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Lyapunov functions for persistently-excited cascaded time-varying systems: application to consensus

We present some results on stability of linear time-varying systems with particular structures. Such systems appear in diverse problems, which include the analysis of adaptive systems, persistently-excited observers and consensus of systems interconnected through time-varying links. The originality of our statements rely in the fact that we provide smooth strict Lyapunov functions hence, our proofs are constructive and direct. Moreover, we establish uniform global exponential stability with explicit stability and decay estimates. For illustration we address a brief but representative case-study of consensus of Lagrangian systems interconnected through unreliable links.

I. INTRODUCTION

The problem of establishing uniform global exponential stability for linear time-varying systems under conditions of persistency of excitation was initially motivated by the analysis of adaptive control systems. A considerable bulk of literature is available, some of which is nicely presented, e.g., in [START_REF] Ioannou | Robust adaptive control[END_REF]. Beyond the pure question of stability and convergence, lays that of performance. Specifically, to determine explicit exponential estimates that relate the property of persistency of excitation to the overshoot and convergence rates. For so-called "gradient" systems explicit bounds were independently provided in [START_REF] Brockett | The rate of descent for degenerate gradient flows[END_REF] and [START_REF] Loría | Uniform exponential stability of linear timevarying systems:revisited[END_REF]. For more complex cases, such as that of model-reference adaptive control systems see [START_REF] Loría | Explicit convergence rates for MRAC-type systems[END_REF]. It is to be noted, however, that the methods of proof in these references is rather intricate since they do not rely on the construction of strict Lyapunov functions.

As far as we know, the first Lyapunov functions for systems with a structure reminiscent of model-reference adaptive control appeared in [START_REF] Mazenc | Uniform global asymptotic stability of a class of adaptively controlled nonlinear systems[END_REF], [START_REF] Mazenc | Strict Lyapunov functions for time-varying systems[END_REF]. The method consists in constructing a strict Lyapunov function starting from a non strict one that satisfies V (t, x) ≤ -q(t)V (t, x) where q(t) is a positive persistently exciting signal. Our study in this note starts with this inequation.

Persistency of excitation also plays a fundamental role in control design, as for instance, in systems in which the control input is multiplied by a time-varying function -see [START_REF] Loría | On the PE stabilization of time-varying systems: open questions and preliminary answers[END_REF]. Such is the case of certain systems in aerospace engineering applications -see e.g., [START_REF] Sukumar | Precision attitude stabilization: Incorporating rise and fall times in gas-based thrusters[END_REF], [START_REF] Akella | Persistence filter based attitude stabilization of microsatellites with variable amplitude thrusters[END_REF], and [START_REF] Lovera | Spacecraft attitude control using magnetic actuators[END_REF]. In [START_REF] Loría | On the PE stabilization of time-varying systems: open questions and preliminary answers[END_REF] and [START_REF] Sukumar | Stabilizing controllers for multi-input, singular control gain systems[END_REF] uniform global asymptotic stability is established via the construction of a non-strict control Lyapunov function.

Another interesting case-study in which stability analysis tools for linear time-varying systems are useful is that of consensus under the assumption that communication links are time-varying and the graph has a spanning tree. In this scenario, stating conditions of persistency of excitation on the communication channels is particularly useful [START_REF] Teel | Smooth time-varying stabilization of driftless systems over communication channels[END_REF]. The aim is to guarantee the so-called semistability property [START_REF] Bhat | Lyapunov analysis of semistability[END_REF], which covers that of set asymptotic stability [START_REF] Moreau | Stability of multiagent systems with time-dependent communication links[END_REF] for systems having a continuum of equilibria E, in which each solution initially close to some equilibrium point remains close to one of the equilibria in E. Although Lyapunov analysis of semistability does not lead to an intuitive construction of Lyapunov functions, these methods are useful to address consensus problems where the communication topology switches between a finite number of time invariant graphs with certain connectivity property, and over a certain dwell time -see e.g., [START_REF] Hui | Semistability of switched dynamical systems, part i: Linear system theory[END_REF], [START_REF] Hui | Lyapunov analysis for discrete-time switched network systems[END_REF]. In [START_REF] Alvarez-Jarquín | Consensus under persistent interconnections in a ring topology: a small gain approach[END_REF] the consensus problem for networks whose topologies switch among time-varying graphs was addressed, that is, over two time scales.

In much of the existing literature, however, the study of consensus under time-varying communication links makes use of trajectory based approaches by means of a non differentiable Lyapunov functions to establish the contraction of trajectories. See for instance the seminal work of Moreau [START_REF] Moreau | Stability of continuous-time distributed consensus algorithms[END_REF] in which the communication signals take arbitrarily positive values. Similar problems are treated, for example, in [START_REF] Hendrickx | Convergence of type-symmetric and cut-balanced consensus seeking systems[END_REF] and [START_REF] Hendrickx | A new condition for convergence in continuous-time consensus seeking systems[END_REF] under relatively relaxed conditions on communication signals and on the graph topologies.

In this paper we present several constructions of strict Lyapunov functions for linear time-varying systems under persistency of excitation conditions that apply in different contexts. In Section II, we present a preliminary statement for a scalar positive system that serves as basis for our main results: these hold for cascaded nonautonomous systems and are presented in Section III. Together with the comparison lemma, our results may be used to make straightforward statements for systems that appear in applications ranging from state-estimation via Luenberger-type observers to consensus under time-varying interconnections and with a directed spanningtree topology -see Section IV.

From a theoretical viewpoint our consensus result per se is covered in the literature. However, as far as we know, we provide for the first time a strict smooth Lyapunov function. The importance of this can hardly be overestimated; strict Lyapunov functions are a fundamental step for analysis and design of robust control under realistic conditions, such as delays and sampling [START_REF] Mazenc | Robustness of nonlinear systems with respect to delay and sampling of the controls[END_REF]. From a technical viewpoint, our constructions are inspired by [START_REF] Mazenc | Strict Lyapunov functions for time-varying systems[END_REF], but we also use the results in [START_REF] Mazenc | Lyapunov functions for time-varying systems satisfying generalized conditions of matrosov theorem[END_REF] and [START_REF] Malisoff | Constructions of Strict Lyapunov functions[END_REF], mainly for the strictification of Lyapunov functions with a non-positive persistently-exciting bounds on the time derivatives. In Section IV we also provide a concise but representative example of mutual synchronization of Lagrangian systems [START_REF] Nijmeijer | Synchronization of mechanical systems[END_REF] interconnected through a spanning-tree topology. Finally, some concluding remarks are provided in Section V.

II. A POSITIVE COMPARISON SYSTEM

We start with a simple preliminary statement that, in addition to setting the basis for our main results, is interesting in its own right. Consider the differential equation

v = -q(t)v, v ∈ R (1) 
where q : R ≥0 → R ≥0 . Invoking standard results on adaptive control -see e.g., [START_REF] Ioannou | Robust adaptive control[END_REF], one may conclude that the origin is uniformly globally exponentially stable if q is continuous and persistently exciting that is, if there exist T , µ > 0 such that t+T t q(s)ds > µ ∀ t ≥ 0.

(

) 2 
Remark 1: The requirement that q(t) ≥ 0 is not necessary -see [25, Lemma 1].

• The following statement presents a strict Lyapunov function which establishes this, otherwise well-known, result -cf. [START_REF] Loría | A linear time-varying controller for synchronization of lü chaotic systems with one input[END_REF].

Lemma 1: Let q : R ≥0 → R ≥0 be essentially bounded and let inequality (2) hold. Under these conditions, for the system (1), under condition (2), the function W : R ≥0 × R → R ≥0 , defined by 

W (t, v) = 1 2 1 + 2qT + 2 T p(t) v 2 ( 
p(t) = t+T t (s -t -T ) q(s)ds, (4) 
which is obtained by changing the order of integration. • Proof of Lemma 1: Let q be such that |q(t)| ≤ q for all t ≥ t0 and define pM := qT 2 . Since, moreover, q(t) ≥ 0, we have -pM ≤ p(t) ≤ 0, |p(t)| ≤ pM for all t ≥ 0 hence,

1 2 v 2 ≤ W (t, v) ≤ 1 2 + qT v 2 . ( 5 
)
The derivative of W along the trajectories of (1) yields

Ẇ (t, v) = -q(t) 1 + 2qT + 2 T p(t) - ṗ T v 2
where, by definition, qT + 1 T p(t) ≥ 0 and, after the fundamental theorem of calculus, the derivative of p in (3b) yields

ṗ(t) = T q(t) - t+T t q(s)ds, ∀ t ≥ 0. (6) 
Hence, Ẇ ≤ -

1 T t+T t q(s)ds v 2 ∀t ≥ 0 (7) 
and, in view of (2), we obtain

Ẇ (t, v) ≤ - µ T v 2 (8) 
for all t ≥ t0 and v ∈ R. Now, in view of (5), we obtain

Ẇ (t, v) ≤ - 2µ (1 + 2qT )T W (t, v) (9) 
which, by integrating along the trajectories, yields

|v(t)| ≤ 1 + 2qT |v(t•)|exp - µ(t -t•) (1 + 2qT )T ∀t ≥ t0. ( 10 
)
The simplicity of Lemma 1 should not eclipse its utility in stability analysis. For instance, along with the comparison theorem, it may be used to establish uniform global asymptotic stability, with guaranteed convergence rates, for certain nonlinear time-varying systems. To see this, consider the equation

ż = f (t, z) (11) 
and let V : R ≥0 × R n → R ≥0 be positive definite, proper and decrescent, that is, assume that there exist α1, α2 ∈ K∞ such that

α1(|z|) ≤ V (t, z) ≤ α2(|z|). (12) 
Assume, further, that there exists a globally Lipschitz continuous function q : R ≥0 → R ≥0 , satisfying (2),

V (t, z) ≤ -q(t)V (t, z). (13) 
Then, let us define v(t) := V (t, z(t)), so that v(t) ≤ -q(t)v(t) for all t ≥ 0. In view of the monotonicity properties of V and the comparison theorem, Lemma 1 directly establishes uniform global asymptotic stability of the origin, {z = 0}, with an explicit decay estimate. Indeed, from [START_REF] Lovera | Spacecraft attitude control using magnetic actuators[END_REF], [START_REF] Teel | Smooth time-varying stabilization of driftless systems over communication channels[END_REF] and the comparison Lemma, we obtain

|z(t)| ≤ α -1 1 kvα2(|z•|)e -λv (t-t•) (14a) λv := µ k 2 v T , kv := 1 + 2qT . (14b) 

A. Example: nonlinear observer design

To illustrate further the utility of Lemma 1, consider the problem of designing an observer for a bilinear system

ẋ = A(u, y)x + B(u, y) (15a) 
y = Cx. ( 15b 
)
Since the system is linear in the unmeasured variable, we may proceed with a "Luenberger-like" design -see, e.g., [START_REF] Besanc ¸on | A viewpoint on observability and observer design for nonlinear systems[END_REF] and references therein. To that end, let x denote the state estimate and let us define its dynamics through the equation

ẋ = A(u, y)x + B(u, y) -L(u, y)C(u, y)[x -x] (16) 
where the observer gain, L, is to be designed in order to ensure that the origin of the estimation-errors system is uniformly globally exponentially stable. This may be accomplished by imposing a condition of persistency of excitation along the trajectories [START_REF] Zhang | Adaptive observers for MIMO linear time-varying systems[END_REF], [START_REF] Loría | Adaptive observers for robust synchronization of chaotic systems[END_REF]. Proposition 1: Consider the system (15) and the observer ( 16). Let L be continuous, and let u, y be such that there exist a continuouslydifferentiable function P : R ≥0 × R n → R ≥0 , a continuous function qm : R ≥0 → R ≥0 and positive constants pm, pM , µ and T such that:

(i) defining A(t) := A(u(t), y(t)) -L(u(t), y(t))C(u(t), y(t)) and Q(t) := -Ṗ (t) -P (t)A(t) -A(t) P (t), we have Q(t) ≥ qm(t)I ≥ 0 ∀ t ≥ 0;
(ii) qm is persistently exciting uniformly in y(t) and u(t) i.e., it satisfies (2) with µ and T independent of the initial conditions; (iii) the matrix P (t) is uniformly positive definite and bounded, i.e., pmI ≤ P (t) ≤ pM I.

Then, the estimation errors z(t) satisfy the bound

|z(t)| ≤ kv pM pm |z•|e -λv (t-t•) (17) 
where kv and λv are defined in (14b).

Proof: Let the estimation errors be defined as z := x -x hence,

ż = A(t)z. (18) 
Then, consider the function V : R ≥0 × R n → R ≥0 defined by V (t, z) := z P (t)z. This function satisfies (12) with α1(s) := pms 2 and α2(s) := pM s 2 . Moreover, defining q(t) := qm(t) p M , a direct computation shows that the time derivative of V along the trajectories of ( 18) satisfies [START_REF] Bhat | Lyapunov analysis of semistability[END_REF]. Therefore, by Lemma 1, we see that

W(t, z) := 1 2 1 + 2qT + 2 T p(t) [z P (t)z] 2
is a Lyapunov function for the estimation error dynamics ( 18) and (14a) holds which, in this case, is equivalent to [START_REF] Alvarez-Jarquín | Consensus under persistent interconnections in a ring topology: a small gain approach[END_REF]. The statement of Proposition 1 generalizes some results that rely on a uniform complete observability condition, e.g., the choice:

Ṗ = -εP -A(u, y) P + P A(u, y)] + 2C C (19a) L := P -1 C , P (t•) ≥ pmI, (19b) 
commonly used in observer design for bilinear systems -cf. [START_REF] Besanc ¸on | A viewpoint on observability and observer design for nonlinear systems[END_REF], guarantees that P (t), hence Q(t) := εP (t), is positive definite and bounded, for all t ≥ T . The persistency of excitation condition on Q, imposed in Proposition 1, is less restrictive than positivity; moreover, the gain L(t) as defined in (19b) may reach very high values [START_REF] Besanc ¸on | A viewpoint on observability and observer design for nonlinear systems[END_REF]. Yet, the advantage of this choice is that it leads directly to an exponential-convergence estimate and provides a strict Lyapunov function for the estimation error-system. That is, this construction naturally lends itself for output-feedback high-gain designs, notably for systems with Lipschitz non-linearities -see e.g., [START_REF] Ahrens | High-gain observers in the presence of measurement noise: A switched-gain approach[END_REF]. On the other hand, for such systems, notably chaotic oscillators, the main result in [START_REF] Loría | Adaptive observers for robust synchronization of chaotic systems[END_REF] provides an observer of the type of ( 16), under the less restrictive persistency of excitation condition on Q(t). Thus, the statement of Proposition 1 covers all the previously mentioned results by providing an explicit stability bound under the weaker condition of persistency of excitation.

III. CASCADED SYSTEMS

In this section, using Lemma 1, we establish a more general result which applies to cascades of persistently-excited systems. To start with, consider the 2nd-order system:

ẋ1 = -a1(t)x1 + a2(t)x2 (20a) ẋ2 = -a2(t)x2 (20b) 
under the assumption that a1 and a2 are continuous, uniformly bounded, and persistently exciting, functions taking non-negative values.

For this system, exponential stability of the origin {x1 = x2 = 0} may be assessed following a direct cascades argument. Indeed, this follows, e.g., from the results in [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF] observing that, by Lemma 1, the respective origins of

ẋ1 = -a1(t)x1 ẋ2 = -a2(t)x2 (21) 
are uniformly globally exponentially stable and a2(t) is bounded hence, the solutions x1(t) of equation (20a) are uniformly globally bounded. The statement also follows from the fact that (20a) is input-to-state stable with Lyapunov function W (t, x1) defined by (3) and input x2. However, even though the cascades argument is straightforward for the case of two interconnected systems, the argument is hard to extend to cascades of n > 2 time-varying systems,

Σ n :                  ẋ1 = -a1(t)x1 + a2(t)x2 ẋ2 = -a2(t)x2 + a3(t)x3 . . . ẋn-1 = -an-1(t)xn-1 + an(t)xn ẋn = -an(t)xn, (22) 
relying purely on converse Lyapunov theorems. Our next statement removes this difficulty by providing a strict Lyapunov function.

Theorem 1: Consider the system [START_REF] Mazenc | Lyapunov functions for time-varying systems satisfying generalized conditions of matrosov theorem[END_REF] under the following hypotheses: A1 (Non-negativity): ai(t) ≥ 0 for all i ≤ n and all t ≥ 0. A2 (Boundedness): There exists ā > 0 such that |ai(t)| ≤ ā for all t ≥ 0 and all i ≤ n. A3 (Persistency of Excitation): There exist µ, T > 0 such that

t+T t ai(s)ds > µ ∀i ≤ n, ∀ t ≥ 0. (23) 
Then, defining β1 = 0 and, for each i ≤ n,

βi ≥ T 2µ 1 + āT 2 + T ā2 2µ βi-1, ∀i ≥ 2, pi(t) := - t+T t m t ai(s)ds dm, (24) 
the function Vn : R ≥0 × R n → R ≥0 , defined as

Vn(t, x) := x P (t)x (25) 
with

P (t) := 1 2 diag 1 + 2āT + 2 T pi(t) + βiā ,
is a strict Lyapunov function. Consequently, the origin is uniformly globally exponentially stable.

Proof: The proof is constructed based upon that of Lemma 1. We show that the Lyapunov function candidate Vn is positive definite, proper and its total derivative satisfies

Vn(t, x) ≤ - µ 2T n i=1 x 2 i . (26) 
Firstly, note that

-āT 2 ≤ pi(t) ≤ 0, ∀ i ≤ n, t ≥ 0 (27) therefore, 1 2 diag 1 + βiā ≤ P (t) ≤ 1 2 diag 1 + 2āT + βiā .
Next, we proceed by induction and using Lemma 1. For n = 1 the system (22) corresponds to

Σ 1 : ẋ1 = -a1(t)x1 and V1(t, x1) = 1 2 1 + 2āT + 2 T p1(t) x 2 1 ( 28 
)
is a strict Lyapunov function for Σ 1 . The latter follows by mimicking the proof of Lemma 1 to obtain

V1(t, x1) ≤ - µ T x 2 1 (29) 
-cf. Eq. ( 8). Actually, later we shall use the fact that, for any index i ≥ 1, the derivative of the right-hand side of (28) along the trajectories of ẋi = -ai(t)xi satisfies an inequality similar to (29), i.e., Vi ≤ -(µ/T )x 2 i . For n = 2, the cascaded system Σ 2 corresponds to [START_REF] Hendrickx | A new condition for convergence in continuous-time consensus seeking systems[END_REF], for which we define the function V2 : R ≥0 × R 2 → R ≥0 as

V2(t, x12) = V1(t, x1) + 1 2 1 + 2āT + 2 T p2(t) x 2 2 + 1 2 β2āx 2 2 (30) 
with x1j := [x1 • • • xj] and, according to [START_REF] Nijmeijer | Synchronization of mechanical systems[END_REF],

β2 ≥ T 2µ 1 + 2āT 2 . (31) 
Furthermore, using the bound ā ≥ ai(t) ≥ 0, following the prooflines of Lemma 1, we see that the time derivative of V2 satisfies

V2(t, x12) ≤ V1(t, x1) -β2a2(t) 2 x 2 2 - µ T x 2 2 (32)
and, along the trajectories of (20a), V1 satisfies

V1(t, x1) ≤ - µ T x 2 1 + 1 + 2āT + 2 T p1(t) x1a2(t)x2.
In turn, this implies that

V2(t, x) ≤ - µ 2T (x 2 1 + 2x 2 2 ) + φ2(t, x12, β2) φ2(t, x12, β2) := - µ 2T x 2 1 -β2a2(t) 2 x 2 2 + 1 + 2āT + 2 T p1(t) x1x2a2(t).
Now, notice that φ2 ≤ 0 if β2 satisfies (31). To show this, we introduce

2 := µ T 1 + 2āT (33)
and we use the triangle inequality

x1a2(t)x2 ≤ 1 2 2 x 2 1 + 1 2 2 a2(t) 2 x 2 2 ∀ = 0, (34) 
as well as the fact that pi(t) ≤ 0, to obtain

φ2(t, x12, β2) ≤ - x 2 1 2 µ T -2 1 + 2āT -x 2 2 a2(t) 2 β2 - 1 2 2 1 + 2qT ∀ = 0.
From (33) and (31) it follows that φ2 ≤ 0 hence, we conclude that

V2(t, x12) ≤ - µ 2T x 2 1 + x 2 2 - µ 2T x 2 2 . (35) 
Next, we proceed by induction. For any j ∈ (2, n], let Vj be a strict Lyapunov function for Σ j -cf. [START_REF] Mazenc | Lyapunov functions for time-varying systems satisfying generalized conditions of matrosov theorem[END_REF], and let it be defined as

Vj(t, x1j) = Vj-1(t, x1j-1) + 1 2 1 + 2āT + 2 T pj(t) x 2 j + 1 2 βj āx 2 j . (36)
To evaluate its total time-derivative along the trajectories of Σ j we first see that

Vj-1(t, x1j-1) ≤ - µ 2T j-1 i=1 x 2 i - µ 2T x 2 j-1 + ∂Vj-1 ∂xj-1 ajxj
and, in view of (36),

∂Vj-1 ∂xj-1 = 1 + 2āT + 2 T pj-1(t) + βj-1ā xj-1. (37) 
Hence, it follows that

Vj(t, x1j) ≤ - µ 2T j i=1 x 2 i - µ 2T x 2 j + φj(t, x1j, βj, βj-1)
where

φj(t, x1j, βj, βj-1) = - µ 2T x 2 j-1 -βjaj(t) 2 x 2 j + 1 + 2āT + 2 T pj-1(t) aj(t)xjxj-1 + βj-1āaj(t)xjxj-1. (38) 
Now, in view of ( 27), the factor of aj(t)xjxj-1 is non-negative hence, applying the triangle inequality to the last two terms on the right-hand side of (38), we obtain that, for any , σ = 0,

φj(t, x1j, βj, βj-1) ≤ - µ 2T x 2 j-1 -βjaj(t) 2 x 2 j + 1 + 2āT + 2 T pj-1 aj(t) 2 2 2 x 2 j + 1 2 2 x 2 j-1 + βj-1 1 2 σ 2 aj(t) 2 x 2 j + ā2 2σ 2 x 2 j-1
which, in turn, since pi(t) ≤ 0, implies that

φj(t, x1j,βj, βj-1) ≤ - x 2 j-1 2 µ T - ā2 σ 2 -2 1 + 2āT -x 2 j aj(t) 2 βj - 1 2 2 1 + 2āT - σ 2 2 βj-1
for all σ = 0, = 0. To render non-positive the factors of x2 j and x 2 j-1 above, we choose

σ 2 = 2T ā2 µ .
Then, the factor of x 2 j-1 equals to zero if (33) holds, while the factor of -x 2 j aj(t) 2 is non-negative if

βj ≥ T 2µ [1 + 2āT ] 2 + T ā2 µ βj-1
for all j ∈ (2, n] -cf. [START_REF] Nijmeijer | Synchronization of mechanical systems[END_REF]. It follows that φj ≤ 0 and, consequently,

Vj(t, x1j) ≤ - µ 2T j i=1 x 2 i - µ 2T x 2 j . ( 39 
)
The latter holds for any integer j ∈ [3, n] hence, together with ( 29) and ( 35), the inequality (26) follows. Remark 3: From the previous proof it also follows that the trajectories of [START_REF] Mazenc | Lyapunov functions for time-varying systems satisfying generalized conditions of matrosov theorem[END_REF] satisfy

|x(t)| 2 ≤ αM |x•| 2 e -(µ/2T α M )(t-t•) ∀t ≥ t•
where αM := 1 + (2T + βn)ā. To see this, we observe that the Lyapunov function Vn satisfies (since βn > βn-

1 > • • • β1 = 0) (1/2)αM |x| 2 ≥ Vn(t, x) ≥ (1/2)|x| 2 .
• An interesting extension of Theorem 1 relies on the use of the comparison theorem, applied this time in a manner reminiscent of vector Lyapunov functions, to obtain the following statement for cascaded linear-time-varying persistently-excited systems

ẋ1 =A1(t)x1 + B1(t)x2 . . . ẋn-1 =An-1(t)xn-1 + Bn-1(t)xn ẋn =An(t)xn, xi ∈ R m , (40) 
under the following hypotheses: A4 (Boundedness) There exists B > 0 such that1 Bi ∞ ≤ B.

A5 (Lyapunov Equation)

There exist positive definite matrices Pi(t) and positive semi-definite matrices Qi(t), verifying:

Ṗi + A i Pi + PiAi = -Qi (41) 
A6 (Persistency of excitation) There exists a positive constants PiM , Pim, µ, T and a function qim : R ≥0 → R ≥0 such that:

0 < PimIn ≤ Pi(t) ≤ PiM In (42) 0 ≤ qim(t)In ≤ Qi(t) ( 43 
) t+T t qim(s)ds > µ ∀t ≥ 0. (44) 
Theorem 2: Under assumptions A4, A5 and A6 there exists a quadratic strict differentiable Lyapunov function for (40). Sketch of Proof. For each i ≤ n, let us define Vi(t, x) = x i Pi(t)xi. The derivative of each Vi along the trajectories of (40), satisfies

V1 ≤ -x 1 Q1(t)x1 + 2x 1 P1B1(t)x2 . . . Vn-1 ≤ -x n-1 Qn-1(t)xn-1 + 2x n-1 Pn-1Bn-1(t)xn Vn ≤ -x n Qn(t)xn. (45) 
Then, consider the modified Lyapunov function Wi :

R ≥0 × R nm → R ≥0 defined by Wi(t, x) = φi(t)Vi(t, x) with φi(t) = αi - 1 T t+T t m t qim(s)ds dm
where αi are constants such that φi ≥ PiM + 1. Then, defining νi : R ≥0 → R n×n such that Pi(t) = νi(t) νi(t) and Mi(t

) = φi(t)νi(t)Biνi+1(t) -1 , β1 = 1, βi+1 = 6T 2 µ 2
Mi 2 ∞ βi, we see that

W(t, x) = n i=1 βiWi(t, xi)
constitutes a strict Lyapunov function for (40).

IV. ISS CONSENSUS UNDER SPANNING TREE

To illustrate the utility of our main results we consider now a classical tracking consensus problem concerning n agents interconnected in a spanning-tree topology with time-varying interconnection gains. That is, each agent communicates only with two neighbors. Even though here we consider that each agent communicates always with the same neighbours, in general, this does not need to be the case -cf. [START_REF] Alvarez-Jarquín | Consensus under persistent interconnections in a ring topology: a small gain approach[END_REF]. We limit our case-study to this topology because in concrete cases of formation control, or follow-the-leader tracking control for that matter, using such communication topology excludes communication redundancy. From a strictly theoretical viewpoint, however, our main stability statement per se in this section is covered by, e.g., [START_REF] Moreau | Stability of multiagent systems with time-dependent communication links[END_REF]. On the other hand, as far as we know, we provide for the first time a strict smooth Lyapunov function which, in turn, leads to establish input-to-state stability (ISS).

Thus, let us consider n dynamical systems defined by

żi = fi(t, zi) + ui, zi ∈ R m , i ≤ n (46) 
which are required to follow a reference trajectory z * : R ≥0 → R m generated by an exogenous system ż * := f * (t, z * ). We assume that only the controller for the nth agent has access to the reference trajectory. Then, the ith agent receives information from the i + 1st, thereby establishing a spanning-tree topology, albeit through unreliable channels.

To recast this consensus-tracking problem into a stabilization one we introduce the error system with state variables xi := zi -zi+1 for all i ≤ n, with zn+1 := z * and fn+1 :

= f * . That is, ẋi = f i (t, x i + z i+1 (t)) -f i+1 (t, z i+1 (t)) + u i -u i+1 (47a) ẋn = fn(t, xn + z * (t)) -f * (t, z * (t)) + un. (47b) 
The consensus problem boils down to stabilizing the origin {x = 0}, with x := [x1, • • • , xn] , for the system non-autonomous system (47). For this, we use the control inputs ui := -γai(t)[zi -zi+1] + wi, ai(t) ≥ 0, ∀ t ≥ 0 (48)

where the functions ai are assumed to be bounded and persistently exciting, γ > 0 is the interconnection strength, and wi denote "additional" inputs to be defined. Then, the closed-loop system is 

A. Example

For the sake of illustration let us consider the following case-study of consensus-tracking control of Lagrangian systems,

Di(qi)qi + Ci(qi, qi) qi + gi(qi) = τi, τi, qi ∈ R p . (54) 
The functions Di, Ci and gi are, respectively, the inertia matrix, the Coriolis matrix and the potential forces vector. The control torques are denoted by τi.

We consider the problem of tracking and mutual synchronisation -see [START_REF] Nijmeijer | Synchronization of mechanical systems[END_REF] in which all systems are required to follow a common exogenous trajectory t → q * . Now, we assume that the systems are interconnected in a spanning-tree topology through unreliable links hence, on intervals of time the nodes may be isolated.

To each system we apply the preliminary linearizing feedback (this is possible because D is full rank) τi = Di(qi)ui + Ci(qi, qi) qi + gi(qi) so that the equation of each node becomes qi = ui. Then, emulating the unreliability of the communication channel by a squarepulse function a : R ≥0 → {0, ā} the control input becomes ui = a(t)[-k1(qi -qi+1) -k2( qi -qi+1) + qi+1] that is, the control is active only when a(t) = ā > 0.

Now, for each i ≤ n, define xi := [q i q i ] -[q i+1 q i+1 ] . We see that the error dynamics, in closed loop, takes the form ẋi = Ai(t)xi + Bi(t)xi+1 + vi(t), i ≤ n -1 where the perturbation vi, which stems from the fact the "feedforward" term qi+1 in ui is not available all the time, is defined as vi

(t) := [a(t) -1][qi+1(t) -qi+2(t)]. Furthermore, Ai(t) := 0 1 -a(t)k1 -a(t)k2 , Bi(t) = 0 a(t)
and, for i = n we have ẋn = An(t)xn + vn with vn(t) := [a(t) -1]q * (t). By Theorem 2, for vi ≡ 0, the origin is uniformly exponentially stable and admits a strict smooth Lyapunov function provided that A4-A6 hold. To verify these assumptions, we follow the second construction in [START_REF] Loría | On the PE stabilization of time-varying systems: open questions and preliminary answers[END_REF] for double integrators with time-varying peristently-exciting input gain, ẍ = α(t)u, and define a(t) := α(t) α(t) + ε , ε ∈ (0, 1).

In the current example we used k1 = k2 = 1 for all agents but different arbitrary gains may be used. We chose α(t) as a periodic pulse function of period T = 40s, with a duty cycle of 70% and ε = 0.01. Hence, a(t) ≈ α(t) is persistently exciting -see the bottom plot in Figure 1, and the conditions A1-A3 hold. The "nominal" dynamics ẋi = Ai(t)xi is studied in [7, Proposition 2]. After the proof of the latter and some numeric computations we see that Assumptions A5 and A6 hold with qim(t) ≈ a(t), for the particular choice of Qi := 0.16255 I. From Theorem 2, with vi(t) ≡ 0, we conclude uniform global exponential stability hence, formation tracking control of (54). Input-to-state stability with respect to the disturnace vi also may be concluded. Some numerical results are illustrated in Figure 1, for the case in which all systems follow the reference q * (t) =sin(t). The steadystate error depicted in the zoomed portion of the figure illustrates the ISS statement. It may be diminished at will by increasing k1 and k2.

V. CONCLUSIONS

The novelty of our work lies in the provided strict Lyapunov functions; indeed, stability statements for more general classes of systems have been established before by other means. We believe, however, that our statements may be used as off-the-shelf results in a variety of problems appearing in adaptive control systems, state estimation of bilinear systems, and consensus with persistentlyexciting interconnections. This claim is supported through a concise but representative example concerning consensus of Lagrangian systems which, we believe, may serve as basis for future work in the same direction. For instance, more general graphs, beyond spanningtree topologies should be considered. Also, while we adopted here (due to page constraints) the use of an ad hoc preliminary feedbacklinearizing control loop, applying other control methods is desirable.
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 1 Fig. 1. Mutual synchronization of four Lagrangian systems

  Consider the system (49) under assumptions A1-A3. For each i ≤ n, let vi be measurable functions, let ψi : R ≥0 ×R m → R m be such that there exist once-continuously-differentiable class K∞ functions Li such that Sketch of proof: Following the proof of Theorem 1 the Lyapunov function Vn defined in (25) is found to satisfy BR i . Then, we see that |vi| ≤ i|xi| implies that Vn is an input-to-stable Lyapunov function for all xi ∈ BR i and each i ≤ n. Hence, the system is input-to-state stable for all initial conditions t• ≥ 0, xi• ∈ BR i generating complete trajectories that satisfy |xi(t, t•, xi•)| ≤ Ri for all t ≥ t• ≥ 0 and all i ≤ n.

				Vn(t, x) ≤ -	n i=1	µγ 2T	-i 1+ā(2T +βi) x 2 i + 1+ā(2T +βi) xivi
						(52)
				for all xi ∈ Vn(t, x) ≤ -	n i=1	µγ 2T	-2 i 1 + ā(2T + βi) x 2 i .	(53)
				It follows that
	ẋi = -γai(t)xi + γai+1(t)xi+1 + ψi(t, xi) + vi	(49a)	
	ẋn = -γan(t)xn + ψn(t, xn) + vn	(49b)	
	with vi := wi -wi+1 and			
	ψi(t, xi) := fi(t, xi + zi+1(t)) -fi+1(t, zi+1(t)), i ≤ n. (50)	
	Note that the system (49) may be regarded as a "perturbed" version of	
	(22) hence, the following statement, which implies robust consensus-	
	tracking of (46), follows as a useful corollary of Theorem 1.		
	Lemma 2: |ψi(t, xi)| ≤ Li(|xi|).	(51)	
	Let Ri be such that for all xi ∈ BR i , BR i := {xi ∈ R : |xi| ≤ Ri},	
		∂Li ∂s	|xi| ≤ i		
	and the interconnection strength γ is such that		
	µγ 2T	> 2 i 1 + ā(2T + βi) .		

Then, the system (49) is input-to-state-stable from the input v :

= [v1, • • • , vn] , for all initial conditions t• ≥ 0 and xi• ∈ R n which produce complete trajectories satisfying xi(t, t•, xi•) ∈ BR i .
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We use B i ∞ := sup t≥0 B i (t) where B i (t) denotes the induced L

norm of B i (t) or any other congruent matrix norm.