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A Separation Principle for Underactuated
Lossless Lagrangian Systems

Sofia Avila-Becerril1 Antonio Lorı́a2 Elena Panteley

Abstract—We study under-actuated Lagrangian systems with-
out dissipative forces, augmented by a chain of integrators. For
such systems, we solve the open problem of global tracking
control via position measurements only; strictly speaking, we
establish uniform global asymptotic stability for the closed loop
system. As a corollary, we obtain an original statement for
flexible-joint robots, which closes a long-standing open problem
of output feedback nonlinear control.

I. INTRODUCTION

Ever since the early works [1], [2] on global asymptotic
(state-feedback) stabilization of robot manipulators around
a time-varying trajectory, establishing such result under the
assumption that only generalized positions are measured has
called the attention of many researchers. One of the first results
on this line was reported in [3] where it is proposed a nonlinear
observer-based controller that ensures local asymptotic stabil-
ity. Succeedingly, a large number of articles were published
in which various stability properties were established, such
as semiglobal asymptotic stability, e.g. in [4], [5] or global
asymptotic stability in part of the coordinates, e.g., in [6].
Global asymptotic stability is particularly difficult to prove;
this was done for some case-studies, such as generic one-
degree-of-freedom systems [7] and particular two-degrees of
freedom systems [8], [9], but also for systems with dissipative
forces (such as friction) [6], [10].

Lossless systems are, by definition, systems that do not
posses natural dissipative forces such as friction hence, they
constitute a fairly wide class. It is only in [11], [12], [13]
that the long-standing open problem of establishing uniform
global asymptotic stability for the closed-loop system, was
fully solved. In [11] this was established for the controller
independently proposed earlier in [5], [4] while in [12], [13]
global exponential stability is established using a nonlinear
observer and a coordinate transformation.

For underactuated systems, the output-feedback tracking
control problem is far more complex since the relative degree
with respect to link positions is augmented proportionally to
the number of added integrators. Even for the meaningful case
of flexible-joint robots (two added integrators, hence relative
degree 4) the problem remains open. In [14] the authors
presented a result based on a semi-global nonlinear observer
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for the unmeasured variables, which needs only the link
positions. In [15] it is proposed a robust output-feedback link
position tracking controller that ensures semi-global uniformly
ultimately bounded link position tracking. In the same spirit,
based on a set of filters, in [16] the need of measuring link
and actuator velocities is removed, yet at the expense of the
restrictive assumption that the system is internally damped by
viscous friction. In [17] a nonlinear observer-based certainty-
equivalence tracking controller for Euler Lagrange systems is
presented; global properties are obtained under provided that
the controller can be bounded by an affine function in the
position times a polynomial of the velocities.

In [18] is presented an output-feedback control method
that applies to Lagrangian systems augmented by a chain of
integrators (see Eq. (1) below) hence, underactuated systems.
The controller is constructed following a modified backstep-
ping design in which unavailable derivatives are replaced
by approximate differentiation filters. Yet, it is assumed that
each integrator variable is measured. In [19] we presented
a controller for flexible-joint robots which ensures uniform
global asymptotic stability for the closed-loop system under
the assumption that joint, but not link velocities, are measured.

In this paper we extend the results of [18], [19] by assuming
that the integrators’ variables are not measured. We establish
a separation principle for the same class of systems and we
prove uniform global asymptotic stability of the origin. A
significant corollary of our main result is a statement for the
particular case of flexible-joint robots, as modelled in [20],
[21]. Our controller stabilizes these systems globally using link
and motor positions only. As far as we know, this is the first
article where results of this nature are reported, even for the
particular case of flexible-joint robots. See also the preliminary
version of this paper, [22].

The rest of the paper is organized as follows. In the
following section we formulate the problem under study and
in Section III we present our main results. In Section IV
we illustrate our findings with the case-study of flexible-joint
robots, before concluding with some remarks in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let us consider Euler Lagrange systems in which the control
input enters through a chain of m integrators, i.e.,

D(q)q̈ + C(q, q̇)q̇ + g(q) = ξ1 (1a)
ξ̇1 = ξ2 (1b)

...
ξ̇m−1 = ξm (1c)
ξ̇m = u (1d)



where u, ξi ∈ Rn for all i ≤ m, m ≥ 1. The matrix
D(q) = D>(q) > 0 corresponds to the inertia matrix, C(q, q̇)q̇
contains the terms due to the Coriolis and centrifugal forces,
g represents the gravitational forces vectors. Then, we make
the following hypothesis on the model (1).

Assumption 1:

1) The inertia matrix D(q) is positive definite and uni-
formly bounded; more precisely, there exist positive real
numbers dm and dM such that

dm ≤ |D(q1)| ≤ dM ∀q ∈ Rn.

2) The matrix C(w, y) is bounded in w and linear in y and,
for each i ≤ n, ∂C

∂wi
is bounded in w.

3) The matrix Ḋ(q) − 2C(q, q̇) is skew symmetric for all
q ∈ Rn.

4) There exists kv such that function that

∃kv > 0 :

∣∣∣∣∂g∂q
∣∣∣∣ ≤ kv (2)

All the conditions above are commonly assumed to hold
in related literature, especially on robot manipulators. For
instance, the boundedness assumption on the inertia matrix
holds for (but it is not limited to) robot manipulators composed
of revolute joints only or prismatic joints only. See [23] for
a complete characterization. Nonetheless, it is important to
mention that the main result in [12], [24] which, however,
holds only for fully-actuated systems (m = 0, ξ1 := u), does
not rely on uniform boundedness of D.

Furthermore, because C is intrinsically related to Ḋ (see
item 3), item 2) implicitly implies that D has bounded partial
derivatives. In turn, a consequence of item 2) is that there
exists a saturation function sat: R→ R and kc > 0 such that,
for all x, y, z ∈ Rn,

|C(x, y)− C(z, y)| ≤ kcsat(|x− z|)|y|, (3)

where sat(s) := sgn(s) min{1, |s|}. Moreover, C(x, y)z =
C(x, z)y.

Under these conditions we solve the following tracking con-
trol problem: Let t 7→ qd denote a given reference trajectory.
Assume that it is sufficiently smooth and its first m + 2
derivatives are uniformly bounded, i.e., there exists kδ > 0
such that

max
i≤m+2

{
sup
t≥0
|qd(t)|, sup

t≥0
|q(i)d (t)|

}
≤ kδ. (4)

It is required to design an output-feedback dynamic controller

u = u(t, q, ξ1, xc) (5a)
ẋc = f(t, q, ξ1, xc) (5b)

(that is, xc ∈ Rm corresponds to the state of the controller)
such that the origin of the closed-loop system is uniformly
globally asymptotically stable.

Example 1 (Flexible-joint robots): According to [20], [21]
joint flexibility in robot manipulators may be modelled using
linear torsional springs; hence, if we denote by K the joint

stiffness (K = ∞ implying no elasticity) the Lagrangian
model is given by the equations:

D(q`)q̈` + C(q`, q̇`)q̇` + g(q`) = K(qa − q`) (6a)
Jq̈a +K(qa − q`) = τ (6b)

where (q`, q̇`) ∈ R2n denote the unactuated coordinates i.e.,
related to the links, while (qa, q̇a) ∈ R2n correspond to the
actuators’ coordinates, and τ ∈ Rn is the vector of input
torques. The model (6) may be transformed into (1) with
m = 2, by defining: q := q`, g(q) := g(q`)+Kq`, ξ1 := Kqa,
ξ2 := Kq̇a and applying the preliminary feedback

τ = ξ1 −Kq` + JK−1u. (7)

To the best of our knowledge, the problem of ensuring
uniform globally asymptotic stability for robot manipulators
(6) using only link and actuator positions is completely open
to date. The solution to this problem follows as a corollary
to our main result. The latter is presented next; the former is
presented in Section IV.

III. MAIN RESULT: SEPARATION PRINCIPLE

A. The rationale

In [18] is presented a dynamic output-feedback controller
for (1) that guarantees uniform global asymptotic stability of
the origin. The controller in the latter reference, however, is
not of the form (5) since it depends also on the output y> :=
[q> ξ>]; for the case of flexible-joint robots, this is tantamount
to assuming that the actuator’s velocities are measurable. Here,
we assume that the measurable output is y> := [q> ξ>1 ], that
is, no velocity is assumed to be measurable. This being said,
our control design still builds upon the method described in
[18] and, to avoid the measurement of ξi for all i > 1, we add
a Luenberger observer. The simplicity of our control design
leads naturally to a separation principle.

The control design method follows the rationale of classical
backstepping control. First, we consider ξ1 as a virtual control
input to (1a) then, introducing the positive constants kp0 , kd0 ,
a0, and b0, we define the virtual control law –cf. [4], [5]

ξ?1 = −kp0 q̃ − kd0ϑ0 +D(q)q̈d + C(q, q̇d)q̇d + g(q) (8)

where ϑ0 corresponds to the dirty derivative of q̃, that is,

q̇c0 = −a0ϑ0 (9a)
ϑ0 = qc0 + b0q̃. (9b)

If ξ1 = ξ∗1 , the null solution of the closed-loop system
(1a), (8)-(9) is uniformly globally asymptotically stable [18,
Theorem 4]. Then, to steer ξ1 → ξ∗1 we regard ξ2 as a virtual
tracking control input for the integrator (1b) with reference
ξ∗1 . Proceeding recursively for each i > 2, the variable ξi+1 is
considered as a virtual control input to the ith equation, and
as a tracking reference in the (i + 1)th equation. After [18],
we define

ξ?i+1 = −kpi ξ̃i + kdiϑi + ξ̇?i◦, ∀i ∈ [1,m− 1] (10a)



ϑi = qci + biξ
?
i + ζi

q̇ci = −aiϑi
ζ̇i = −(kdi − σi)ξ̃i − biξ̇?i◦

∀i ∈ [1,m] (10b)

u = −kpm ξ̃m + kdmϑm + ξ̇?m◦ (10c)

where kpi, kdi, ai, bi are positive control parameters, σ1 := 0
and σi := bikpi−1

for all i ∈ [2,m].
The terms ξ̃i := ξi− ξ?i correspond to the “tracking errors”

for each of the integrators in (1). Note that ξ̇?i is, in general,
a function of time; this is in view of its dependence on the
reference trajectory qd(t) and the (i + 2) derivatives of the
latter. It is, in addition, a function of the states, including non-
measurable variables such as ˙̃q and its (i− 1) derivatives; this
is due to the recursive definition of ξ?i . The term ξ̇?i◦ stands for
the value of ξ̇?i evaluated at the origin, that is, at (q̃, ˙̃q, ϑ, ξ̃) =
(0, 0, 0, 0). In other words, ξ̇?i◦ depends only on t, through
qd(t) and the (i + 2) derivatives of the latter. Moreover, it
verifies ξ̇?i◦ := ξ?i+1◦ —see [18] for details.

Each group of equations (10b) corresponds to the imple-
mentation of (a modified) dirty derivative of ξ?i which may be
computed using only known or measured variables. Indeed, in
the frequency domain, (10b) corresponds to

ϑi =
bis

s+ ai
ψi ⇔ ϑi =

bi
s+ ai

ψ̇i (11)

where ψi = ξ?i + ζi/bi and ψ0 = q̃ and s ∈ C is the Laplace
variable. The second representation, in terms of a low-pass
filter with input ψ̇i, is useful for the purpose of analysis since
it defines output-strictly passive map ϑi 7→ ψ̇i. In the time
domain, it corresponds to

ϑ̇i = −aiϑi + biξ̇
?
i − (kdi − σi)ξ̃i − biξ̇?i◦ (12)

which has an equilibrium at the origin {z = 0}.
Let us stress that Equation (10b) does not define an ob-

server since ϑi 6→ ˙̃qi however, the quotient ϑi/ ˙̃qi remains
bounded and separated from zero. Hence, one may say that,
asymptotically, ϑi ≈ ˙̃qi which implies that, for the purpose of
global stabilization, the necessary damping may be injected
through a finite-gain low-pass filter. In other words, instead of
exploiting the convergence properties of solutions estimates,
as it is commonly done in observer-based designs, we use
the input-output properties of the stable proper filter in (11).
See [18] for formal proof of this filter property. Here, it is
established that for the closed-loop system (1), (8)–(10), the
origin {z = 0}, with

z =
[
q̃> ˙̃q> ϑ>0 ξ̃>1 · · · ξ̃>m ϑ>1 · · · ϑ>m

]>
,

is uniformly globally asymptotically stable.

B. Certainty-equivalence control

The obvious disadvantage of the controller (10) is that it
relies on the measurement of ξi for all i ≤ m —see [19].
For instance, in the case of flexible-joint robots, this includes
motor velocities. In order to relax this assumption we introduce
a simple reduced-order Luenberger observer for the linear ξ-
dynamics and we use a certainty-equivalence controller which
includes dirty derivatives of q and ξ?.

The linear Luenberger observer, based on the measurement
of ξ1, is defined by

˙̂
ξi = ξ̂i+1 + λi(ξ1 − ξ̂1), ∀i ∈ [1,m− 1]
˙̂
ξm = u+ λm(ξ1 − ξ̂1)

with constant gains λi > 0 for all i ≤ m, chosen so as to
render the following matrix Hurwitz:

L :=


−λ1 1 · · · 0

...
...

. . .
...

−λm−1 0 · · · 1
−λm 0 · · · 0

⊗ In. (13)

Then, defining ξ̄i = ξ̂i − ξ?i , we introduce the certainty
equivalent controller

ξ?i+1 = −kpi ξ̄i + kdiϑi + ξ̇?i◦, ∀i ∈ [1,m− 1] (14a)

ϑi = qci + biξ
?
i + ζi

q̇ci = −aiϑi
ζ̇i = −(kdi − σi)ξ̄i − biξ̇?i◦

∀i ∈ [1,m] (14b)

u = −kpm ξ̄m + kdmϑm + ξ̇?m◦ (14c)

which corresponds to (10) where ξi has been replaced by its
estimate ξ̂i. For a detailed (non-recursive) definition of ξ∗i see
[25].

Proposition 1 (Main result): Let the reference qd satisfy
(4). Consider the system (1) under Assumption 1 and in closed
loop with the controller defined by Equations (8), (9) and
(14). Then, the origin of the closed-loop system is uniformly
globally asymptotically stable for sufficiently large control
gains. Moreover, this holds for any observer gains λi which
render L in (13) Hurwitz, independently of the control gains.
�

The proof is constructive; we derive explicit conditions on the
control gains that imply uniform global asymptotic stability.

C. Proof of Proposition 1

The proof relies on recognizing that the closed-loop system
has a cascaded structure,

ẋ1 = f1(t, x1) + g(t, x)x2 (15a)
ẋ2 = f2(t, x2) (15b)

where x1 ∈ Rp, x2 ∈ Rq , and the functions f1, f2, and g are
continuous and locally Lipschitz in x, uniformly in t, and f1 is
continuously differentiable. After [26, Lemma 2], for (15), the
origin (x1, x2) = (0, 0) is uniformly globally asymptotically
stable if so are the respective origins of ẋ1 = f1(t, x1)
and (15b), and the solutions of (15a) are uniformly globally
bounded.

To invoke [26, Lemma 2], we first show that the closed-loop
equations have the form (15) with x>1 := z and x2 := ξ − ξ̂
—see Section III-C.1 below. That is, the nominal system
ẋ1 = f1(t, x1) represents the tracking-errors dynamics under
the measurement of [q, ξ], the equation (15b) defines the
state estimation errors, and g(t, x)x2 represents the errors



generated by the use of the certainty-equivalence controller.
Uniform global asymptotic stability for ẋ1 = f1(t, x1) is
established by [18, Theorem 6]. Uniformly global exponential
stability for (15b) follows since f2(t, x2) := Lx2 and L is
Hurwitz by design. In addition, g is actually constant since
we use a reduced-order observer. Notably, this guarantees that
there is no peaking [27] and that the solutions are uniformly
globally bounded. The formal proof of the latter is provided
in Proposition 2 (Paragraph III-C.2), following the proof-lines
of [18, Theorems 5, 6].

1) The closed-loop equations: The first error equation is
obtained using the identity ξ1 = ξ̃1 +ξ?1 , by replacing ξ?1 from
(8) in (1a) and adding −C(q, q̇d)q̇ + C(q, q̇)q̇d = 0 to the
right-hand side of the latter. Then, we differentiate on both
sides of (9b) and we use (9a) to obtain

D(q)¨̃q + [C(q, q̇) + C(q, q̇d)] ˙̃q + kp0 q̃ + kd0ϑ0 = ξ̃1 (16a)

ϑ̇0 = −a0ϑ0 + b0 ˙̃q. (16b)

On the other hand, Equations (1b)–(1d) are equivalent to
˙̃
ξi = ξ?i+1 − ξ̇?i + ξ̃i+1, i ∈ [1,m− 1] (17a)
˙̃
ξm = u− ξ̇?m (17b)

so, defining ei := ξi − ξ̂i and using the identity ξ̄i = ξ̃i − ei
with i ≤ m, as well as (14), we obtain

˙̃
ξi = −kpi ξ̃i + kdiϑi + ξ̃i+1 + kpiei − (ξ̇?i − ξ̇?i◦) (18a)

ϑ̇i = −aiϑi − (kdi − σi)(ξ̃i + ei) + bi(ξ̇
?
i − ξ̇?i◦). (18b)

Next, to compact the notation, we define A := diag {ai} ⊗
In, B := diag {bi} ⊗ In, Kd := diag {kdi} ⊗ In, Kp :=
diag {kpi} ⊗ In, K ′d := Kd − diag {σi} ⊗ In,

K ′p =


kp1 −1 0 · · · 0

0
. . . . . .

...
... −1
0 · · · · · · 0 kpm

⊗ In,
ξ̃> =

[
ξ̃>1 · · · ξ̃>m

]
ϑ> =

[
ϑ>1 · · · ϑ>m

] ξ̇?>◦ =
[
ξ̇?>1◦ · · · ξ̇?>m◦

]
e> =

[
e1 · · · em

]
.

Then, the tracking-error-dynamics equations (18) become
˙̃
ξ = −K ′pξ̃ +Kdϑ+Kpe−

[
ξ̇? − ξ̇?◦

]
(19a)

ϑ̇ = −Aϑ−K ′dξ̃ +K ′de+B
[
ξ̇? − ξ̇?◦

]
(19b)

while the estimation-error-dynamics is

ė = Le (20)

in which L is Hurwitz by design.
Note that the equations (19) consitute a linear time-invariant

system that is perturbed, on one hand, by the exponentially-
converging input e(t) and, on the other, by the “input”[
ξ̇? − ξ̇?◦

]
which vanishes at the origin hence, provided that

(q̃, ˙̃q, ϑ) → (0, 0, 0). To see this, we remark that long but
straightforward computations (cf. [25]) lead to the identity

ξ̇?i =− kpi−1
ξ̃i +

i−1∑
k=1

ηik ξ̃k − µikϑk + kpi−1
ei −

i−1∑
k=2

ηikek

−
i−1∑
k=1

γi1e1 +

i−1∏
j=1

βj
[
ξ̇?1 − ξ̇?1◦

]
+ ξ̇?i◦,

where βj = kpj + bjkdj , j ∈ [1,m− 1] and, for each i ∈
[2,m] and k ∈ [1, i− 1],

ηik =

i∏
j=k+1

β
sgn(i−j)
j

[
k2pk − k

2
dk
− kpkkpk−1

sgn(k − 1)
]
,

µik =

i∏
j=k+1

β
sgn(i−j)
j kdk [kpk + ak] ,

γi1 =

i−1∏
j=1

β
sgn(i−j−1)
j+1 kpjλj .

Therefore,

ξ̇? − ξ̇?◦ = Γ1ξ̃ + Γ2ϑ− Γ4e+ Γ3

[
ξ̇?1 − ξ̇?1◦

]
(21)

where

Γ1 =


0 0 · · · 0

η21 −kp1
...

...
. . .

ηm1 ηm2 · · · −kpm−1

⊗ In, (22)

Γ2 =


0 0 · · · 0

−µ21 0
...

...
. . .

−µm1 −µm2 · · · 0

⊗ In, Γ3 =


1
β1
β1
...

⊗ In,

Γ4 =


0 0 · · · 0

η21 + γ21 −kp1
...

...
. . .

ηm1 + γm1 ηm2 · · · −kpm−1

⊗ In. (23)

Thus, replacing (21) in (19) we obtain

˙̃
ξ =− (K ′p + Γ1)ξ̃ + (Kd − Γ2)ϑ

− Γ3

[
ξ̇?1 − ξ̇?1◦

]
+ (K ′p + Γ1)e (24a)

ϑ̇ =− (A−BΓ2)ϑ− (K ′d −BΓ1)ξ̃

+BΓ3

[
ξ̇?1 − ξ̇?1◦

]
+ (K ′d −BΓ1)e (24b)

which corresponds to a stable linear system perturbed by the
linear-sector non-linearity

[
ξ̇?1 − ξ̇?1◦

]
. Now, Assumption 1

together with (4) guarantee that there exist non-negative reals
η1, η2 and η3 as well as a continuous odd saturation function
sat : R→ R such that |sat(y)| ≤ 1, and∣∣∣[ξ̇?1 − ξ̇?1◦]∣∣∣ ≤ η1sat(|q̃|) + η2| ˙̃q|+ η3|ϑ0|. (25)

Furthermore, if we define x := [ξ̃> ϑ>]> the system (24)
becomes

ẋ = Ax+ B
[
ξ̇?1 − ξ̇?1◦

]
+K ′e (26)

where

A =

[
−(K ′p + Γ1) Kd − Γ2

−(K ′d −BΓ1) −(A−BΓ2)

]
, B =

[
−Γ3

BΓ3

]
,



K ′ =

[
Kp + Γ′1
K ′d −BΓ1

]
.

Thus, the closed-loop dynamics is now in the convenient
cascaded form (15) with x1 = z, x2 := e, f2(t, x2) = Le,
and f1(t, x1) corresponds to the right-hand side of

{ Eq. (16)
ẋ = Ax+ B

[
ξ̇?1 − ξ̇?1◦

]
.

(27)

2) Boundedness of solutions:
Proposition 2: Let L and A be Hurwitz and let

kd0

[
a0
4b0
−m

]
>
m+ 2

2
+

[2kckδ + (m+ 2)/2]a20
b20

. (28)

Assume, also, that there exist positive definite matrices P and
Q such that Q = −(A>P + PA) and

Q >
1

2
diag{Q} > (η22 + η23)diag

{
|[PB]i|2

}
, (29)

where [PB]i is the ith n× n block of PB ∈ Rmn×n and η2,
η3 are defined in (25). Then, the solutions of the closed-loop
system (16), (20), (26) are uniformly globally bounded.
Proof. The solutions of (20) are uniformly globally bounded
since L is Hurwitz. The rest of the proof follows that of [18,
Theorem 6]. Let the Hurwitz property of L generate positive
definite matrices PL and −QL := (L>PL + PLL) and let
κ > 0 be a real constant. Then, consider the function W :
R2mn × Rmn → R≥0, defined as

W (x, e) = κx>Px+ e>PLe; (30)

a direct computation shows that its total derivative along the
trajectories of (20), (26) yields

Ẇ (x) =κ
[
x>Qx+ 2x>PB

[
ξ̇?1 −ξ̇?1◦

]
+ 2x>PK ′e

]
− e>QLe.

Next, define c := |PK ′|, λ := λmin(QL); using the Cauchy–
Schwartz and the triangle inequalities, we obtain

Ẇ ≤ −κx>Qx+ 2κx>PB
[
ξ̇?1 − ξ̇?1◦

]
+
κc

ε
|x|2

− (λ− κcε)|e|2 (31)

for any ε > 0. Furthermore,

x>PB
[
ξ̇?1 − ξ̇?1◦

]
=

(
m∑
i=1

ξ̃>i [PB]i + ϑ>i [PB]m+i

)[
ξ̇?1 − ξ̇?1◦

]
≤ 1

2

(
m∑
i=1

∣∣∣ξ̃i∣∣∣2 |[PB]i|
2

+ |ϑi|2
∣∣[PB]m+i

∣∣2) (η22 + η23)

+η1

(
m∑
i=1

∣∣ξ̃i∣∣ |[PB]i|+ |ϑi|
∣∣[PB]m+i

∣∣)+
m

2

[∣∣ ˙̃q∣∣2 + |ϑ0|2
]
.

Therefore, in view of the second inequality in (29) we have

Ẇ ≤− κx>
(
Q− 1

2
diag {Q} − c

ε
I

)
x− (λ− κcε)|e|2

+ 2κη1

(
m∑
i=1

∣∣ξ̃i∣∣ ∣∣[PB]i
∣∣+ |ϑi|

∣∣[PB]m+i

∣∣)
+ κm

[∣∣ ˙̃q∣∣2 + |ϑ0|2
]
.

Next, let V : R≥0 × R3n(m+1) → R≥0 be defined as
V (t, q̃, ˙̃q, ϑ0) +W (x, e), where

V =
κ

2

(
˙̃q>D(q̃ + qd(t)) ˙̃q + kp0 |q̃|2 +

kd0
b0
|ϑ0|2

)
(32)

The total derivative of V := V + W along the trajectories of
(27) yields

V̇ ≤ −κx>
[
Q− 1

2
diag {Q} − c

ε
I

]
x− (λ− κcε)|e|2

+
κ

2
|ξ̃1|2 + κ (m+ 2 + kckδ) | ˙̃q|2 − κ

[
a0kd0
b0
−m

]
|ϑ0|2

+ 2κη1

(
m∑
i=1

∣∣∣ξ̃i∣∣∣ |[PB]i|+ |ϑi|
∣∣[PB]m+i

∣∣) . (33)

The rest of the proof of boundedness follows as for Theorem
6 in [18]. The result follows from [26, Lemma 2].

Finally, to see that the separation principle holds, let the
control gains be given according to (28) and (29). Let the
observer gain L be any given Hurwitz matrix generating λ
in (31). Then, there exists a sufficiently large ε such that the
matrix Q−(1/2)diag {Q}−(c/ε)I is positive definite. On the
other hand, for any given λ and ε there exists κ such that the
factor (λ− κcε) is positive. Therefore, the controller and the
observer gains are independent of each other.

IV. CASE-STUDY: FLEXIBLE-JOINT ROBOTS

We briefly present a corollary of Proposition 1 which, nev-
ertheless, solves the longstanding open problem of position-
feedback global tracking control for flexible-joint manipula-
tors, (6). Moreover, we establish a separation principle.

The problem consists in stabilizing the trajectory t 7→
(qd, q̇d,K

−1ξ?1◦,K
−1ξ̇?1◦) via measurement of q and ξ1 only,

which is equivalent to stabilizing (1) at (qd, q̇d, ξ
?
1◦, ξ

?
2◦). To

that end consider the reduced-order linear observer
˙̂
ξ1 = ξ̂2 + λ1(ξ1 − ξ̂1), (34a)
˙̂
ξ2 = u+ λ2(ξ1 − ξ̂1) (34b)

where λ1 and λ2 are positive constants. In addition, defining
ξ̄ = ξ̂ − ξ?, consider the certainty-equivalence controller

ξ?2 = −kp1 ξ̄1 + kd1ϑ1 + ξ̇?1◦, (35a)
ϑi = qci + biξ

?
i + ζi

q̇ci = −aiϑi
ζ̇i = −(kdi − σi)ξ̄i − biξ̇?i◦

∀i ∈ [1, 2] (35b)

u = −kp2 ξ̄2 + kd2ϑ2 + ξ̇?2◦ (35c)

where kpi and kdi, which denote “proportional” and “deriva-
tive” control gains respectively, are positive constants.

Proposition 3: Let qd be given such that (4) holds. Consider
the system (6) under Assumption 1 in closed loop with the
controller defined by Equations (7)–(35). Let the controller
gains be such that: kp1 = kd1 ;

kd0
2

[
a0
4b0
− 2

]
>

(kckδ + 1)a20
b20

+ 1 (36)



min

{
kp1 ,

[kp2− kp1 ]

β2
,
a1
b21
,
a2
b22β

2

}
>
[
η22 + η23 ] (37)

[kp2 − kp1 ] > max

{
2

kp1
,

4µ2

a1

}
, a1a2 > 2b22µ

2 (38)

where µ = kp1(kp1+a1), and β = kp1(1+b1). Then, the origin
of the closed-loop system is uniformly globally asymptotically
stable for sufficiently large control gains and any positive
observer gains λ1, λ2.
Sketch of Proof. The key observation is that since kp1 = kd1
then η21 := 0 in (22) and (23) hence, the matrix P in
Proposition 2 may be chosen as the identity. Moreover, in
view of (36) and (38) the resulting matrix

Q =


2kp1 −1 0 0
−1 2 [kp2 − kp1 ] −µ 0
0 −µ 2a1 −b2µ
0 0 −b2µ 2a2

⊗ In
(defined in Proposition 2) is positive definite. Actually, (36)
implies (29) while (38) implies that Q−(1/2)diag{Q} is pos-
itive definite. In addition, (36) corresponds to (28). Inequality
(33) becomes

V̇ ≤ − κx>
(
Q− 1

2
diag {Q} − c

ε
I

)
x− (λ− κcε) |e|2

+
κ

2
|ξ̃1|2 + 2κη1

(
|ξ̃1|+ β|ξ̃2|+ b1|ϑ1|+ b2β|ϑ2|

)
+ κ (kckδ + 4) | ˙̃q|2 − κ

[
a0kd0
b0
− 2

]
|ϑ0|2.

For the purpose of establishing uniform global boundedness,
note that the negative quadratic terms in |x|2 dominate over
all terms involving (large) |ξ̃i| and |ϑi| while the sum of the
last two terms in the right hand side generate a sequence of
negative numbers for any increasing sequence {ti} such that
{|q̃(ti)|} is also monotonically increasing –see [18] for details.

V. CONCLUSIONS

We have presented the first position feedback controller
for flexible-joint manipulators guaranteeing uniform global
asymptotic stability of the origin for the closed-loop system.
This has been done by establishing a separation principle for
a passivity-based controller which makes use of approximate
differentiation of link positions and a reduced-order Luen-
berger observer for the motor velocities. The scheme enters
in a general framework that applies to a wide class of under-
actuated Euler-Lagrange systems of arbitrary relative degree
(with respect to the measured output).
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