] = [1, 2, 4], [x2(0), y2(0), θ2(0)]
= [0, 2, 2], [x3(0), y3(0), θ3(0)] = [0, 5, 1] and [x4(0), y4(0),
θ4(0)] = [2, 2, 1], and we set the control gains to Kxi =
Kyi = Kθi = 2. The formation shape with a certain
desired distance between the robots is obtained by setting all
desired orientation offsets to zero and defining [dxr,1 , dyr,1 ] =
[0, 0], [dx1,2

, dy1,2 ] = [1, 0] and [dx2,3
, dy2,3 ] = [−1, 1] and

[dx3,4
, dy3,4 ] = [0, 1]. See Figure 2.

V. CONCLUSIONS

We solved a specific problem of formation-tracking control
of autonomous vehicles via fairly simple control laws and
we established strong stability properties for the closed-loop
system. Even though our results remain academic they may

2See [32] for a definition.
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serve as a starting block to the solution of more realistic engi-
neering problems such as assuming that the communications
topology switches, the interconnections are faulty, and the path
obstacles must be avoided. For instance, one may consider that
robots communicate with different neighbors during distinct
time intervals. This problem may be addressed as a problem
of stability of switched systems, based upon the statement of
Theorem 4. These topics are under current investigation.
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