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Abstract

We study the stability of the origin for a class of linear time-varying systems with a drift that may be divided in two parts.
Under the action of the first, a function of the trajectories is guaranteed to converge to zero; under the action of the second,
the solutions are restricted to a periodic orbit. Hence, by assumption, the system’s trajectories are bounded. Our main results
focus on two generic case studies that are motivated by common nonlinear control problems: model-reference adaptive control,
control of nonholonomic systems, tracking control problems, to name a few. Then, based on the standing assumption that
the system’s dynamics is persistently excited, we construct a time-dependent Lyapunov function that has a negative definite
derivative. Our main statements may be regarded as off-the-shelf tools of analysis for linear and nonlinear time-varying systems.
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1 INTRODUCTION

Lyapunov’s first method is useful to approximate, lo-
cally, the nonlinear dynamics of a model by a linear dif-
ferential equation. Similarly, if we are interested in estab-
lishing stability properties in the large (or even global),
one may find it useful to rewrite a nonlinear ordinary
differential equation as a linear time-varying system by
replacing the states with the trajectories.

Regarding nonlinear systems as linear time-varying is
not unusual. It is useful, for instance, in the analysis of
adaptive control systems [10, pp. 626-627], in the stabi-
lization of parameterized time-varying systems [25], in
the analysis and design of observers for bilinear systems
[26,4], and in dynamic feedback stabilization, notably of
chain-form systems [23].

Establishing uniform asymptotic stability of the origin
for linear time-varying systems, however, is a difficult
task in general. For instance, eigen-value analysis is gen-
erally inconclusive, even for boundedness of the solu-
tions. A recurrent property found in the literature on
analysis of time-varying systems is persistency of exci-
tation, which was originally introduced in the context of
systems identification [3] and it is known to be necessary
and sufficient for uniform exponential stability of certain
linear time-varying systems, see e.g. [19]. It also implies
uniform global asymptotic stability for some nonlinear
systems [22], notably in the context of model-reference
adaptive control. For linear time-varying systems it is
well-known that persistency of excitation is equivalent

to the so-called uniform complete observability. Then,
under this property and an output-injection argument,
uniform global exponential stability follows [1].

For nonlinear time-varying systems, the notion of persis-
tency excitation is intrinsically related to detectability
[2,11]. However, since persistency excitation was intro-
duced in the context of linear systems, as a property of
functions that depend only on time, much of the litera-
ture on the subject does not apply directly to the analy-
sis of nonlinear systems. Indeed, in general, the uniform
character of asymptotic stability is lost [9], unless one
explicitly assumes that persistency of excitation holds
uniformly in the initial conditions [25,14]. In contrast to
this, persistency of excitation is not necessary for weaker
forms of stability such as bounded-input-bounded-state
[18,7].

Besides the question of stability lies that of stabilisa-
tion and, at a more fundamental level, that of controlla-
bility. A general definition of (non-uniform) asymptotic
controllability, for nonlinear systems with time-varying
parameters, is given for instance in [25]. Namely, it is es-
tablished that under persistency of excitation of the in-
put gain matrix (along the trajectories) one can always
construct a control input to steer the trajectories to the
origin with non-uniform rate of convergence. Systems
with time-varying input gain appear naturally, e.g. in
the stabilization of spacecrafts with magnetic actuators
–see e.g., [24].

In stabilisation problems, persistency of excitation also
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appears naturally when there is a structural impedi-
ment to use autonomous smooth feedback, as in the case
of chain-form systems [23]. In this reference, under a
change of coordinates and a preliminary feedback, the
closed-loop system is transformed into a so-called skew-
symmetric system. Then, following the design rationale
from [23], in [15] uniform global asymptotic stability was
established for the closed-loop systems using controllers
with persistency of excitation.

A common drawback of most works on persistency of
excitation in the literature is that the methods of proof
are based on tools such as Barbălat’s lemma, proper-
ties of spaces of integrable functions, output-injection,
etc., as opposed to Lyapunov’s direct method. Yet the
benefits of the latter cannot be overestimated. Having a
strict Lyapunov function (with negative definite deriva-
tive) is an essential step in Lyapunov redesign to achieve
robustness to unmodelled dynamics [21].

In this paper we present Lyapunov functions for certain
linear time-varying systems with persistency of excita-
tion. We broach two different case-studies motivated by
scenarios reminiscent of model-reference adaptive con-
trol, stabilization of non-holonomic systems, and sys-
tems with time-varying input gain. The common thread
between these case-studies is, as e.g. in [19], neutral sta-
bility; more precisely, we assume that we know a non-
strict Lyapunov function that ensures (non-asymptotic)
stability. Our standing assumptions to guarantee attrac-
tivity are stated in terms of persistency of excitation.
Our Lyapunov-function constructions are much inspired
by [16,17]. However, to the best of our knowledge, for
the classes of systems that we study, there does not exist
equivalent results in the literature.

In next section we describe the class of systems that we
study. Our main statements are presented in Section 3.
Some concluding remarks are provided in Section 4.

2 PROBLEM FORMULATION AND MOTI-
VATION

We address the question of stability, via Lyapunov’s di-
rect method, for a wide class of linear time-varying sys-
tems, defigned by

ẋ = [Ao(t) +As(t)]x, x ∈ Rn (1)

where Ao and As are bounded differentiable mappings
R≥0 → Rn×n.

The system (1) covers several systems from the litera-
ture. For instance, if As is constant and Hurwitz and
Ao(t) is skew-symmetric we recover the class of systems
studied in [19]. If, on the other hand,Ao ≡ 0 andAs(t) is
negative semidefinite we recover the systems studied in
[20]. A particular case of the latter are “gradient-type”
adaptive systems, which are often written in the form
ẋ = −Ψ(t)Ψ(t)>x, with Ψ : R≥0 → Rm×n, m ≥ n. For
such systems, with Ψ bounded and with bounded deriva-
tive, it is well known that the origin is uniformly glob-

ally exponentially stable if and only if Ψ is persistently
exciting [3,22], that is, if there exist µ > 0 and T > 0
such that ∫ t+T

t

Ψ(s)Ψ(s)>ds ≥ µI ∀ t ≥ 0. (2)

There are various proofs of this fact in the literature; see
for instance [20,22], as well as [5,14] where tight stability
bounds are also established.

Generally speaking, the model (1) has two essential con-
stituting parts: the so-called oscillating drift Ao(t)x and
the steering drift As(t)x. Roughly speaking, under the
action of the oscillating drift, the trajectories of (1) tend
to oscillate while under the action of the steering drift
there exists a function of the state and time, (t, x) 7→ h
(e.g., part of the state), that vanishes. These properties
are captured in the following hypothesis and they are
illustrated by Example 1 farther below.

Assumption 1 1) There exist two bounded smooth
functions Ps and Qs taking values from R≥0 to Rn×n
such that, for all t ≥ 0, Ps(t) is symmetric positive
definite, Qs(t) is symmetric positive semi-definite,
Qs(t) 6≡ 0, and

As(t)>Ps(t) + Ps(t)As(t)>+ Ṗs(t) = −Qs(t). (3)

2) There exists a smooth bounded function Po : R≥0 →
Rn×n such that, for all t ≥ 0, Po(t) is symmetric positive
definite and

Ao(t)>Po(t) + Po(t)Ao(t)>+ Ṗo(t) = 0. (4)

Remark 1 In particular, the system ẋ = Ao(t)x with
Ao satisfying item 2) above is called neutrally stable. •
Example 1 (motivation) Let a and b be bounded per-
sistently exciting functions and let

As(t) :=

[
−a(t) 0

0 0

]
, Ao(t) :=

[
0 −b(t)
b(t) 0

]
. (5)

Now, consider the system (1), (5) with x = [x1, x2]>∈
R2. This system satisfies Assumption 1 with Ps = Po =
I. Hence, the derivative of V (x) = x>Psx = |x|2 along

the trajectories of (1), (5) satisfies V̇ ≤ −a(t)x21 ≤ 0.
Integrating the latter we obtain that |x(t)| is bounded
for all t ≥ 0 and

√
ax1 ∈ L2. Therefore, using standard

arguments based on Barbălat’s lemma, we may conclude
that h(t, x) =

√
a(t)x1 converges to zero [10].

Now, for the sake of argument, let us regard h(t, x) =√
a(t)x1 as a converging output. Then, x2 also converges

if the system is observable with respect to h, which holds
if and only if b is persistently exciting [1]. For general
classes of time-varying systems, the weaker property of
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detectability has also been linked to persistency of exci-
tation —see [11].

For the system defined by (1) and (5), however, persis-
tency of excitation of b does not suffice, in general, to es-
tablish the convergence of the state trajectories because
a varies with time too. For instance, let a and b be piece-
wise constant periodic functions taking non-negative val-
ues, hence persistently exciting. More specifically, for
each integer n ≥ 0, let Jn := (π/b̄)[2n+1, 2n+2] and let
J := ∪n≥0Jn. Then, let ā, b̄ > 0 and, for all t ∈ J , let
a(t) := 0 and b(t) := b̄ while, for all t 6∈ J let a(t) := ā
and b(t) := 0. Hence, a(t)b(t) ≡ 0. For this particular
choice of a and b, the trajectories x1(t) and x2(t) gen-
erated by (1), (5), with ā = b̄ = 1 and initial condition
t◦ = 0, x1(0) = 0, and x2(0) = 1, do not converge to
zero, but oscillate. �

3 MAIN RESULTS

Our main statements apply to systems of the form (1)
under the standing Assumption 1. We focus our atten-
tion on two case-studies that include several problems in
the realm of adaptive control, tracking control, and sta-
bilization of nonholonomic systems, to name a few. For
both cases, we give conditions for uniform global expo-
nential stability and, more significantly, we establish our
results by providing original strict Lyapunov functions.

The construction method for all our Lyapunov functions
is inspired from [16,17]. It relies on a functional that is
defined upon a locally Lipschitz bounded function ψ :
R≥0 → R with bounded first derivative (a.e.), that is,
we assume that there exists ψ̄ > 0, such that

max
{
|ψ|∞, |ψ̇|∞

}
≤ ψ̄ a.e. (6)

where
|ψ|∞ := ess sup

t≥0
|ψ(t)|

and, depending on the context, we use | · | to denote the
absolute value of scalars, the Euclidean norm of vectors,
or the induced L2 norm of matrices.

In addition, we assume that ψ is persistently exciting.
Then, we define

Υψ(t) := 1 + 2ψ̄2T − 2

T

∫ t+T

t

∫ m

t

ψ(s)2ds dm (7)

and, for further development, we remark that

1 ≤ Υψ(t) < 1 + 2ψ̄2T. (8)

Furthermore, after the fundamental theorem of calculus,
we have

Υ̇ψ(t) = − 2

T

∫ t+T

t

ψ(s)2ds+ 2ψ(t)2 (9)

hence, since ψ is persistently exciting,

Υ̇ψ(t) ≤ −2µ

T
+ 2ψ(t)2. (10)

3.1 First-case study: “adaptive-control” systems

Our first case-study is the system

{
ẋ1 = A(t)x1 −B(t)x2, x1 ∈ Rn

ẋ2 = C(t)x1, x2 ∈ Rm
(11)

where A, B and C are assumed to be piece-wise con-
tinuous and bounded function mapping R≥0 into Eu-
clidean spaces of appropriate dimensions. The equations
(11) may be written in the compact form (1) with x :=
[x1, x2]>,

As =

[
A(t) 0

0 0

]
, Ao(t) =

[
0 −B(t)

C(t) 0

]
(12)

and cover, in addition to Example 1, a familiar system
studied in the context of model-reference adaptive con-
trol [22,10,8]. In such case, A is assumed to be con-
stant (hence, also As) and Hurwitz, that is, there exists
P = P> > 0 such that A>P + PA =: −Q < 0. More-
over, if in addition we have C(t) := B(t)>P , we see that
the derivative of V (x) = x>1Px1 + |x2|2 along the tra-

jectories of (1), (12) yields V̇ (x) ≤ −x>1Qx1. Then, as
for Example 1 (with a constant), using standard argu-
ments one may conclude that x1 → 0 and the solutions
are bounded [22,10,8]. Furthermore, there are numer-
ous (rather lengthy) proofs of the fact that the origin is
uniformly exponentially stable if, moreover, B is persis-
tently exciting; see some of the above-cited references.

As Example 1 also illustrates, however, the problem is
much more complex if As is not constant. In that re-
gard, we must mention [17] where a statement on uni-
form global asymptotic stability (UGAS) for systems
with a structure similar to (1), (12) (with C = B) is
given. In this referenceB andC depend both on time and
the state and A is a nonlinear function of x1 satisfying
x>1 A(x1)x1 ≥ c|x1|2 for some c > 0. The first straight-
forward proof of UGAS for model-reference adaptive
control systems, via Lyapunov’s direct method, was pro-
vided.

Our first result provides, for the first time, a proof of ex-
ponential stability for systems (1), (12) under Assump-
tion 1 and, moreover, we provide a strict Lyapunov func-
tion. In particular, we relax the uniform-positivity con-
dition on A made in [17].

Theorem 2 For the system (11) assume that B ∈ C1.
In addition, assume that there exist once-continuously-
differentiable functions P : R≥0 → Rn×n>0 andQ : R≥0 →
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Rn×n≥0 , as well as positive constants Pm and PM , such that

PmI ≤ P (t) ≤ PMI (13)

Ṗ (t) +A(t)>P (t) + P (t)A(t) ≤ −Q(t) ≤ 0

C(t) = B(t)>P (t).

Finally, assume that the function ψ : R≥0 → R≥0 defined
by

ψ(t) := λm(Q(t))
√
λm(B(t)>B(t)), (14)

where λm denotes the smallest eigenvalue, is persistently
exciting and satisfies (6). Then, the null solution of (11)
is uniformly exponentially stable and the system admits
the strict Lyapunov function

V (t, x) = λ2m(Q(t))x>1B(t)x2

+
1

2

[
Υψ(t) + α

] [
x>1P (t)x1 + |x2|2

]
with ψ as in (14) and 1

α ≥ (2T/µ)λ3m(Q)|Ḃ|2∞ + (8T/µ)λm(Q)λ̇2m(Q) |B|2∞
+ (2T/µ)λ3m(Q)|A>B|2∞ + λ2m(Q)|B|2∞/Pm
+ 2λm(Q)λm(B>B)PM + 2λm(Q) |BC|∞ . (15)

Indeed, we have V̇ (t, x) ≤ −(µ/4T )
[
x>1Px1 + |x2|2

]
. �

Proof. In view of (8), the boundedness of B, Q, and
P , as well as (15), V is positive definite and radially
unbounded. Indeed, there exist η1, η2 > 0 such that

η1 |x|2 ≤ V (t, x) ≤ η2 |x|2 , x = [x>1 x
>
2 ]>.

The time derivative of V along trajectories of (11) sat-
isfies

V̇ (t, x) ≤ 2λm(Q)λ̇m(Q)x>1Bx2 + λ2m(Q)x>1A
>Bx2

− λ2m(Q)x>2B
>Bx2 + λ2m(Q)x>1BCx1

+ λ2m(Q)x>1Ḃx2 −
α

2
x>1Qx1

− µ

T

[
x>1Px1 + |x2|2

]
+ ψ2

[
x>1Px1 + |x2|2

]
≤− α

2
λm(Q) |x1|2 + λ2m(Q)λm(B>B)x>1Px1

+ λ2m(Q)x>1BCx1 + λ2m(Q)x>1A
>Bx2

+ 2λm(Q)λ̇m(Q)x>1Bx2 + λ2m(Q)x>1Ḃx2

− µ

T
|x2|2 −

µ

T
x>1Px1. (16)

Then, we use the inequalities

λ2m(Q)x>1Ḃx2 ≤
ε

2
λ4m(Q)|Ḃ|2∞ |x1|

2
+

1

2ε
|x2|2 ,

1 We drop the argument (t) from Q and B, not to make the
notation even more cumbersome.

2λm(Q)λ̇m(Q)x>1Bx2 ≤

2ελ2m(Q)λ̇2m(Q) |B|2∞ |x1|
2

+
1

2ε
|x2|2 ,

λ2m(Q)x>1A
>Bx2 ≤

ε

2
λ4m(Q)

∣∣A>B∣∣2∞ |x1|2 +
1

2ε
|x2|2 ,

which hold for any ε > 0. Hence, setting ε = 2T/µ and

in view of (15), it follows that V̇ ≤ −(µ/4T )|x2|2 −
(µ/T )x>1Px1. �

In the case that x1, x2 ∈ R we obtain the following.

Corollary 1 Let ā, b̄ > 0. Consider the system (1), (5)
with a(t), b(t) ≥ 0 for all t ≥ 0 and such that, for almost
all t ≥ 0,

max
{
|a|∞, |ȧ|∞

}
≤ ā, max

{
|b|∞, |ḃ|∞

}
≤ b̄. (17)

Assume, in addition, that ψ := ab is persistently exciting.
Then, the function V : R≥0 × R2 → R≥0, defined as

V (t, x) = a(t)2b(t)x1x2 +
1

2

[
Υab(t) + α

]
|x|2,

with

α ≥ āb̄2
[
4 + ā+

2ā2T

µ
(5 + ā2)

]
, (18)

satisfies V̇ (t, x) ≤ −(µ/4T )|x|2. �

Example 2 Consider the master-slave synchronization
problem for two harmonic oscillators, the slave system
ż = Ao(t)z +Bu and the master ż∗ = Ao(t)z∗, where

Ao(t) :=

[
0 −ω(t)

ω(t) 0

]
, B =

[
1

0

]
,

and z := [z1 z2]>. That is, both oscillators spin at the
same variable frequency ω(t), but out of phase. Then,
the problem consists in ensuring that z converges to z∗

exponentially fast under the assumption that the oscil-
lators are linked through an unreliable channel.

To model the channel unreliability, we introduce the
function a : R≥0 → R≥0 which is assumed to be bounded
and equal to zero over certain intervals of time of length
smaller than a threshold. For instance, a(t) may be a
piece-wise constant function as in Example 1. Then, we
design a simple control law so that the closed-loop sys-
tem have the structure (1): a steering drift and an oscil-
lating drift. The latter is natural to the harmonic oscil-
lators while the former may be added through the sim-
ple time-varying output feedback u = −a(t)[z1 − z∗1 ].
Then, the closed-loop system has exactly the form (1),
(5) with x1 := z1−z∗1 and b(t) := ω(t). We conclude that
phase-lock synchronisation is achieved provided that a
and ω are bounded, have bounded derivatives, and their
product is persistently exciting. Moreover, Corollary 1
provides a Lyapunov function. �
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3.2 Second case-study: skew-symmetric systems.–

We address a second generic case-study which is
motivated by stabilization problems in which non-
autonomous feedback is imposed by the control prob-
lem. These include: leader-follower tracking control [12],
stabilization of non-holonomic systems [23,15], stabi-
lization of systems with time-varying input gain [13,24],
to name a few.

We consider systems defined by the ordinary differential
equation (1) with

As(t) := −b(t)2BB>, Ao(t) := a(t)A, (19)

whereA ∈ Rn×n,B ∈ Rn×m and, in addition, we assume
the following:

1) the pair (A,B) is controllable,
2) A is neutrally stable (e.g., skew-symmetric), and
3) both t 7→ a and t 7→ b are scalar continuously differ-

entiable functions such that the function ψ := a2b
is persistently exciting.

The class of systems modelled by (1), (19) intersects
with the systems studied in [19] and covers the systems
studied in [6], where uniform global exponential stabil-
ity is ensured for the particular case that Ao is constant
and skew-symmetric. More significantly, in the latter ref-
erence the proof relies on trajectory-based arguments,
whereas in this paper we give a strict Lyapunov function.

Theorem 3 Consider the system (1), (19) where t 7→ a,
t 7→ b satisfy (17) for almost all t ≥ 0 and such that
ψ := a2b is persistently exciting. Assume, in addition,
that the pair (A,B) is controllable and that there exist a
positive definite matrix P = P>∈ Rn×n, and C ∈ Rn×n
such that

A>P + PA = 0, (20a)

PBB>= BB>P =: CC>, (20b)

and (13) hold. Define V : R≥0 × Rn → R≥0 as

V (t, x) :=
1

2
[γ + Υa2b(t)]x

>Px

+b(t)2a(t)3x>PA

n∑
i=1

βiΓiPx (21)

where γ := γ1 + γ2,

γ1 :=
T b̄6ā6

2µPm

∣∣∣∣∣
n∑
i=1

βiC
>[AΓiP − ΓiPA]

∣∣∣∣∣
2

(22)

γ2 :=
T ā4

µPm

n∑
i=1

βi
∣∣M>PC∣∣2∞ +

2b̄2ā3

Pm

∣∣∣∣∣PA
n∑
i=1

βiΓiP

∣∣∣∣∣ ,
(23)

Γi :=

i∑
j=1

Aj−1BB>Aj−1>, (24)

βnI ≥ [PAΓnA
>]−1 and βi is defined in reverse order,

i.e., for each i ∈ {n− 1, · · · , 1},

βi ≥
2nT

µPm

∣∣[PAiB]>M ∣∣2∞
[

n∑
k=i+1

βk

]2
−

n−1∑
k=i+1

βk (25)

where M =
[
2ḃa + 3bȧ

]
A + ba2A2. Then, V is a strict

differentiable Lyapunov function for (1), (19) and the
origin is uniformly globally exponentially stable. �

Remark 4 In view of conditions (20) and (13), As-
sumption 1 holds. •
Proof. In view of (8), the boundedness of a and b, and
the bound γ > γ2, the function V is positive definite and
radially unbounded. Indeed, there exist η1, η2 > 0 such
that

η1|x|2 ≤ V (t, x) ≤ η2|x|2 (26)

for all t ≥ 0 and x ∈ Rn.

Next, we compute the total derivative of V in (22) along
the trajectories of (1), (19). For this, we use (10), (20),
and the persistency of excitation of the product ψ = a2b.
Then, we reorganise some terms to obtain

V̇ ≤−γb2x>CC>x− µ

T
x>Px

−a4b2x>
[
βnPAΓnA

>P − P +

n−1∑
i=1

βiPAΓiA
>P

]
x

−ba2
[[

2ḃa+ 3bȧ
]
[PAx]>+ ba2[PA2x]>

] n∑
i=1

βiΓiPx

−b4a3[C>x]>
n∑
i=1

βiC
>[AΓiP − ΓiPA

]
x. (27)

To establish that V̇ is negative definite we first note that,
since the pair A,B is controllable by assumption, the
matrix ΦcΦ

>
c where Φc corresponds to Kalman’s con-

trollability matrix Φc := [B AB · · · An−1B], is positive
definite. Note, moreover, that Γn = ΦcΦ

>
c hence, in view

of the definition of βn, we have −βnx>PAΓnA
>Px +

x>Px ≤ 0. Therefore, the sum of the first two terms in
the second line of (27) is non-positive. Next, note that
the terms in the last line of (27) are bounded from above
by

γ1b
2|C>x|2 +

µPm
2T
|x|2

where γ1 is defined in (22). Hence, using Γ1 = BB> and
Γi = BB>+ AΓi−1A

> for all i ≥ 2, as well as (20b), it
follows that

V̇ ≤− ba2x>M>
[
P

n∑
i=1

βiCC
>+

n∑
i=2

βiPAΓi−1A
>P

]
x

− γ2b2|C>x|2 −
µ

2T
x>Px− b2a4x>

n−1∑
i=1

βiPAΓiA
>Px
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where M is defined below (25). Next, observe that

n∑
i=2

βiPAΓi−1A
>P =

n∑
i=2

βi

i−1∑
j=1

PAjBB>Aj>P

=

n−1∑
j=1

PAjBB>Aj>P

n∑
i=j+1

βi

n−1∑
i=1

βiPAΓiA
>P =

n−1∑
i=1

βi

i∑
j=1

PAjBB>Aj>P

=

n−1∑
j=1

PAjBB>Aj>P

n−1∑
i=j

βi

so, in view of (23), we obtain

V̇ ≤− µ

4T
x>Px− b2a4x>

n−1∑
j=1

PAjBB>Aj>P

n−1∑
i=j

βi

x
−ba2x>M>

n−1∑
j=1

PAjBB>Aj>P

n∑
i=j+1

βi

x. (28)

Then, defining Yj := [PAjB]>, it follows that

V̇ ≤ − µ

4T
x>Px−

n−1∑
j=1

|ba2Yjx|2 n−1∑
i=j

βi

+
[
YjMx

]>[
ba2Yjx

] n∑
i=j+1

βi

 . (29)

Using the triangle inequality on the last term on the
right hand side of (29), we see that for any εj 6= 0,

V̇ ≤− µ

4T
x>Px+

1

2

n−1∑
j=1

εj |YjMx|2

−
n−1∑
j=1

|ba2Yjx|2

[βj +

n−1∑
i=j+1

βi

]
− 1

2εj

 n∑
i=j+1

βi

2
 .

Now, on one hand, defining

εj =
µPm

4nT |YjM |2∞
(30)

we obtain

− µ

8T
x>Px+

1

2

n−1∑
j=1

εj |YjMx|2 ≤ 0. (31)

On the other, in view of (25), we have

βj +

n−1∑
i=j+1

βi ≥
1

2εj

 n∑
i=j+1

βi

2

.

Thus, we conclude that

V̇ ≤ − µ

8T
x>Px

which completes the proof. �

We wrap up this section with two concrete examples of
control of physical systems in which our statement for
systems of the form (1), (19) provides a clear improve-
ment on the literature. The first concerns the so-called
skew-symmetric systems. This terminology was coined
in [23] in the context of stabilization of under-actuated
nonholonomic systems in chain form. Skew-symmetric
systems are also studied in the context of stability anal-
ysis, in [14] and, in turn, the results therein were used
in [15] to construct smooth controllers for nonholonomic
systems.

Example 3 [Skew-symmetric systems] Roughly speak-
ing, the systems studied in [23,14,15] have the form

ẋ =



−k1 −k2a(t) 0 · · · 0

a(t) 0 −k3a(t) 0
...

0 a(t) 0
. . . 0

... 0
. . .

. . . −kna(t)

0 · · · 0 a(t) 0


x (32)

where ki > 0 and a is persistently exciting, bounded and
with bounded derivative. This system may be written in
the compact (1), (19) with b(t) ≡

√
k1, B = [1, 0 · · · 0]

hence, with As =diag[−k1 0 · · · 0], and an obvious
choice for Ao(t).
We stress that even though the resulting Ao(t) is not
skew-symmetric, it is neutrally stable. That is, it satisfies
(4) with Po :=diag [1, k2, k2k3, · · · ,

∏m−1
i=2 ki]. More-

over, (3) holds with Ps = Po and Qs = −As. Hence,
Assumption 1 holds. Besides, it takes a short calculation
to verify that the conditions of Theorem 3 hold. �

Our second example concerns tracking control of under-
actuated ships.

Example 4 (After [12]). In this reference a tracking
control problem for underactuate ships was solved under
the assumption that the reference trajectories are per-
sistently exciting. Interestingly, the closed-loop system
in this reference has the cascaded form

ẋ1 =
[
As +Ao(t)

]
x1 +G(t, x1, x2)x2, x1 ∈ R4

ẋ2 = Fx2, x2 ∈ R2
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where F is a Hurwitz constant matrix, As is diagonal
constant with two negative elements and two zero ele-
ments, G has linear growth in x1 and Ao depends on
reference trajectories and satisfies item 2 of Assump-
tion 1 –see [12] for details. Following standard argu-
ments for cascaded systems it is possible to establish
uniform global asymptotic stability of the origin, pro-
vided that the same property holds for the nominal sys-
tem ẋ1 =

[
As +Ao(t)

]
x1. In [12] this is established un-

der persistency of excitation of the reference trajectories
along with uniform-complete-observability and output-
injection arguments. Theorem 3 not only delivers a strict
Lyapunov function to ensure exponential stability for
the nominal x1–dynamics but it also constitutes a fun-
damental step to carry on a robustness analysis with re-
spect to unmodelled perturbations. �

4 CONCLUSIONS

We have presented original strict Lyapunov functions for
linear time-varying systems with persistency of excita-
tion and established several statements of uniform ex-
ponential stability. These results may be applied in the
analysis of nonlinear systems provided that the appro-
priate assumptions are imposed to guarantee uniformity.
In that regard, we believe that the construction of strict
Lyapunov functions for nonlinear time-varying systems
with a similar structure as that investigated here (see As-
sumption 1) is an interesting open problem. Notably, the
problem of establishing robustness properties (Input-to-
output stability) is a well-motivated avenue of research
for which our statements may be a starting point.
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