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Abstract 
 

 

Epicardial adipose tissue (EAT) is a small but very biologically active ectopic fat depot that 

surrounds the heart. Given its rapid metabolism, thermogenic capacity, unique transcriptome, 

secretory profile, and simply measurability, epicardial fat has drawn increasing attention 

among researchers attempting to elucidate its putative role in health and cardiovascular 

diseases. The cellular crosstalk between epicardial adipocytes and cells of the vascular wall or 

myocytes is high and suggests a local role for this tissue. The balance between protective and 

proinflammatory/profibrotic cytokines, chemokines, and adipokines released by EAT seem to 

be a key element in atherogenesis and could represent a future therapeutic target. EAT 

amount has been found to predict clinical coronary outcomes. EAT can also modulate cardiac 

structure and function. Its amount has been associated with atrial fribrillation, coronary artery 

disease, and sleep apnea syndrome. Conversely, a beiging fat profile of EAT has been 

identified. In this review, we describe the current state of knowledge regarding the anatomy, 

physiology and pathophysiological role of EAT, and the factors more globally leading to 

ectopic fat development. We will also highlight the most recent findings on the origin of this 

ectopic tissue, and its association with cardiac diseases. 
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Didactic synopsis 

 

Major teaching points:” followed by a bulleted list of 5-10 summary statements.  
 EAT is an ectopic fat depot located between myocardium and the visceral pericardium 

with no fascia separating the tissues, allowing local interaction and cellular cross-talk 

between myocytes and adipocytes 

 Given the lack of standard terminology, it is necessary to make a distinction between 

epicardial and pericardial fat to avoid confusion in the use of terms. The pericardial fat 

refers to the combination of epicardial fat and paracardial fat (located on the external 

surface of the parietal pericardium)  

 Imaging techniques such as echocardiography, computed tomography or magnetic 

resonance imaging are necessary to study EAT distribution in humans 

 Very little amount of EAT is found in rodents compared to humans 

 EAT displays high rate of fatty acids metabolism (lipogenesis and lipolysis), 

thermogenic (beiging features), and mechanical properties (protective framework for 

cardiac autonomic nerves and vessels) 

 Compared to visceral fat, EAT is likely to have predominant local effects  

 EAT secretes numerous bioactive factors including adipokines, fibrokines, growth 

factors and cytokines that could either be protective or harmful depending on the local 

microenvironement 

 Human EAT has a unique transcriptome enriched in genes implicated in extracellular 

matrix remodeling, inflammation, immune signaling, beiging, thrombosis and 

apoptosis pathways 

 Epicardial adipocytes have a mesothelial origin and derive mainly from epicardium. 

Cells originating from the Wt1+ mesothelial lineage, can differentiate into EAT and 

this “epicardium-to-fat transition” fate could be reactivated after myocardial infarction 

 Factors leading to cardiac ectopic fat deposition may include dysfunctional 

subcutaneous adipose tissue, fibrosis, inflammation, hypoxia, and aging  

 Periatrial EAT has a specific transcriptomic signature and its amount is associated 

with atrial fibrillation 

 EAT is likely to play a role in the pathogenesis of cardiovascular disease and coronary 

artery disease 

 EAT amount is a strong independent predictor of future coronary events  

 EAT is increased in obesity, type 2 diabetes, hypertension, metabolic syndrome, non-

alcoholic fatty liver disease, and obstructive sleep apnea (OSA) 



 

 4 

 Introduction 

 

Obesity and type 2 diabetes have become importantly prevalent in recent years, and are 

strongly associated with cardiovascular diseases, which remain a major contributor to total 

global mortality despite advances in research and clinical care (195). Organ-specific adiposity 

has renewed scientific interest in that it probably contributes to the pathophysiology of 

cardiometabolic diseases (63, 321). Better phenotyping obese individuals, increasing our 

knowledge on one’s individual risk, and identifying new therapeutic targets is therefore 

decisive. Epicardial adipose tissue (EAT) is the visceral heart depot in direct contact with 

myocardium and coronary arteries. Its endocrine and metabolic activity is outstanding, and its 

key localization allows a singular cross talk with cardiomyocytes and cells of the vascular wall. 

Despite the little amount of EAT found in rodents, human EAT is readily measured using 

imaging methods. This has brought more than 1000 publications in the past decade. In this 

review, we discuss the recent basic and clinical research with regards to the EAT (i) anatomy, 

(ii) physiology, (iii) origin, and (iv) development, (v) clinical applications of EAT 

measurments, and (vi) its role in pathophysiology, in particular with atrial fribrillation, heart 

function, coronary artery disease (CAD) and obstructive sleep apnea syndrome. 

Systematic review criteria 

We searched MEDLINE and Pubmed for original articles published over the past ten years, 

focusing on epicardial adipose tissue. The search terms we used alone or in combination, were 

“cardiac ectopic fat“, “cardiac adiposity”, “fatty heart”, “ectopic cardiovascular fat”, “ectopic 

fat depots”, “ectopic fat deposits”, “epicardial fat” “epicardial adipose tissue”, “pericardial fat”, 

“pericardial adipose tissue”. All articles identified were English-language, full-text papers. We 

also searched in the reference lists of identified articles, for further investigation. 

 

EAT IN HEALTH  
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Anatomy of EAT 

 

Definitions and distinction between pericardial and epicardial fat 

 

Epicardial fat is the true visceral fat deposit over the heart (111, 253, 265). It is most commonly 

defined as adipose tissue surrounding the heart, located between the myocardium and the 

visceral pericardium (Figure 1). It should be distinguished from paracardial fat (adipose tissue 

located external to the parietal pericardium) and pericardial fat (often defined as paracardial fat 

plus epicardial fat) (84, 126). However, it should be noted that in the literature there is often 

some confusion in the use of the term pericardial instead of epicardial or conversely, so that it 

is prudent to carefully review the definition of adipose tissues measured by imaging used by 

authors in any individual study. 

 

Distribution of EAT in humans and other species 

 

Eventhough the adipose tissue of the heart was neglected for a long time, anatomists made 

early observations in humans that it varies in extent and distribution pattern. EAT constitutes in 

average 20% of heart weight in autopsy series (50, 253, 259). However, it has been shown to 

vary widely among individuals from 4% to 52% and to be preferentially distributed over the 

base of the heart, the left ventricular apex, the atrioventricular and interventricular grooves, 

along the coronary arteries and veins, and over the right ventricle (RV), in particular free wall 

(253). In our postmortem study, age, waist circumference and heart weight were the main 

determinants of EAT increase, the latter covering the entire epicardial surface of the heart in 

some cases (284). Importantly, a close functional and anatomical relationship exists between 

the EAT and the myocardium. Both share the same microcirculation, with no fascia separating 

the adipose tissue from myocardial layers, allowing cellular cross talk between adipose tissue 

and cardiac muscle (127). In other species than humans, such as pigs, rabbits or sheep, EAT is 

relatively abundant, which contrasts with the very small EAT amount found in rodents (Figure 
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2) (127). Initially, these findings did not support for a critical role of EAT in normal heart 

physiology and partly explain why EAT has been so poorly studied. However, there is a 

growing body of evidence that beyond the amount of EAT, its metabolic and endocrine activity 

is also crucial. 

 

Physiology of EAT 

 

 

The current understanding of EAT physiology is still in its infancy. The main anatomical and 

supposed physiological properties of epicardial fat are summarized in table 1. One of the 

major limitations in studying the physiology of EAT is that only patients with cardiac diseases 

undergo cardiac surgery. Sampling healthy volunteers would be unethical. 

 

Histology 

In humans, EAT has a smaller adipocyte size than subcutaneous or peritoneal adipose tissue 

(11). But EAT is composed of far more than simply adipocytes. It also contains inflammatory, 

stromal and immune cells but also nervous and nodal tissue (206). It has been suggested that 

EAT may serve as a protective framework for cardiac autonomic nerves and ganglionated 

plexi (GP). Accordingly, nerve growth factor  (NGF), which is essential for the development 

and survival of sensory neurons, is highly expressed in EAT (266). Atrial EAT is thus often 

the target of radiofrequency ablation for arrhythmias (see paragraph EAT and atrial 

fibrillation).  

Metabolism 

Up to now, our understanding of EAT physiology in humans remains quite limited, and data 

regarding lipid storage (lipogenesis) and release (lipolysis) come mainly from animal studies. 

In guinea pigs, Marchington et al., reported that EAT exhibits an approximately two-fold 

higher metabolic capacity for fatty acids incorporation, breakdown, and release relative to 

other intra-abdominal fat depots (198). Considering that free fatty acids (FFA) are the major 
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source of fuel for contracting heart muscle, EAT may act as a local energy supply, and an 

immediate ATP source for adjacent myocardium during time of energy restriction (199). 

Conversely, due to its high lipogenic activity, and high expression of fatty acid transporters 

specialized in intracellular lipid trafficking such as FABP4 (325), (fatty-acid-binding-protein 

4), EAT could serve as a buffer against toxic levels of FFA during time of excess energy 

intake. How FFAs are transported from the EAT into the myocardium has however to be 

elucidated. One hypothesis is that FFAs could diffuse bidirectionally in interstitial fluid across 

concentration gradients (265). 

 

Secretome 

EAT is more than a fat storage depot. Indeed, it is now widely recognized to be an extremely 

active endocrine organ and a major source of adipokines, chemokines, cytokines that could 

either be protective or harmful depending on the local microenvironement (127, 206). The 

human secretome of EAT is wide and is described in Table 2. This richness probably reflects 

the complex cellularity and cross talk between EAT and neighboring structures. Interleukin 

(IL)-1β, IL6, IL8, IL10, tumor necrosis factor α (TNF-α), monocyte chemoattractive protein 1 

(MCP-1), adiponectin, leptin, visfatin, resistin, phospholipase A2 (sPLA2), and plasminogen 

activator inhibitor 1 (PAI-1) are examples of bioactive molecules secreted by EAT (44, 74, 

206, 268). Given the lack of anatomical barriers, adipokines produced by EAT are thought to 

interact with vascular cells or myocytes in two manners: paracrine and/or vasocrine. 

Interaction with cardiomyocytes is likely to be paracrine as close contact between epicardial 

adipocytes and myocytes exist and fatty infiltration into myocardium is not rare (50, 193, 

308). Interactions with cells of the vascular wall seem to be paracrine or vasocrine. In 

paracrine signalling, it is hypothesized that EAT-derived adipokines could diffuse directly 

through the layers of the vessel wall via the interstitial fluid to interact with smooth muscle 
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cells, endothelium probably influencing the initiation of inflammation, and atherogenesis (see 

EAT and Coronary artery disease (CAD)). An alternative vasocrine signalling mechanism has 

been proposed, in which EAT-derived adipokines directly enter the lumen of closely opposed 

adventitial vasa vasorum, and thus are transported downstream into the arterial wall (126, 

265). Apart from the classical endothelial and intima layers “inside–out” cross talk, this 

would suggest the opposite existence of an “outside-in” cellular cross talk (111, 124, 266).  

Supposed Protective functions 

Mechanical protective effects have been attributed to epicardial fat. EAT is supposed to act as 

a shock absorber to protect coronary arteries against torsion induced by the arterial pulse 

wave and cardiac contraction (253). A permissive role of EAT on vessel expansion and 

positive remodeling of coronary vessels, to maintain the arterial lumen has been reported 

(251). Given its high metabolic activity, EAT is likely to be involved in the regulation of fatty 

acids homeostasis in the coronary microcirculation (199). Some adipokines such as 

adiponectin, adrenomedullin and omentin, may have protective effects on vasculature, by 

regulating arterial vascular tone (vasodilation), reducing oxidative stress, improving 

endothelial function, and increasing insulinsensitivity (42, 76, 89, 283). EAT is also 

considered as an immunological tissue that serves to protect the myocardium and vessels 

against pathogens (76, 266). Hence, under physiological conditions EAT can exert 

cardioprotective actions through production of anti-atherogenic cytokines. However, the 

modification of EAT into a more pro-inflammatory or pro-fibrosing phenotype is susceptible 

to favor many pathophysiological states (see EAT in diseases). Determining the factors that 

regulate this fragile balance is a big challenge for next years. 

Transcriptome 

EAT has a unique transcriptomic signature when compared to subcutaneous fat (89, 188). 

Using a pangenomic approach we identified that EAT was particularly enriched in 



 

 9 

extracellular matrix remodeling, inflammation, immune signaling, beiging, coagulation, 

thrombosis and apoptosis pathways (89). Omentin (ITLN1) was the most upregulated gene in 

EAT, as confirmed by others (76, 102), and network analysis revealed that its expression level 

was related with many other genes, supporting an important role for this cardioprotective 

adipokine (273). Remarkably, we observed a specific transcriptomic signature for EAT taken 

at different anatomical sites. EAT taken from the periventricular area overexpressed genes 

implicated in Notch/p53, inflammation, ABC transporters and glutathione metabolism. EAT 

taken from coronary arteries overexpressed genes implicated in proliferation, O-N glycan 

biosynthesis, and sphingolipid metabolism. Finally, EAT taken from atria overexpressed 

genes implicated in oxidative phosphorylation, cell adhesion, cardiac muscle contraction and 

intracellular calcium signalling pathway, suggesting a specific contribution of periatrial EAT 

to cardiac muscle activity. These findings further support the importance of the 

microenvironment on EAT gene profile. Likewise abdominal adipose tissue comprises many 

different depots there is not one but rather many epicardial adipose tissues. 

Thermogenesis 

The thermogenic and browning potential of epicardial fat has received increasing attention, 

and has been recently reviewed elsewhere (41). Brown adipose tissue generates heat in 

response to cold temperatures and activation of the autonomic nervous system. The heat 

generation is due to the expression of an uncoupling protein UCP-1, in the mitochondria of 

brown adipocytes (183). Until quite recently, BAT was thought to be of metabolic importance 

only in mammals during hibernation, and human newborns. However, recent studies using 

positron emission tomography (PET), have reported the presence of metabolically active BAT 

in human adults (56, 224). Interestingly, Sacks et al, reported that UCP-1 expression was 

fivefold higher in EAT than substernal fat, and undetectable in subcutaneous fat, suggesting 

that EAT could have «brown» fat properties to defend myocardium and coronary arteries 
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against hypothermia (40). The authors further demonstrated that the structure and architecture 

of EAT differs among the neonate, infant, and child with more genes implicated in the control 

of thermogenesis in EAT of neonates, and a shift towards lipogenesis through infancy (230).  

Further studies identified that EAT had beige or brite profile, with the expression of beige 

markers such as CD137 (267). Besides, we reported that periventricular EAT could be an 

EAT more sensitive to browning, as it expressed more UCP-1 than other epicardial fat stores 

(18). Furthermore, several genes upregulated in periventricular EAT encoded for enzymes of 

the glutathione metabolism pathway. Yet these enzymes have a specific signature in brown 

adipose tissue, due to the decoupling of the respiratory chain, and the increase in oxidative 

metabolism (246). The ‘brite’ (i.e. brown in white) or ‘beige’ adipocytes are multi-locular 

adipocytes located within white adipose tissue islets, which have the capacity to be recruited 

and to express UCP-1, mainly in case of cold exposure (52, 282, 339). It has been suggested 

that beige adipose tissue in EAT originates from the recruitment of white adipocytes that 

could produce UCP-1 in response to browning factors such as myokines like irisin, cardiac 

natriuretic peptides, or fibroblast growth factor 21 (FGF21) (24). Whether these factors have a 

direct beiging effect on EAT and can stimulate its thermogenic potential remains to be 

addressed. A recent study demonstrated that increased reactive oxygen species (ROS) 

production from epicardial fat of CAD patients was possibly associated with brown to white 

transdifferentiation of adipocytes within EAT (72). Accordingly, another study revealed that 

an increase in brown EAT was associated with the lack of progression of coronary 

atherosclerosis in humans (2). These results point to a beneficial role of EAT browning in 

CAD development. Whether these beige adipocytes within white epicardial adipocytes could 

serve, as a therapeutic target to improve cardiac health and metabolism remains to be 

explored. 
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The origin of epicardial adipose tissue 

 

 
In the recent years, there has been growing interest in the distribution and function of 

adipocytes and the developmental origins of white adipose tissue (WAT) (20, 109, 168, 244). 

Since adipocytes are located close to microvasculature, it has been suggested that white 

adipocytes could have endothelial origin (307, 315). However, this hypothesis has been 

challenged by recent lineage tracing experiments that revealed epicardium as the origin of 

epicardial fat cells (39, 180, 343). Chau et al, used genetic lineage tracing to identify 

descendants of cells expressing the Wilms’ tumor gene Wt1 (Wt1-Cre mice), and found a 

major ontogenetic difference between VAT and WAT (39). The authors observed that 

epicardial and five other visceral fat depots (gonadal, mesenteric, perirenal, retroperitoneal, 

and omental) appearing postnatally received a significant contribution from cells that once 

expressed Wt1 late in gestation. By contrast, Wt1-expressing cells did not contribute to the 

development of inguinal WAT or brown adipose tissue (BAT). Wt1 is a major regulator of 

mesenchymal progenitors in the developing heart. During development Wt1 expression is 

restricted mainly to the intermediate mesoderm, parts of the lateral plate mesoderm and 

tissues that derive from these and the mesothelial layer that lines the visceral organs and the 

peritoneum (201). Postnatally, in their experiments a subset of visceral WAT continued to 

arise from Wt1-expressing cells, consistent with the finding that Wt1 marks a proportion of 

cell populations enriched in WAT progenitors (39). Depending on the depot, Wt1+ cells 

comprised 4-40% of the adult progenitor population, being the most abundant in omental and 

epicardial fat. This suggested heterogeneity in the visceral WAT lineage. Finally, using FACS 

analysis the authors showed that Wt1-expressing mesothelial cells expressed accepted 

markers of adipose precursors (CD29, CD34, Sca1). Cultures of epididymal appendage 

explants in addition gave rise to adipocytes from Wt1+ cells, confirming that Wt1 expressing 

mesothelium can produce adipocytes (39). The concept of a mesothelial origin of epicardial 



 

 12 

fat cells has been supported by contemporaneous lineage-tracing studies from Liu et al, using 

double transgenic mice line Wt1-CreER; Rosa26RFP/+ tracing epicardium-derived cells 

(EDPCs), and adenovirus that expresses Cre under an epicardium-specific promoter Msln 

(180). They demonstrated that epicardial fat descends from embryonic epicardial progenitors 

expressing Wt1 and Msln. They referred to this as epicardium-to-fat transition (ETFT). 

Furthermore, cells of the epicardium in adult animals gave rise to epicardial adipocytes 

following myocardial infarction, but not during normal heart homeostasis (180). Another 

group confirmed these results and further established IGF1R signaling as a key pathway that 

governs EAT formation after myocardial injury by redirecting the fate of Wt1+ lineage cells 

(349). Taken together this suggested that while embryonic epicardial cells contribute to EAT, 

there is minima ETFT in normal adult heart, but this process can be reactivated after 

myocardial infarction or severe injury (Figure 3). This important discovery provides new 

insights into the treatment of cardiovascular diseases and regenerative medicine or stem cell 

therapy, as isolated human epicardial adipose derived stem cells (ADSCs) revealed the 

highest cardiomyogenic potential, as compared to the pericardial and omental subtypes (340). 

Further investigations are awaited in humans to decipher the mechanisms of ETFT 

reactivation in the setting of metabolic and cardiovascular diseases. 

Another study clarified the discrepancy of EAT abundance among species in EAT 

development (343). The authors confirmed in mice that EAT originates from epicardium, that 

the adoption of the adipocyte fate in vivo requires the transcription factor PPARγ (peroxisome 

proliferator activated receptor gamma). By stimulation of PPARγ at times of epicardium–

mesenchymal transformation, they were indeed able to induce this adipocyte fate ectopically 

in ventricular epicardium, in embryonic and adult mice (343). Human embryonic ventricular 

epicardial cells natively express PPARγ, which explains the abundant presence of fat seen in 
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human hearts at birth and throughout life, whereas in mice EAT remains small and located to 

the atrio-ventricular groove. 

Whereas EAT seems to have epicardial origin, adipocytes present in myocardium could have 

a different one (Figure 3). Indeed infiltration of adipocytes interspersed with the right 

ventricular muscle fibres is commonly seen in necropsies (308). It is thought to reflect the 

normal physiological process of involution that occurs with ageing. This is different from the 

accumulation of triglycerides in cardiomyocytes (namely steatosis). A recent study identified 

endocardial origin of intramyocardial adipocytes during development (351). Nevertheless, the 

endocardium of the postnatal heart did not contribute to intramyocardial adipocytes during 

homeostasis or after myocardial infarction, suggesting that the endocardium-to-fat transition 

could not be recapitulated after myocardial infarction. It remains however unknown whether 

endocardial cells could give rise to excessive adipocytes in other types of cardiovascular 

diseases such as arrhythmogenic right ventricular cardiomyopathy. In this genetic disease, 

excessive adipose tissue replace myocardium of the right ventricle, leading to ventricular 

arrhythmias, and sudden death (182). 

Taken together, further lineage studies are hence needed to better understand whether 

mesothelial progenitors contribute to epicardial adipocyte hyperplasia in obesity, type 2 

diabetes or cardiovascular diseases. 

 

What drives the development of ectopic fat in the heart?  

It is likely that genetic, epigenetic and environmental factors are involved in this process. 

EAT has been found to vary among population of different ethnicities (7–13), EAT volume or 

thickness was reported to be lower in South Asians, Southeast and East Asians compared to 

Caucasians (13), higher in White, or Japanese versus Blacks or African Americans (8,9,11). 

In a genome-wide association analysis including 5,487 individuals of European ancestry from 
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the Framingham Heart Study (FHS) and the Multi-Ethnic Study of Atherosclerosis (MESA) a 

unique locus 10198628 near TRIB2 (Tribbles homolog 2 gene) was identified to be associated 

with cardiac ectopic fat deposition, reinforcing the concept that there are unique genetic 

underpinnings to ectopic fat distribution (14). Animal studies have also revealed the possible 

effects of fetal programming such as late gestation undernutrition on visceral adiposity 

predisposing (15). Other environmental factors such as aging, excess caloric intake, sedentary 

life style, pollutants, and microbiota may also modulate ectopic fat deposition (16,17). In 

obesity and type 2 diabetes, increased amount of ectopic fat stores have been consistently 

reported, but the mobilization of those ectopic fat depots seem to be site specific (18–20). 

Studying the cellular mechanisms that favors ectopic fat accumulation has become therefore 

an important focus of research. 

 

Factors leading to ectopic fat development 

Expandability hypothesis: dysfunctional subcutaneous fat  
 

There are several potential mechanisms that might explain the tendency to deposit ectopic fat 

but one convincing hypothesis is that individual's capacity to store lipids in subcutaneous 

adipose tissue has a set maximal limit. When this limit is exceeded, increased import and 

storage of lipids in visceral adipose tissue and in non-adipose tissues occurs. This is the 

adipose tissue expandability hypothesis (323). The limited capacity of the subcutaneous 

adipose tissue to expand induces a “lipid spillover” to other cell types, leading to ectopic lipid 

deposition, which, in turn, are drivers of insulin resistance and the collective pathologies that 

encompass metabolic syndrome (319).  

 There is some intriguing evidence from human studies that supports the adipose tissue 

expansion hypothesis. In LMNA linked lipodystrophies, the lack of subcutaneous adipose 

tissue result in severe insulin resistance, hypertriglyceridemia and increased ectopic fat 
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deposition in the liver and the heart (19, 90). Data on animal studies have revealed that 

transplantation of SAT or removal of VAT in obese mice reversed adverse metabolic effects 

of obesity, improved glucose homeostasis, and hepatic steatosis (80, 117). These data replace 

the adipose tissue function at the center of ectopic lipids deposition. 

Fibrosis 

Adipocytes are surrounded by a network of extracellular matrix (ECM) proteins which 

represent a mechanical support and respond to various signaling events (151, 223). During 

adipogenesis, both the formation and expansion of the lipid droplet require dramatic 

morphological changes, involving both cellular and ECM remodeling (208). Throughout the 

progression from the lean to the obese state, adipose tissue has been reported to actively 

change its ECM to accommodate the growth (5, 65, 244). Moreover, it has been shown that 

metabolically dysfunctional adipose tissue exhibits a higher degree of fibrosis, characterized 

by abundant ECM proteins, and particularly abnormal collagen deposition (151). Therefore, 

as obesity progresses, ECM rigidity, composition and remodeling impact adipose tissue 

expandability by physically limiting adipocytes hypertrophy, thus promoting lipotoxicity and 

ectopic fat deposition. Indeed, genetic ablation of collagen VI (which is a highly enriched 

ECM constituent of adipose tissue (137)) in mouse model of genetic or dietary obesity, 

induced impaired ECM stability, reduced adipose tissue fibrosis and dramatically ameliorated 

glucose and lipid metabolism (151). In this mouse model, the lack of collagen VI allowed 

adipocytes to increase their size without ECM constraints, which favored lipid storage and 

minimized ectopic lipid accumulation in non adipose tissues. Such results suggest that 

adipose tissue fibrosis is likely to induce systemic metabolic alterations as fibrosis in the liver, 

heart or kidney. Moreover, it appears that maintaining a high degree of ECM elasticity allows 

adipose tissue to expand in a healthy manner, without adverse metabolic consequences (299). 

Though hypertrophic adipocytes exhibit a profibrotic transcriptome (114), the contribution 

and the identity of different cell types responsible for fibrotic deposits in adipose tissue is 
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difficult to determine. However, we and others have demonstrated that macrophages are the 

master regulators of fibrosis in adipose tissue (25, 150, 299). They produce high levels of 

transforming growth factor β1 (TGF- β1), and we and others demonstrated that they could 

directly activate preadipocytes (the so-called adipose progenitor cells) to differentiate towards 

a myofibroblast-like phenotype thus promoting fibrosis into adipose tissue during its 

unhealthy excessive development (25, 150). Importantly, it has recently been demonstrated 

that transcription factor interferon regulatory factor 5 (Irf5) known to polarize macrophages 

toward an inflammatory phenotype (162) represses directly TGF-β1 expression in 

macrophages thus directly controlling ECM deposition (59). Importantly, IRF5 expression in 

obese individuals is negatively associated with insulin sensitivity and collagen deposition in 

visceral adipose tissue (162).  

It has been proposed that fibrosis development in adipose tissue promotes adipocyte necrosis 

which in turn induces the infiltration of immune cells in order to remove cell debris, thus 

leading to low-grade inflammation state. Whether fibrosis is a cause or a consequence of 

adipose tissue inflammation in obesity is still a matter of intense debate (258). That being 

said, it is undisputed that there is a close relationship between adipose tissue fibrosis and 

inflammation development in adipose tissue.  

 

Inflammation 

The link between obesity and adipose tissue inflammation was first suspected with the finding 

that proinflammatory cytokine TNF-α levels were increased in obese adipose tissue the 

blockade of which led to insulin sensitivity improvement (120, 121). Consequently, 

macrophages were found to infiltrate obese adipose tissue (329, 341), which led to the general 

concept that obesity is a chronic unmitigated inflammation with insidious results, where 

adipose tissue releases proinflammatory cytokines and adipokines which impairs insulin 
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sensitivity in metabolic tissues (47). Very importantly, of the various fat depots visceral 

adipose tissue has been shown to be the predominant source of chronic systemic inflammation 

(140). Under lean conditions adipose tissue houses a number of immune cells, mostly M2-like 

macrophages (with a 4:1 M2:M1 ratio(186)), as well as eosinophils and regulatory T cells 

which secrete Il-4/IL-13 and IL-10 respectively, polarizing macrophages toward an anti-

inflammatory phenotype (185, 331). To note, the M2-like phenotype of macrophages has 

been reported to be maintained by both immune cells and adipocytes (203). Importantly, the 

polarization of macrophages from an M2 to a pro-inflammatory M1-like phenotype has been 

considered as a key event in the induction of obesity visceral adipose tissue inflammation (26, 

34, 185, 240). However, the crucial trigger for such polarization as well as the increase of 

immune cells in adipose tissue is still unclear, but is likely to be derived from adipocytes. As 

already mentioned above, with adipose tissue mass increase several morphological changes 

occur leading to activation of several stress pathways such as endoplasmic reticulum stress, 

oxidative stress and inflammasome within adipose tissue (48,56). Meanwhile, adiponectin 

production drops, the one of leptin increases and adipose tissue produces inflammatory 

mediators including IL1-β, IL-6; IL-8, Il-10; TGF-β, TNF-α, MCP-1, plasminogen activating 

inhibitor-1 (PAI-I) macrophage migratory inhibitory, metallothionin, osteopontin, chemerin, 

and prostaglandin E2 (140, 196). Adiponectin drop results in decreased glucose uptake while 

leptin decrease affects satiety signals but also the immune system. Indeed, leptin receptor 

(LEP-R) is expressed on most immune cells (331) and increased leptin production by adipose 

tissue could dramatically promote immune cell increase (236). Mice that are leptin (ob/ob) or 

leptin receptor (db/db) deficient are obese and exhibit a strong reduction in functional 

immune cells (regulatory T cells, NK cells and dendritic cells (166, 214)). Paradoxically, very 

provocative recent data argue that a reduced ability for an adipocyte to sense and respond to 

proinflammatory stimuli decreases the capacity for healthy adipose tissue expansion and 
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remodeling. As for fibrosis, such inability would result in increased high fat diet induced 

ectopic fat accumulation and metabolic dysfunction. Moreover, the authors demonstrate that 

proinflammatory responses in adipose tissue are essential for both proper ECM remodeling 

and angiogenesis, two processes known to facilitate adipogenesis, thus favoring healthy 

adipose tissue expansion (332). Finally, new regulatory players in adipose tissue homeostasis 

have been identified: the innate lymphoid type 2 cells (ILC2s) and IL-33. ILC2 are a 

regulatory subtype of ILCs, which are immune cells that lack a specific antigen receptor and 

can produce a spectrum of effectors cytokines, which match T helper cell subsets (294). ILCs 

are activated by IL-33 and produce large amounts of type 2 cytokines IL-5 and IL-13 (217). 

Upon binding to its receptor (ST2), IL-33 induces the production of large amounts of 

antiinflammatory cytokines by adipose tissue ILC2s and also the polarization of macrophages 

toward a M2 phenotype, which results both in adipose tissue mass reduction and insulin 

resistance improvement (110).  

Considerable changes in the composition and phenotype of immune cells occur in adipose 

tissue during the onset of obesity suggesting that they are actively involved in releasing 

secretory products along with adipocytes. Conversely to chronic systemic inflammation, 

which interferes with optimal metabolic fitness a potent acute adipose tissue inflammation is 

an adaptive response to stress-inducing conditions, which has beneficial effects since it 

enables healthy adipose tissue remodeling and expansion.  

 

Hypoxia 

In the attempt to identify the trigger of adipose dysfunction in obesity, the theory of 

insufficient angiogenesis to maintain normoxia in the developing fat pad during obesity has 

also been proposed (316, 345). Interestingly parallels exist between the excessive 

development of adipose tissue and tumors in that both situations are challenged to vascularize 
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growing tissue to provide sufficient O2 and nutrients (298). Various arguments strongly 

support the idea of “hypoxia in adipose tissue”. First, white mature hypertrophic adipocytes 

can reach a diameter of up to 200 µm in obese patients (205, 286) and the normal diffusion 

distance of O2 across tissues is 100 to 200 µm (27). Second, although lean subjects exhibit a 

postprandial blood flow rise to adipose tissue obese individuals do not (98, 148), indicating 

that O2 delivery to adipose tissue is indeed impaired in obesity. Third, various works 

performed in different murine models of obesity have robustly shown that in obese mice, 

hypoxia-responsive genes expression is increased, increased number of hypoxic foci (using 

hydroxyprobes system, such as pimonidazole) is found as well as lower adipose tissue oxygen 

partial pressure (256, 344, 347). As a result of hypoxic state, hypoxia-inducible factor (HIF) 

1α, which has been described as the “master regulator of oxygen homeostasis” (261, 274, 

317) is induced in adipose tissue. The molecular and cellular responses of mature adipocytes 

to reduced O2 tension have been intensively investigated (336). Hypoxia has been shown to 

dramatically modify the expression and/or release of leptin (increase) and adiponectin 

(decrease) and inflammation related proteins (IL-6, IL1β, MCP-1), indicating the installation 

of an inflammatory state (336). For that reason, hypoxia is postulated to explain the 

development of inflammation and is considered as a major initiating factor for ECM 

production, thus triggering the subsequent metabolic dysfunction of adipose tissue in obesity 

(299, 317). Among the other functional changes that were described concern the rates of 

lipolysis and lipogenesis, where lipolysis seem to be increased (92) while both lipogenesis 

and the uptake of fatty acids are decreased (232) and the fact that hypoxia may directly impair 

adipocyte insulin sensitivity (257). Other cell types present in adipose tissue have been shown 

to respond to hypoxia. Indeed, it has been clearly demonstrated that hypoxia induces pro-

inflammatory phenotype of macrophages (218). Moreover, macrophages have been localized 

within adipose tissue in hypoxic areas of obese mice thus augmenting their inflammatory 
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response (256). In addition to macrophages, preadipocytes have been demonstrated to largely 

increase both their production of VEGF and leptin under hypoxic culture conditions. 

Conversely, PPARγ expression was reported to be dramatically diminished thus reducing 

preadipocyte adipogenic abilities under hypoxic environment (153).  

 

Aging 

With aging, adipose tissue changes in abundance, distribution, cell composition and endocrine 

signaling. Indeed, through middle/early old age, body fat percentage increases in both, men 

and women (107, 165, 211), shifts from subcutaneous depots to intra-abdominal visceral 

depots (75, 235). Moreover, the aging process is accompanied by subsequent changes in 

adipose tissue metabolic functions such as decreased insulin responsiveness and altered 

lipolysis, which could cause excessive free fatty acids release with subsequent ectopic lipid 

deposition and lipotoxicity (61, 83, 287). In a metabolic point of view, the balance between 

fat storage and oxidation is disrupted with aging and the capacity of tissues to oxidize fat 

progressively decreases. Therefore, it is likely that adiposity increase with aging could be also 

due to positive energy balance, decreased physical activity and basal metabolic rate and 

maintained caloric intake (75, 245). Thus, fat aging is associated with age-related diseases, 

lipotoxicity, reduced longevity (216, 309). The aged adipose tissue is also characterized by 

reduced adipocyte size, fibrosis, endothelial dysfunction and diminished angiogenic capacity 

(69). Importantly, extensive changes in preadipocyte functions occur with aging (66, 154, 

155). These include preadipocyte replication decrease (66), diminished adipogenic abilities 

(155), increased susceptibility to lipotoxicity (108), and increased pro-inflammatory cytokine, 

chemokine and ECM-modifying proteases (33, 310).  

As in obesity, inflammation is a common feature of aging (215, 295). Associated to this low-

grade inflammation state, macrophages have been reported to accumulate with age in 
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subcutaneous adipose tissue. Conversely, no significant change in the visceral one was 

observed, however, the ratio of pro-inflammatory M1 macrophages to anti-inflammatory M2 

macrophages has been shown to increase with aging (91, 185, 187). Interestingly, T cells 

populations have also been reported to change with aging. Specifically, Treg cells which 

accumulate to unusually high levels as a function of age and exacerbate both the decline of 

adipose metabolic function as well as the rise in insulin resistance (12, 187). Aging is also 

linked with immune-senescence, a process leading to dysregulation of immunity or an 

adaptive response (106, 241). Notably, T cell dysfunction has been described and might also 

lead to systemic increases in TNF-α, IL-6 and acute phase proteins such as C-reactive protein 

and serum amyloid A (29, 270). The “redox stress hypothesis’ is also proposed to explain that 

age-related redox imbalance activates various pro-inflammatory signaling pathways leading 

to tissue inflammaging and immune deregulation (288). To note, considerable accumulation 

of senescent cells has been reported in aging adipose tissue (309). Among the various 

changes, which occur in senescent cells, multiple cytokines, chemokines, growth factors, 

matrix metalloproteinases and senescence-associated secretory phenotype (SASP) proteins are 

secreted and were shown to induce or sustain the age-related inflammation state (49, 187, 

235, 342). It was recently shown that removing senescent cells from older mice improves 

adipogenesis and metabolic function (342). The authors propose that senescent cell removal 

may facilitate healthy adipose tissue expansion, less ectopic fat formation and improved 

insulin sensitivity (235).  

 

Circulating adipose stem/stromal cells 

Ectopic fat deposition can also take the form of mature adipocytes, which “infiltrate” non 

adipose organs such as muscles, pancreas and heart. Conversely to ectopic lipid formation, the 

cause and mechanisms responsible for ectopic adipocyte formation are largely unknown (21), 
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neither their cellular origin nor the mechanisms controlling their metabolic activity (1, 248, 

313). As already discussed in the present review, adipose tissue depots undergo active 

remodeling throughout adulthood. To enable such remodeling, the presence of precursor cells 

exhibiting adipogenic potential is necessary (272). A population of multipotent progenitors, 

the adipose-derived stem/stromal cells (ASCs) (long identified as preadipocytes) were 

identified by various studies including ours to exhibit such abilities (95, 204, 205, 262, 275, 

352). ASCs, as their bone marrow counterpart the mesenchymal stem/stromal cells (MSCs) 

are endowed with multilineage mesodermal differentiation potentials as well as regenerative 

abilities, leading to their extensive investigation from a therapeutic and tissue engineering 

perspective (77, 96, 158). Adipose tissue remodeling is frequently reported to be associated 

with the infiltration of various cell populations (226, 329). However, adipose tissue is rarely 

seen as a reservoir of exportable cells.  

Indeed, cell export, the so-called mobilization process, has been essentially studied in bone 

marrow (169). For instance, in response to stress or injury, hematopoietic stem/progenitor 

cells lose their anchorage in the bone marrow microenvironment and are increasingly 

mobilized into the circulation. Cell mobilization involves chemoattractants and adhesion 

molecules and among these factors, the chemokine CXCL12 and its receptor CXCR4 are 

dominant in controlling stem/progenitor cell trafficking (70, 170, 171). Interference with 

CXCL12/CXCR4-mediated retention is a fundamental mechanism of stem/progenitor cell 

mobilization. Such interferences can be obtained by inducing (i) a CXCL12 decrease in the 

microenvironment through proteolysis by protease dipeptidyl-peptidase 4 (DPP4, also known 

as CD26) (46), (ii) a CXCL12 destabilization with MMP9, or neutrophil elastase or cathepsin 

G (175), (iii) an increase in CXCL12 plasma levels, which favors CXCL12-induced migration 

of stem/progenitor cells into the circulation over their retention in the bone marrow (213) and 

(iv) CXCR4 antagonism, with AMD3100 for instance, which induces the fast release of 
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stem/progenitor cells from the bone marrow to the circulation (60). We and others have 

reported that both human and murine native ASCs (freshly harvested) express functional 

CXCR4 (94, 276). Moreover we have also demonstrated for the first time that the in vivo 

administration of AMD3100 (a CXCR4 antagonist) induces the rapid mobilization of ASCs 

from subcutaneous adipose tissue to the circulation (93, 94). 

Interestingly, obesity has been associated with increased systemic circulation of MSCs, the 

tissue origin of which has not been identified (18). Moreover, while a reduction in CXCL12 

level has been demonstrated in adipose tissue with obesity (227), CXCL12 plasmatic levels 

were demonstrated to dramatically increase in the context of type 2 diabetes (147, 181). 

Therefore one can speculate that since we showed that subcutaneous adipose tissue releases 

adipose progenitors via a CXCL12/CXCR4 dependant mechanism, the unhealthy 

development of subcutaneous adipose tissue might trigger the aberrant release of adipose 

progenitors into the circulation and their further infiltration into non adipose tissues leading to 

ectopic adipocyte formation (Figure 4).  

To sum up, the mechanisms driving the development of ectopic fat deposition and its 

consequences are summarized in Figure 4. What drive the development of one ectopic fat 

among others remains unknown. This needs to be explored further in clinical and 

experimental settings. 

 

EAT IMAGING 

 

Noninvasive Imaging Quantification of EAT 

EAT can be relatively easily assessed by a variety of different imaging techniques, whose 

characteristics are summarized in Table 3. Epicardial fat quantification is usually performed 

on an exam that was realized in a clinical work up for a condition other than fat repartition 

quantification. In research, set up quantification of EAT is of major interest in several cardiac 

and metabolic diseases. Pericardium is the anatomical limit between epicardial and 
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paracardial fat. As outlined earlier in this review, these two tissues have different embryonic 

origin (see paragraph EAT origin), different vascularization, and their hypertrophy has 

different origin and consequences (265). The main problem for quantification of epicardial fat 

is the precise definition of the anatomical limit of the pericardium. Normal pericardium is a 

very thin layer and required cardiac ultrasound, gated MRI sequences and synchronized CT 

acquisition to be depicted. Besides imaging acquisition that has to depict correctly the 

pericardium layer, manual quantification of epicardial fat volume is time consuming. Recent 

teams have developed software analysis allowing and semi-automatic quantification of 

epicardial fat (192, 222, 229). These tools are now available for research community and 

progress will be made to save time during analysis phase.  

 

Echocardiography 

Quantification of epicardial fat using trans thoracic echocardiography (TTE) is limited to 

measurements of fat thickness surrounding the right ventricle through one echoic window. 

Indeed, EAT is visible as an echo free space between the outer wall of the myocardium and 

the visceral layer of the pericardium (Figure 5). The thickness of this space is measured on the 

right ventricular free wall in the parasternal long and short axis views where EAT is thought 

to be thickest. This technique, which is the most accessible and affordable imaging modality 

has been described by the group of Iacobellis (125). Distinction of the pericardium in a 

normal patient using TTE is possible so distinction of epicardial or paracardial fat is feasible 

using TTE.  

 

Computed Tomography (CT) 

CT is widely used for thoracic or cardiac diseases. The majority of clinical studies to date 

examining associations of epicardial fat depots with cardiovascular disease have utilized CT. 
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With high spatial resolution, pericardial fat can be readily and reproducibly identified with CT 

(Figure 6). Pericardial fat quantification is possible on non synchronized images but motion 

artefacts might pertain clear depiction between epicardial and paracardial fat (28). 

Synchronized acquisitions such as calcium scoring and coronary CT angiography are now 

well-established exams in clinical practice with a large number of indications. Distinction of 

the pericardium layer is facilitated by excellent spatial definition and by the high contrast 

between chest-pericardium-EAT and heart. Synchronized images provide less artifact and 

more precise quantification of fat volume and should be considered as the standard of 

reference for fat volume quantification using CT (174). Iodine injection is not required for fat 

quantification and acquisition such as calcium scoring could be used for fat quantification 

(43). Technical progress has dramatically decreased the amount of radiation exposure for one 

standard acquisition for 10 years with the irradiation dose of less than 1msv for calcium score 

and coronary CT. Nevertheless irradiation exposure pertains broad use of CT for fat 

quantification. Recent studies suggested that epicardial fat quantification can be performed 

semi-automatically with good accuracy thus reducing the time required for the quantification 

to fewer than 2 min (43, 292). 

  

Magnetic Resonance Imaging (MRI) 

MRI offers excellent spatial resolution and is considered today as the standard of reference for 

epicardial fat quantification (192). Fat tissues have low T1 value and appear in high signal on 

most sequences. Usually cine Steady State Free Precession (SSFP) sequences are used to 

quantify fat volume. Contrast on SSFP images allow a precise distinction between paracardial 

and epicardial fat and coverage of whole ventricles is always performed on a standard cardiac 

MR acquisition (161). Recently novel 3D Dixon acquisition using cardiac synchronization 
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and respiratory triggering provide high accuracy and reproducibility for peri and epicardial fat 

quantification (118). 

Furthermore MRI is a great tool to assess other cardiac parameters such as function, 

myocardial fibrosis or intramyocardial fat quantification using proton spectroscopy (86, 87). 

MRI image acquisition does not require irradiation and MRI is the ideal imaging method for 

follow-up. Usually, distinction of pericardium is well performed either on end diastolic or 

systolic phase (Figure 7). Areas obtained for each slice are summed together and multiplied 

by the slice thickness to yield epicardial fat volume. Consistency between measurements at 

two different time points required the definition of anatomical landmarks and by using the 

same imaging parameters (86). Recently software that provides an automatic quantification of 

epicardial fat was described with no difference compared to manual drawing and significant 

time saving but to date these tools are not broadly available (55).  

 

What Should be Measured and How? 

MRI was the only technique that was validated in vivo on animal models (192, 225). Mahajan 

et al., imaged at 1.5T, 10 merino sheep using cine steady state free precession sequences in 

short axis covering the whole heart. End diastolic images were used to quantify ventricular, 

atrial and total pericardial fat. Correlation between MRI and autopsies were strong with 

ICC>0.8 and Inter- observer 95% limits of agreement were 7.2% for total pericardial adipose 

tissue (192). No study validates CT against histologic quantification of adipose tissue but 

based on the current knowledge, one can assume that result might be similar to MRI. MRI and 

CT are the two techniques that could quantify the total amount of epicardial, paracardial and 

pericardial fat. Nevertheless MR should be preferred, if possible, due to the lack of 

irradiation. Ultrasound is limited to fat thickness assessment on one region. A recent study 

including 311 patients validated TTE against CT with the use of a High-Frequency Linear 
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Probe (r=0.714, p< 0.001) (116). By contrast, one recent paper found no correlation between 

epicardial fat thicknesses measured using TTE and volume of epicardial fat measured using 

MRI (281). This fact could be explained by the wide anatomical variability of cardiac fat 

repartition (16). Nevertheless, localized thickness of epicardial fat might be a measured of 

interest to assess clinical risk. A recent paper showed that EAT thickness localized at the left 

atrio-venticular groove assessed on CT performed for calcium scoring was the only parameter 

correlated with the number of vessels exhibiting stenosis  50% (338). Furthermore some 

investigators found that epicardial fat thickness measured at the left atrioventricular groove 

was the best predictor of obstructive coronary artery disease (116, 338). This finding was 

confirmed in a meta-analysis but confirmation is needed in other populations than Asians 

(337).  

 

EAT IN DISEASES 

 

EAT and atrial fibrillation 

 

Atrial fibrillation (AF) is caused by an interaction between an initiating trigger and the 

underlying atrial substrate, the latter being structural or electrical. AF is the most prevalent 

cardiac arrhythmia seen in clinical practice, that is associated with increased morbidity and 

mortality such as stroke or heart failure (144, 160, 334). Previous studies have highlighted 

that obesity is an independent risk factor for the new onset of atrial fibrillation (AF) (311, 

327). In the general population, obesity increases the risk of developing AF by 49%, and the 

risk escalates in parallel with increased BMI (326). Recently, there has been evolving 

evidence that EAT could be implicated in the pathogenesis of AF. Numerous studies have 

confirmed the association between EAT abundance and the AF risk, severity and post ablation 

or electrical cardioversion recurrence (3, 37, 45, 219, 221, 312, 335). This has been 
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particularly observed in patients with persistent compared to paroxysmal AF (3, 17, 280). 

This association was found to be independent of total adiposity or left atrial enlargement (3).  

In the Framingham Heart cohort including 3217 participants, CT measured pericardial fat (but 

not VAT) was an independent predictor of prevalent AF even after adjusting for established 

AF risk factors (age, sex, systolic blood pressure, PR interval, clinically significant valvular 

disease) and other measures of adiposity such as BMI or intrathoracic fat volume (312). 

Interestingly, several studies have shown that EAT surrounding the atria in particular, was 

linked to AF recurrence after catheter ablation (219, 221, 318). But what are the mechanisms 

involved in this association between EAT and AF? Does EAT modulate the trigger (initiation) 

or the substrate (maintenance) of AF? 

Direct mechanisms 

Histologically, there is no fascia boundaries separating EAT from myocardium. Hence a 

direct infiltration of adipocytes within the atrial myocardium is not rare as we observed in 

huma atria (Figure 8). This could contribute to a remodeled atrial substrate, and lead to 

conduction defects (conduction slowing or inhomogeneity) (112, 335). In a diet-induced 

obese sheep model, Mahajan et al, showed a major fatty infiltration in the atrial musculature 

(posterior left atrial wall) of obese sheep compared to controls (193). This sub-epicardial 

adipocyte infiltration interspersed between cardiac myocytes was associated with reduction in 

posterior left atrial voltage and increased voltage heterogeneity in this region, suggesting that 

EAT could be a unique feature of the AF substrate (193). This EAT infiltration could promote 

side-to-side cells connection loss and conduction abnormalities in a way similar to 

microfibrosis (291). In 30 patients in sinus rhythm, prior to AF ablation procedure, left atrial 

EAT was associated with lower bipolar voltage and electrogram fractionation (350). In the 

Framingam Heart study cohort, Friedman et al, showed that pericardial fat was significantly 

associated with several P wave indices such as P wave duration even after adjustment for 
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visceral and intrathoracic fat (82). P wave indices (PWI) represent indeed a summation of the 

electrical vectors of atrial depolarization reflecting the atrial activation sequence. These are 

also known as markers of atrial remodeling (249). Another small study using a unique 3D 

merge process, dominant frequency left atrial map, identified EAT locations to correspond to 

high dominant frequency during AF. High dominant frequency are key electrophysiological 

parameters reflecting microreentrant circuits or sites of focal-firing that drive AF (6, 302). 

Therefore, overlap between EAT locations and high dominant frequency sites implies that 

EAT is most likely to harbor high-frequency sites, producing a favorable condition for 

perpetuation of AF. In vitro incubation of isolated rabbit left atrial myocytes with EAT 

modulated the electrophysiological properties of the cells leading to higher arrhythmogenesis 

in left atrial myocytes (178). All together, these data suggest a possible role of EAT on AF 

electrophysiological substrate. 

Another important point is that EAT is the anatomical site of intrinsic cardiac autonomic 

nervous system, namely ganglionated plexi (GP) and interconnecting nerves, especially in the 

posterior wall around pulmonary veins ostia (124). These ganglia are a critical element 

responsible for the initiation and maintenance of AF (51, 250). GP activation includes both 

parasympathetic and sympathetic stimulation of the atria/ pulmonary veins adjacent to the GP. 

Parasympathetic stimulation shortens the action potential duration, and sympathetic 

stimulation increases calcium loading and calcium release from the sarcoplasmic reticulum. 

The combination of the short action potential duration and longer calcium release induces 

triggered firing resulting from delayed after-depolarization of the atria/pulmonary veins, as 

manifested by the high dominant frequency sites. Pulmonary veins isolation and 

radiofrequency ablation target sites for substrate modification overlap most of the EAT sites 

(179, 250, 301). Whether EAT has a physiological role to protect these ganglia against 

mechanical forces due to cardiac contraction has been suggested (266). By contrast, recent 
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clinical data showed that periatrial EAT is an independent predictor of AF recurrence after 

ablation (157, 202, 219, 296), supporting that EAT may have a pro-arrhythmic influence. 

Furthermore, electrical conductivity of the fat being lower than that of the atrial tissue, EAT 

volume may directly decrease the chance of the procedure to succeed (297). 

Finally, a mechanical effect of EAT on left atrial pressure stretch and wall stress, which is 

known to favor arrhythmias can not be excluded.  

 

Indirect mechanisms 

EAT is a endocrine organ and a source of pro-inflammatory cytokines (such as TNF- -1, 

IL-6, Monocyte Chemoattractant Protein-1 (MCP-1)) and profibrotic factors (such as TGFs 

and MMPs) acting in a paracrine way on the myocardium (111, 115, 206). These molecules 

are thought to diffuse in the pericardial sac and contribute to the structural remodeling of the 

atria. Indeed, using a unique organo-culture model, we showed that human EAT secretome, 

induced marked fibrosis of rat atrial myocardium and favored the differentiation of fibroblasts 

into myofibroblasts (322). This effect was mediated in part by Activin A, a member of the 

TGF family, and blocked by anti-activin A antibody (322). Constitutive TGF-ß1 

overexpression in a transgenic mouse model produces increased atrial fibrosis and episodes of 

inducible AF while the ventricle remains normal (220, 231). This data suggest that EAT could 

interfere with cardiac electrical activity and with the electrophysiological remodeling of the 

atria. According this, we previously demonstrated using a transcriptomic approach that peri-

atrial EAT had a unique signature, expressing genes implicated in cardiac muscle contraction 

and intracellular calcium signaling pathway. Fibrosis is a central process in the alteration of 

the functional and structural properties of the atrial myocardium (31, 172). It causes 

interstitial expansion between bundles of myocytes. Dense and disorganized collagen weave 

fibrils physically separate cardiomyocytes, and can create a barrier to impulse propagation 
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(285, 300). Other pro-fibrotic factors known to be secreted by EAT may also contribute to 

remodeling of the atrial myocardium. Matrix metalloproteinases (MMPs), key regulators of 

extra-cellular matrix turnover, are known to contribute to atrial fibrosis, are upregulated 

during AF, and their secretion is increased in EAT compared to SAT (22, 322).  

Local inflammatory pathways may also influence structural changes in the left atrium, and 

occurrence of AF. EAT secretes a myriad of pro-inflammatory cytokines such as IL-6, IL-8, 

IL-1, TNF-, MCP-1 that may have local effects on the adjacent atrial myocardium, and 

may induce migration of monocytes and immune cells (146, 206). The pro-inflammatory 

activity of EAT, adjacent to left atrium, atrioventricular groove, and left main artery assessed 

with positron emission tomography (PET), was confirmed to be higher in AF compared with 

non AF patients. (207). 

EAT is also an important source of reactive oxygen species (ROS) with a high oxidative 

stress activity that could be involved in the genesis of AF (271). Ascorbate, an antioxidant 

and peroxynitrite decomposition catalyst, has been shown to decrease atrial pacing-induced 

peroxynitrite formation in dogs, and the incidence of postoperative AF in humans (32). This 

point to a role of oxidative stress and cytokines produced by EAT on atrial remodeling and 

arrhythmogenesis.  

Taken together, all these studies provide uncovered findings that EAT through mechanical, 

fibrotic, inflammation and oxidative stress mechanisms may exert an impact on the atrial 

susbtrate and triggering (summarized in Figure 9). An improved understanding of how EAT 

modifies atrial electrophysiology and struture may yield novel approaches towards preventing 

AF in obesity. 
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EAT and cardiac geometry and function: 

EAT has local effects on the structure and function of the heart. Numerous clinical studies 

have unveiled the association between EAT volume and early defects in cardiac structure, 

volume and function (50, 57, 78, 87, 123, 128, 131, 143, 177, 328, 333). Increased amount of 

EAT has been associated with increased left ventricular (LV) mass and abnormal right 

ventricle geometry or subclinical dysfunction (97, 330). This is in accordance with initial 

necropsic and echographic studies showing an increase in LV mass to be strongly related to 

EAT, irrespective of CAD or hypertrophy (50, 128, 131). In a study of 208 non CAD patients 

evaluated by [15O]H2O hybrid positron emission tomography (PET)/CT imaging, EAT 

volume was associated with LV mass independently of BMI (10). EAT thickness and EAT 

volume were then associated with right and LV diastolic dysfunction, initially in severely 

obese patients and afterwards in various cohorts of subjects with impaired glucose tolerance, 

and no apparent heart disease (57, 87, 128, 143, 152, 177, 194, 228, 238, 328). In 75 men with 

or without metabolic syndrome, the amount of EAT correlated negatively with all parameters 

of LV diastolic function (LV mass-to-volume ratio, end-diastolic, end-systolic, and indexed 

stroke volumes) and was an independent determinant of LV early peak filling rate (228). 

After myocardial infarction, EAT volume was also associated with LV diastolic function after 

adjustment for classical risk factors and other adiposity parameters (9). By contrast, other 

studies have reported that myocardial fat, but not EAT, was independently associated with 

cardiac output and work (87, 134). Myocardial fat, which can be assessed by proton magnetic 

resonance spectroscopy (1H-MRS) refers to the storage of triglyceride droplets within 

cardiomyocytes, which can generate toxic lipid intermediates ie ceramides, endoplasmic 

reticulum stress, mitochondrial dysfunction and lipotoxicity (209). In the physiologically 

aging male heart, myocardial triglyceride content increased in association with the decline in 

diastolic function and could be thus a potential confounding factor (133). Altough these 
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clinical studies do not infer causality, they point to possible early impact of cardiac adiposity 

on LV remodeling and function. 

More recently, using newly innovative methods such as speckle tracking echocardiography 

(STE) or cardiovascular magnetic resonance (CMR) displacement encoded imaging, subtle 

changes in cardiac structure, contractile dysfunction and myocardial dyssynchrony were 

associated with EAT volume. Indeed, cardiac mechanics (strain, torsion, and synchrony of 

contraction) are more sensitive measures of heart function that may detect subtle 

abnormalities, preceding clinical manifestations. Using CMR in 41 obese children, Jing et al, 

showed that, early in life obese children develop contractile dysfunction with higher LV mass 

indexed to height compared to healthy weight children (139). In this study, EAT was linked to 

LV mass, peak longitudinal and circumferential strains and was a better indicator for cardiac 

remodeling and dysfunction than BMI z-score or VAT (139).  Another study found a 

persistent association between regional EAT and LV function beyond serum levels of 

adipokines, which is in favor of a local EAT effect rather than a systemic VAT effect (122). 

Healthy men aged 19-94 were evaluated using STE echography, to study the profile of the 

healthy aging heart. EAT was associated with longitudinal STE LV-dyssynchrony, 

longitudinal strain, circumferential LV-dyssynchrony, and LV twist (54). Furthermore EAT 

and hepatic triglyceride content correlated negatively with peak circumferential systolic strain 

and diastolic strain rate in type 2 diabetes (174). However, this is not consistent with other 

studies reporting no link of geometry alterations and LV diastolic dysfunction with EAT (23, 

100, 247, 252). EAT has been associated with myocardial and hepatic steatosis, which are 

confounding factors (133, 197). Whether EAT, VAT, hepatic fat or myocardial fat is the best 

predictor of LV function merits further evaluation and large population studies assessing each 

ectopic fat depot are needed.  
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The impact of EAT on cardiac function is less evident at a more advanced stage disease. 

Interestingly, reduced amount of EAT were found in patients with congestive heart failure 

(HF), compared to patients with preserved systolic function (67, 68, 132). Furthermore, EAT 

reduction was predictive of cardiac deaths in these patients (68).  Reduction of EAT volume 

with the severity of right ventricular systolic dysfunction in patients with chronic obstructive 

pulmonary disease was also demonstrated (145). EAT reduction might reflect a global fat 

mass reduction due to disease (124). Burgeiro et al, found reduction of glucose uptake, lipid 

storage and inflammation-related gene expression in EAT of patients with heart failure 

compared to SAT (30). However, the triggering factors causing EAT diminution and 

phenotype modification in heart failure is still under investigation, yet. 

How EAT can participate and initiate LV dysfunction? First, EAT could mechanically 

enhanced LV afterload that could lead to increase LV output and stroke volume to enable 

adequate myocardium perfusion. EAT may act as local energy supplier and/or as a buffer 

against toxic levels of free fatty acids in the myocardium (198). EAT was found to have an 

enhanced adrenergic activity with increased catecholamine levels and expression of 

catecholamine biosynthetic enzymes so that EAT could directly contribute to sympathetic 

nervous system hyperactivity in the heart that accompanies and fosters myocardial 

sympathetic denervation. Indeed, Parisi et al, studied the relationship between EAT and 

sympathetic nerve activity assessed by 123I-metaiodobenzylguanidine (123I-MIBG) in patients 

with HF (237). They found that EAT thickness was correlated to cardiac sympathetic 

denervation and represented an important source of norepinephrine, whose levels were 2-fold 

higher than those found in plasma. Because of the EAT proximity to the myocardium, the 

increase in catecholamine content in this tissue could result in a negative feedback on cardiac 

sympathetic nerves, thus inducing a functional and anatomic denervation of the heart (237) . 

Alternatively, secretory products of EAT and an imbalance between anti-inflammatory and 



 

 35 

proinflammatory adipocytokines could participate in myocardium remodeling (84).  The 

contribution of EAT to cardiac fibrosis, a substratum widely recognized to impair cardiac 

function, has been recently demonstrated (see also above EAT and AF) (322). EAT, through 

its capacity to produce and secrete adipo-fibrokines and miRNA could be a main mechanism 

contributing to the excess deposition of extracellular matrix proteins which distort organ 

architecture, induce pathological signaling and impair mechano-electric coupling of 

cardiomyocytes. (163, 291). However, concomitant study of heart fibrosis and EAT molecular 

characteristics has never been simultaneously performed in humans. In vitro studies from the 

group of Eckel, have demonstrated in both guinea pigs and humans that secreted factors from 

EAT can affect contractile function and insulin signaling in cardiomyocytes (103, 104). High-

fat feeding of guinea pigs induces qualitative alterations in the secretory profile of EAT, 

which contributes to the induction of impaired rat cardiomyocyte function, as illustrated by 

impairments in insulin signaling, sarcomere shortening, cytosolic Ca2+ metabolism and 

SERCA2a expression (104). Rat cardiomyocytes treated with secretome of EAT from diabetic 

patients showed reductions in sarcomere shortening, cytosolic Ca2+ fluxes, expression of 

sarcoplasmic endoplasmic reticulum ATPase 2a. This result suggests that EAT could 

contribute to the pathogenesis of cardiac dysfunction in type 2 diabetes, eventhough the 

development of cardiac dysfunction is likely to be multifactorial, insulinresistance, 

myocardial fibrosis, endothelial dysfunction, autonomic dysfunction and myocyte damage 

being probably implicated. 

The reciprocal crosstalk between EAT, myocardium and epicardium is even more complex 

than what was first suggested. Indeed as described above in paragraph EAT origin, signals 

from necrotic cardiomyocytes could induce epicardium-to-fat transition, thay may increase 

EAT volume which may in turn modulate heart disease evolution. 

All together, the available studies in humans do not imply causality but suggest that 
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accumulation of EAT is, at least an indirect marker of early cardiac dysfunction in selected 

stages of disease progression. Wide cohorts evaluating extensively all ectopic fat depots and 

comprehensively characterizing cardiac geometry and function across the lifespan are needed.  

 

EAT and coronary artery disease 

Histological and radiological evidence 

Although our limited understanding of the physiological role of EAT, there has been a lot of 

studies published in recent years, underscoring the strong association of EAT with the onset 

and development of coronary artery disease (CAD) in humans (41, 48, 234). Initially, a 

plausible role of EAT in CAD was supported by the histological observations that segments 

of coronary arteries running in a myocardial bridge (ie free of any immediately adjacent 

epicardial fat) tended to be free from atherosclerosis (135, 260). Necropsic studies have then 

demonstrated that EAT was higher in patients dead from CAD, and correlated with CAD 

staging (284). Since then, and although correlations do not necessarily prove causation, a 

growing body of imaging studies using echocardiography (thickness), computed tomography 

(CT, reviewed elsewhere (293)) or magnetic resonance imaging (MRI) have confirmed the 

association of EAT with CAD (99, 101, 105, 156, 190, 212, 264, 305, 324). Initial large 

population studies, including the Framingham Heart Study and Multi-Ethnic Study of 

Atherosclerosis, identified pericardial fat as an independent predictor of cardiovascular risk 

(64, 191). Compared to the Framingham Risk Score, pericardial fat volume >300 cm3 was by 

far the strongest predictor for coronary atherosclerosis (OR 4.1, 95% CI 3.63-4.33)(101). 

Other studies highlighted the add-on predictive value of EAT compared to CAD scores such 

as coronary calcium score (CAC) (113, 138, 173). EAT significantly correlated with the 

extent and severity of CAD, chest pain, unstable angina and coronary flow reserve (233, 269). 

In addition, case-control studies identified pericardial fat volume as a strong predictor of 
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myocardial ischemia (113, 305). By contrast, some studies did not find such an association 

between EAT and the extent of CAD in intermediate to high risk patients, suggesting that the 

relationship is not constant at more advanced stages (263, 306). Interestingly, in the positive 

studies linking EAT with CAD and developing high risk obstructive plaques, the association 

was independent of adiposity measures, BMI and the presence of coronary calcifications (128, 

136). Recent studies indicated that EAT could also serve as a marker for the presence and 

severity of atherosclerosis burden in asymptomatic patients (8, 346), threshold EAT thickness 

identified at 2.4 mm (8). All these findings are highly suggestive of a role for EAT in 

promoting the early stages of atherosclerotic plaque formation. In highly selected healthy 

volunteers, we reported that a higher EAT volume was associated with a decrease in coronary 

microvascular response, likely suggesting that EAT could participate in endothelial 

dysfunction (88). By using intravascular ultrasound it could be demonstrated that plaques 

develop most frequently with a pericardial spatial orientation suggesting a permissive role of 

EAT (251). 

 

EAT and Clinical outcomes 

More recently, the Heinz Nixdorf Recall study including more 4000 patients from general 

population confirmed the predictive role of EAT on clinical outcomes within 8 years (189). In 

this prospective trial, EAT volume significantly predicted fatal and nonfatal coronary events 

independently of cardiovascular risk factors and CAC score. They observed that subjects in 

the highest EAT quartile had a 4 fold higher risk of coronary events when compared to 

subjects in the lowest quartile (0.9 versus 4.7 %, p<0.001, respectively). In addition, doubling 

EAT volume was associated with a 1.5 fold adjusted risk of coronary events [hazard ratio 

(HR), 1.54; 95% CI, 1.09-2.19] (189). A recent meta-analysis, evaluating 411 CT studies 

confirmed EAT as a prognostic metric for future clinical adverse events (binary cut-off of 125 
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mL) (293). This cut-off needs to be evaluated further in prospective cohorts in order to 

discuss the relevance of its introduction in clinical care. To date, there is a lack of agreement 

on EAT threshold value associated with increased CAD risk, as various methods are used for 

its assessment (see Imaging paragraph).  In conclusion to all these clinical studies, EAT 

volume is a strong independent predictor of CAD. Nevertheless, whether a reduction in the 

amount of EAT could reduce CAD in humans remains to be established.  

 

Pathophysiology of EAT in CAD 

 

The mechanisms by which EAT can cause atherosclerosis are complex and not completely 

understood. Epicardial fat might alter the coronary arteries through multiple pathways, 

including oxidative stress, endothelial dysfunction, vascular remodeling, macrophage 

activation, innate inflammatory response, and plaque destabilization (124, 243) 

1/ EAT has a specific profile in coronary artery disease: 

 EAT in CAD displays a pro-inflammatory phenotype, high levels of ROS and a specific 

pattern of micro RNA. Epicardial adipocytes have intrinsic proinflammatory and atherogenic 

secretion profiles (9, 42). In 2003, Mazurek et al., first reported that, in CAD patients EAT 

exhibited significantly higher levels (gene expression and protein secretion) of chemokines 

such as monocyte chemotactic protein-1 (MCP-1) and several inflammatory cytokines IL-6, 

IL-1, and TNF- than SAT (206). They also observed the presence of inflammatory cells 

infiltrate including macrophages, lymphocytes and mast cells in EAT compared to SAT. The 

presence of these inflammatory mediators was hypothesized to accentuate vascular 

inflammation, plaque instability via apoptosis (TNF-), and neovascularization (MCP-1). 

Peri-adventitial application of endotoxin, MCP-1, IL-1, or oxidized LDL induces 

inflammatory cell influx into the arterial wall, coronary vasospasm, or intimal lesions, which 

suggests that bioactive molecules from the pericoronary tissues may alter arterial homeostasis 

(279). These observations tend to support the concept of “outside to-inside” cellular cross-talk 
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or “vasocrine/paracrine signaling”, in that inflammatory mediators or free fatty acids 

produced by EAT adjacent to the coronary artery, may have a locally toxic effect on the 

vasculature, in diffusing passively or in vasa vasorum through the arterial wall, as depicted in 

Figure 10 (38, 266, 348). Migration of immune cells between EAT and adjacent adventitia 

may also occur (133). Nevertheless, direct proofs that these mechanisms operate in vivo are 

lacking. Since then, other groups have confirmed that EAT is a veritable endocrine organ and 

a source of a myriad of bioactive locally acting molecules (266). EAT content and release of 

adiponectin were consistently found to be decreased in CAD patients, suggesting that an 

imbalance between antiatherogenic, insulinsensitizing and harmful adipocytokines secreted 

by EAT could initiate inflammation in the vascular wall (42, 129, 278). Innate immunity 

represents one of the potential pathways for proinflammatory cytokines release. Innate 

immunity can be activated via the toll-like receptors (TLRs), which recognize antigens such 

as lipopolysaccharide (LPS) (141). Activation of TLRs leads to the translocation of NFκB 

into the nucleus to initiate the transcription and the release of IL-6, TNF-, and resistin (53, 

164). Remarkably Baker et al, showed that NFκB was activated in EAT of CAD patients (9). 

TLR-2 and TLR-4 and TNF- gene expression was higher in EAT of CAD patients, and was 

closely linked to the presence of activated macrophages in the EAT. In another study, EAT 

amount positively correlated with the CD68+ and CD11c+ cell numbers, NLRP3 

inflammasome, IL-1β, and IL-1R expression. NLRP3 inflammasome is a sensor in the nod-

like receptor family of the innate immune cell system that activates caspase-1 and mediates 

the processing and release of IL-1β, and thereby has a central role in the inflammatory 

response (14). Interestingly, the ratio of proinflammatory M1 macrophages and anti-

inflammatory M2 macrophages in EAT was reported to be shifted toward the M1 phenotype 

in patients with CAD (115). More recently, Patel et al nicely demonstrated the implication of 

renin-angiotensin system in the inflammation of EAT (239). In a model of mice lacking 
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angiotensin converting enzyme 2 (ACE2) submitted to a HFD, loss of ACE2 resulted in 

decreased weight gain, but increased glucose intolerance, and EAT inflammation. Ang 1-7 

treatment resulted in ameliorated EAT inflammation and reduced cardiac steatosis, function 

and lipotoxicity (239). 

MicroRNAs could also be an important actor of this crosstalk between EAT and the coronary 

artery wall. Indeed miRNAs are small, non-coding RNAs acting as posttranscriptional 

regulators of gene expression, either interfering with protein translation or reducing transcript 

levels (176). A nice integrative miRNA and whole genome analyses of EAT identified the 

signature of miRNAs in EAT of CAD patients (320). The authors described that EAT in CAD 

displays affected metabolic pathways with suppression of lipid- and retinoid sensing nuclear 

receptors, transcriptional activities, increased inflammatory infiltrates, activation of innate and 

adaptive immune response enhanced chemokine signalling (CCL5, CCL13, and CCL5R) and 

decrease of miR-103-3p as prominent features (320). 

 Furthermore higher levels of reactive oxygen species (ROS) and lower expression of 

antioxidant enzymes (such as catalase), have been observed in EAT of individuals with CAD 

compared with SAT (Figure 10) (271). On the other hand, EAT might also contribute to the 

accumulation of oxidized lipids within atherosclerotic plaques, as we evidenced increased 

expression and secretion of Secretory type II phospholipase A2 (sPLA2-IIa) in EAT of CAD 

patients (74).  

 

2/ EAT plays a pivotal role in the initiation of atherosclerosis 

The negative impact of EAT secretome on adjacent coronary arteries in CAD has been clearly 

demonstrated. In vitro studies revealed that EAT secreted fatty acids, inflammatory, stress 

mediators and migrated immune cells may induce endothelial dysfunction and vascular 

remodeling. EAT can affect the endothelium by inducing cell-surface expression of adhesion 

molecules such as VCAM-1, and it enhances migration of monocytes to coronary artery 
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endothelial cells (146). Besides, it has been demonstrated that the permeability of endothelial 

cells in vitro was significantly increased after exposure to EAT supernatrant in patients with 

acute coronary syndrome, and this effect was normalized by anti-resistin antiserum (167). 

Payne et al, showed that perivascular EAT derived leptin electively impaired coronary 

endothelial-dependent dilation in Ossabaw swine with metabolic syndrome (242). Other in 

vitro studies support the role of perivascular adipose tissue on vascular remodeling (243). 

Conditioned medium of cultured perivascular adipocytes from HFD rats was found to 

significantly stimulate vascular smooth muscle cells proliferation (13). Other in vitro studies 

highlighted the role of peri-adventitial fat on neointimal formation after angioplasty (303, 

304).  Finally, in a recent study involving Ossabaw miniature swine, selective surgical 

excision of EAT surrounding the left anterior descending artery was shown to be associated 

with slower progression of coronary atherosclerosis over a period of 3 months with 

atherogenic diet (210). Athough this study was preliminary and without controls, these results 

support the hypothesis that EAT could locally contribute to the initiation of coronary 

atherosclerosis, and further suggest that targeting its reduction could reduce CAD 

progression. 

 

To conlude, EAT is not simply a marker of CAD but seems to play a key role in the initiation 

of atherosclerosis, by secreting locally many bioactive molecules such as fatty acids, 

inflammatory, immune, and stress factors, cytokines or chemokines. Current investigations 

are done to comprehensively understand how factors produced by EAT are able to cross the 

vessel wall, and to what initiate or precede the change in EAT phenotype. An imbalance 

between the protective and the deleterious factors secreted by EAT, and between the pro and 

anti-inflammatory immune cells is likely to trigger CAD development. Despite all the 

described findings, the pathophysiological link between EAT and CAD needs to be elucidated 
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further, and we really need interventional studies to investigate whether EAT reduction could 

reduce clinical outcomes.  

 

EAT and obstructive sleep apnea 

Obstructive sleep apnea (OSA) is a sleep disorder characterized by repetitive episodes of 

upper airway obstruction during sleep, resulting in decreased oxygen saturation, disruption of 

sleep, and daytime somnolence (71). Repetitive apneic events disrupt the normal physiologic 

interactions between sleep and the cardiovascular system (289, 314). Such sleep 

fragmentation and cyclic upper airway obstruction may result in hypercapnia, chronic 

intermittent hypoxemia that have been linked to increased sympathetic activation, vascular 

endothelial dysfunction, increased oxidative stress, inflammation, decreased fibrinoloytic 

activity, and metabolic dysregulation (62, 142, 149, 255). Hence OSA could contribute to the 

initiation and progression of cardiac and vascular disease. Conclusive data implicate OSA in 

the development of hypertension, CAD, congestive heart failure, and cardiac arrhythmias 

(277, 290). We previously reported that EAT is sensitive to OSA status and that bariatric 

surgery had little effect on epicardial fat volume (EFV) loss in OSA patients (86). It is 

tempting to hypothesize that OSA-induced chronic intermittent hypoxia could modify the 

phenotypic features of EAT and may be an initiator of adipose tissue remodeling (fibrosis or 

inflammation). However, this has never been investigated in EAT yet. 

Two recent studies have reported a relationship between epicardial fat thickness and OSA 

severity (184, 200). Mariani et al. reported a significant positive correlation between EFT and 

apnea/hypopnea inex (AHI), and EFT values were significantly higher in moderate and severe 

OSA groups comparing to mild OSA group (200). A similar study was conducted by Lubrano 

et al. in 171 obese patients with and without metabolic syndrome, in which EFT rather than 

BMI was the best predictor of OSA (184). Treatment of OSA with continuous positive airway 
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pressure (CPAP) during 24 weeks significantly reduced EFT in 28 symptomatic OSA patients 

with AHI > 15, without significant change in BMI or waist circumference (36). Shorter-term 

of CPAP treatment (3 months) in 25 compliant OSA patients also reduced EFT (159), but in 

another study EAT remained higher in CPAP treated OSA obese patients (n=19, mean BMI 

38 ± 4 kg/m2) compared to age-matched healthy subjects (n=12), and CPAP was not 

sufficient to alleviate left ventricular concentric hypertrophy, as assessed by mass-cavity ratio, 

the latter being independently correlated with EAT (15). These data are consistent with 

previous studies supporting a negative role of EAT on cardiac function (35, 57, 79, 128, 130, 

143, 174, 238).  

The prognostic impact of EAT reduction by CPAP therapy on cardiovascular outcomes need 

to be further explored by large prospective studies. In all, EAT is increased in OSA patients 

and is a correlate of OSA severity. Additionally, CPAP therapy can significantly reduce the 

amount of EAT. Further large prospective studies are needed to evaluate the effect of CPAP 

therapy on EAT quantity, phenotype, and secretome. 
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Conclusion and perspectives 
 

To conclude, the unique anatomic location of epicardial adipose tissue likely translates into a 

unique physiological relevance and pathophysiological role for this cardiac ectopic depot. Far 

from being an inert and uniform tissue, EAT has been shown to be a dynamic organ with 

highly developed functions, and a unique trasncriptome that are determined by its 

developmental epicardial origin, its regenerative potential, and molecular structure. It was 

poorly studied during a long time because of the small amount of EAT found in rodents and 

because of the difficulties faced by the researchers for biological studies requiring open 

cardiac surgery. Since, imaging studies have provided new non invasive tools for EAT 

quantification, and recent studies have paved the way for identifying new cellular 

characteristics of EAT by measuring its radiodensity (7, 81, 85). 

 In addition, an increase of epicardial fat result in an increased propensity not only for the 

onset but also for the progression and severity of CAD or atrial fibrillation in humans. Many 

intervention studies have proven that EAT is flexible and is a modifiable factor with weight 

loss induced by diet, GLP-1 receptor agonists or bariatric surgery (73, 254). The type of 

intervention, in addition to the amount of weight loss achieved, is predictive of the amount of 

EAT reduction. Hence this depot represents a therapeutic target for the management of CAD, 

and should be further assessed to identify CAD risk. But whether its reduction will lead to the 

reduction of cardiac events or cardiac rhythm disorders needs to be addressed in randomized 

controlled studies. The effect of EAT on cardiac autonomic nerves and the cardiac conduction 

system also needs to be further explored. 

Furthermore, EAT has a beige profile  that decreases with age and CAD. In support of this 

hypothesis is evidence of brown-to-white differentiation trans-differentiation in CAD patients 

with a decrease in thermogenic genes and up-regulation of white adipogenesis (4, 72). The 

thermogenic potential of EAT may represent a useful beneficial property, and another unique 
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target for therapeutic interventions. This is an attractive way of research in that the 

understanding of EAT browning and factors able to induce the browning of fat is mounting 

daily. Further experimental research is hence warranted to enhance our understanding of EAT 

thermogenic and wholesome energy expenditure potential as well as its potential flexibility 

with life style, medical or surgical treatments. 

Finally, additional research and understanding on adipose tissue biology in general and 

mechanisms responsible for ectopic fat formation are needed in the future. Whether 

epicardium-to-fat-transition reactivation exists in humans, and whether unhealthy 

subcutaneous adipose tissue could trigger the release of adipose progenitors such as adipose-

derived stem/stromal cells into the circulation, and whether these adipogenic cells could reach 

the heart and give rise to new adipocyte development in EAT is a fascinating area of interest 

for next years. 
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Tables 

Table 1. Main anatomical and physiological properties of EAT 

Main anatomical and physiological properties of EAT 

  

Localization  

 

Between the myocardium and the visceral layer 

of the pericardium 

Anatomical and functional proximity  Myocardium, coronary arteries, nerves and 

ganlionated plexi 

Origin Epicardium 

Blood supply  

 

Branches of the coronary arteries 

Color White and beige 

Cells Small adipocytes 

Mixed cellularity with stromal preadipocytes, 

fibroblasts, macrophages, mast cells, 

lymphocytes (immune cells) 

Metabolism High lipogenesis and lipolysis 

Thermogenesis 

Secretome Source of a myriad of adipocytokines, 

chemokines, growth factors, FFA 

Way of action Mainly local: paracrine and vasocrine 

Transcriptome Extracellular matrix remodeling, inflammation, 

immune signaling, coagulation, thrombosis, 

beiging and apoptosis enriched pathways  

Protective actions Arterial pulse wave, vasomotion 

Thermogenic potential 

Autonomic nervous system 

Immune defence 

Regeneration potential (epicardial-to-fat-

transition) 

 

Table 2. Human EAT bioactive molecules 

 

Category Biomarkers Expression Pathological state References 

Proinflammatory 

cytokines 

α1-glycoprotein mRNA CAD Fain et al., 2010 

Chemerin 
protein, 

mRNA 
CAD Spiroglou et al., 2010 

CRP secretion CAD Baker et al., 2006 

Haptoglobin mRNA CAD Fain et al., 2010 

sICAM-1 mRNA CAD 
Karastergiou et al., 

2010 

IL-1β 

protein, 

mRNA, 

secretion 

CAD Mazurek et al., 2003 

IL-1Rα  secretion CAD, obesity 
Karastergiou et al., 

2010 

IL-6 

protein, 

mRNA, 

secretion 

CAD 
Mazurek et al., 2003 

Kremen et al., 2006 
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sIL-6R protein Obesity Malavazos et al., 2011 

IL-8 mRNA CAD Fain et al., 2010 

IL-10 mRNA CAD Eiras et al., 2010 

IL-13 secretion CAD, obesity 
Karastergiou et al., 

2010 

IL-16 secretion CAD, obesity 
Karastergiou et al., 

2010 

JNK 
mRNA, 

protein 
Cardiac surgery Baker et al., 2009 

MCP-1 

protein, 

mRNA, 

secretion 

Cardiac surgery 
Mazurek et al., 2003 

Kremen et al., 2006 

MIF mRNA CAD Langheim et al., 2010 

PAI-1 mRNA CAD Baker et al., 2006 

sPLA2-IIA 

protein, 

mRNA, 

secretion 

CAD Dutour et al., 2010 

PTGDS mRNA CAD 
Guauque-Olarte et al., 

2011 

RANTES secretion CAD, obesity 
Karastergiou et al., 

2010 

TNF-α 

protein, 

mRNA, 

secretion 

CAD, cardiac 

surgery 

Mazurek et al., 2003 

Kremen et al., 2006 

Adipocytokines 

Adiponectin 
protein, 

mRNA 

Hypertension, 

cardiac surgery 

Baker et al., 2006 

Kremen et al., 2006 

Leptin 
protein, 

mRNA 

CAD, cardiac 

surgery 

Baker et al., 2006 

Kremen et al., 2006 

Omentin 
mRNA, 

protein 

CAD, metabolic 

syndrome, T2DM 
Gaborit et al., 2015 

Resistin 
mRNA, 

secretion 

CAD, cardiac 

surgery 
Baker et al., 2006 

Serglycin 
mRNA, 

protein 
CAD 

Imoto-Tsubakimoto et 

al., 2013 

Vaspin 
mRNA, 

protein 
CAD Spiroglou et al., 2010 

Visfatin 
protein, 

mRNA 

CAD, metabolic 

syndrome, T2DM 

Cheng et al., 2008 

Fain et al., 2008 

Growth and 

remodelling 

factors 

Activin A 
mRNA, 

protein 
CAD Venteclef et al., 2013 

FLT1 mRNA CAD Fain et al., 2010 

follistatin 
mRNA, 

protein 
CAD Venteclef et al., 2013 

GRO α secretion CAD, obesity 
Karastergiou et al., 

2010 

MMP-1, -2, -3, -8, -9, -

13 
protein CAD Venteclef et al., 2013 

NGF-β mRNA CAD Fain et al., 2010 
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TGF - 1,-2,-3 
mRNA, 

protein 
CAD Venteclef et al., 2013 

FGF21 mRNA Cardiac surgery Kotulak et al., 2011 

Angiogenic and 

cardioprotective 

factors 

Adrenomedullin 
protein, 

mRNA 
CAD Iacobellis et al., 2009 

Angiopoietin-2 protein T2DM Greulich et al., 2012 

Angiotensin 
protein, 

mRNA 
CAD Venteclef et al., 2013 

Angiotensinogen mRNA Cardiac surgery Roubicek et al.,2008 

CTRP9 
mRNA, 

protein 
CAD Wang et al., 2015 

Thrombospondin-2 protein CAD Venteclef et al., 2013 

VEGF protein CAD Venteclef et al., 2013 

Brown fat 

differentiation 

PGC-1α mRNA 
Metabolic 

syndrome 
Sacks et al., 2009 

PRDM16 mRNA 
Metabolic 

syndrome 
Sacks et al., 2009 

UCP-1 
mRNA, 

protein 
CAD Gaborit et al., 2015 

Receptors 

AT1 receptor mRNA Cardiac surgery Roubicek et al.,2008 

GLUT-4 mRNA CAD Dozio et al., 2016 

NPR-A mRNA CAD Shibasaki et al., 2010 

NPR-C mRNA CAD Shibasaki et al., 2010 

PPARγ mRNA CAD Shibasaki et al., 2010 

TLR mRNA CAD Baker et al., 2009 

miR 

10a-3p miRNA CAD Vacca et al., 2016 

18a-3p miRNA CAD Vacca et al., 2016 

196a-5p miRNA CAD Vacca et al., 2016 

196b-5p miRNA CAD Vacca et al., 2016 

Immunocompetent 

cell markers 

CD45 mRNA Cardiac surgery Kremen et al., 2006 

CD68 
protein, 

mRNA 
Cardiac surgery Kremen et al., 2006 

Lipids mediators 

FABP4 mRNA 
Metabolic 

syndrome 
Vural et al., 2008 

Free fatty acids Lipids 
CAD, metabolic 

syndrome, T2DM 

Marchington et al., 

1989 

LRP1 mRNA T2DM Nasarre et al., 2006 
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Table 3. 

Imaging methods for epicardial fat assessment 
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Imaging modality 
 

Spatial 
resolution 

 
Cost 

 
Possible 

measurements 
 

 
Reproducibility 

 
Strengths 

 
Limitations 

 

Echocardiography 

 

+ 

 

+ 

 

 Thickness 

 

 Moderately reproducible 

Inter and intra reader ICC 

0.90 and 0.98 

respectively  

 

 

 No ionizing radiation 

 Non-invasive 

 Widely available 

 Often performed for other 

indications 

 

 No volumetric quantification 

 Limited to one region (right ventricular 

free wall) 

 Poor image quality (limited acoustic 

windows, especially in obese 

individuals) 

Cardiac computer 

Tomography (CT) 

++ ++  Area 

 Thickness 

 Volume 

 

 Highly reproducible 

Inter and intra scanner 

ICC , both r≥0.98  

 Simultaneous coronary artery 

disease assessment 

 Volumetric quantification possible 

 Easy to perform and often for other 

indications 

 

 

 Radiation exposure (especially 

problematic for serial studies) 

 Limited in separating 

pericardial/epicardial adipose tissue 

 Weight table limit for severely obese 

individuals 

 

Cardiovascular 

magnetic 

resonance (CMR) 

 

+++ 

 

+++ 

 

 Area 

 Thickness 

 Volume 

 

 

 Highly reproducible 

Low intra and 

intraobserver variability 

ICC (both r>0.98)  

Volume reproducibility > 

thickness  

 Ex vivo validation in 

autopsies  

 

 Gold standard for adipose tissue 

imaging 

 Volumetric quantification possible 

 No radiation or iodinated contrast 

required 

 Multi-parametric nature 

 Can be coupled with 1H 

Spectroscopy 

 

 Limited availability 

 Longer scan times and less tolerable 

 No accommodation for severely obese 

individuals 

 Bore magnet diameter limit for severely 

obese individuals 
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Figure legends 

Figure 1: Layers of the heart and pericardium Scheme demonstrating epicardial fat between 

the visceral pericardium and myocardium, paracardial fat external to the parietal pericardium, 

and pericardial fat as the combination of epicardial and paracardial fat. 

Figure 2: Epicardial adipose tissue among species – anterior and posterior heart photographic 

views in a 12-months-old rat (A), a 3-months-old swine (B) and a 50-years-old human (C). 

Figure 3: The origin of epicardial adipose tissue. Epicardial adipocytes derived from 

embryonic epicardial progenitors by epicardium-to-fat transition (ETFT). After myocardial 

infarction in adult animals, reactivation of ETFT enables new epicardial adipocytes formation 

from epicardium cells. 

Figure 4: Main factors leading to ectopic fat deposition in humans. FFA: free fatty acids; 

ASCs: adipose stem stromal cells; T2D: type 2 diabetes; CAD: coronary artery disease; 

MHO: metabolically healthy obesity  

Figure 5: Echocardiography parasternal long axis view, thickness of paracardial and 

epicardial fat were measured on one anatomical point 

Figure 6: CT scans in axial views, without iodine injection and with cardiac synchronization 

in A and with iodine injection and cardiac synchronization in B, C and D at different 

anatomical level. Pericardium was clearly depicted (white arrow) and allows the 

differentiation between epicardial fat (star in C) and paracardial fat (open arrow in C).  

Figure 7: MR short axis cine sequences at the diastolic phase A, with contouring of the heart 

in B, contouring of the pericardium in C and contouring of the pericardial fat in D; each 

surface was multiplicated by slice thickness to obtain volumes. This contouring was repeated 

on the whole stack of images covering the entire heart to be able to quantify total fat volume. 

Volume of epicardial fat was measured as = volume in C minus volume B), and paracardial 

fat (volume D minus volume C) 
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Figure 8: Atrial EAT and myocardium. (A) Sirius red sections (B) Oil-red-O staining (C) 

Sirius red staining. At high magnification, adipocytes infiltration associated with important 

fibrosis within myocardium, impairing myocytes network (D) Haematoxylin and eosin 

staining  

Figure 9: Role of epicardial fat in atrial fibrillation  

Figure 10: Role of epicardial fat in coronary artery disease 

 

Didactic Figure Legends 

 

Figure 1. Teaching points: a variety of termes including “epicardial”, “pericardial”, 

“paracardial” and “intra-thoracic” have been used in the literature to describe ectopic fat 

depots in proximity to the heart or within mediastinum. The use of these terms appears to be a 

point of confusion, as there is varied use of definitions. Of particular confusion is the term 

used to define the adipose tissue located within the pericardial sac, between myocardium and 

visceral pericardium. This has previously been described in the literature as “pericardial fat”, 

while other groups have referred it as “epicardial fat”. As illustrated in Figure 1, the most 

accurate term for the adipose tissue fully enclosed in the pericardial sac that directly 

surrounds myocardium and coronary arteries is EAT. Pericardial fat (PeriF) refers to 

paracardial fat (ParaF) plus all adipose tissue located internal to the parietal pericardium. 

PeriF=ParaF+EAT. 

 

Figure 2. This figure illustrates the relative amount of epicardial adipose tissue among 

species. Humans and swine have much more EAT than rodents. 

 

Figure 3. This figure illustrates the origin of epicardial adipose tissue. Epicardial adipocytes 

have a mesothelial origin and derive mainly from epicardium. Cells originating from the 

(Wilms’ tumor gene Wt1) Wt1+ mesothelial lineage, can differentiate into EAT and this 

epicardium-to-fat transition (ETFT) fate can be reactivated after myocardial infarction. 

 

Figure 4. This figures illustrates the mechanisms driving the development of ectopic fat 

deposition and its consequences. In an obesogenic environment and chronic positive energy 

balance, the ability of subcutaneous adipose tissue (SAT) to expand, and to store the free fatty 

acids in excess is crucial in preventing the accumulation of fat in ectopic sites, and the 

development of obesity complications. Healthy SAT and gynoid obesity are associated with a 

protective phenotype with less ectopic fat and metabolically healthy obesity, while 

dysfunctional SAT and android obesity are associated with more visceral fat and ectopic fat 

accumulation with an increased risk of type 2 diabetes, metabolic syndrome and coronary 

artery disease (CAD). Inflammation or profibrotic processes, hypoxia, and aging could also 

contribute to ectopic fat development. Mobilization and release of adipose progenitors 

adipose-derived stem/stromal cells (ASCs) into the circulation and their further infiltration 

into non adipose tissues leading to ectopic adipocyte formation also cannot be excluded. 
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Figure 5 to 7; These figures illustrate imaging techniques for EAT quantification. MRI 
remains the standard reference for adipose tissue quantification. The major advantage 
of this technique is its excellent spatial resolution and possible distinction between 
paracardial and epicardial fat. The major limitation of echocardiography is its 2D 
approach (thickness measurement). The major limitation of computed tomography 
remains its radiation exposure. 
 
Figure 8. This figure illustrates microscopic images of human atrial epicardial adipose 
tissue and myocardium. One can observe fatty infiltration of myocardium with EAT, ie 
direct adipocytes infiltration into the underlying atrial myocardium, associated with 
fibrosis. Such direct adipocytes infiltration separating myocytes are supposed to induce 
remodeled atrial substrate, and lead to conduction defects (conduction slowing or 
inhomogeneity). 
 
Figure 9. This figure summarizes the possible mechanisms that could link EAT with 
atrial fibrillation. EAT expansion-induced mechanical stress, direct adipocyte infiltration 
within atrial myocardium, inflammation, oxidative stress, and EAT producing 
adipofibrokines are thought to participate in structural and electrical remodeling of the 
atria, and in cardiac autonomous system activation, hence promoting arrhythmogenesis. 
 
Figure 10. This figures illustrates a transversal and longitudinal view of EAT 
surrounding a coronary artery. As there is no fascia separating EAT from the vessel wall, 
free fatty acids or proinflammatory cytokines produced by EAT could diffuse passively 
or in vasa vasorum through the arterial wall and participate in the early stages of 
atherosclerosis plaque formation (endothelial dysfunction, ROS production, oxidized 
LDL uptake, monocyte transmigration, smooth muscle cells proliferation, macrophages 
transformation into foam cells). An imbalance between antiatherogenic, and harmful 
adipocytokines secreted by EAT could initiate inflammation in the intima. Innate 
immunity can be activated via the toll-like receptors (TLRs), which recognize antigens 
such as lipopolysaccharide (LPS). Activation of TLRs leads to the translocation of NFκB 
into the adipocyte nucleus to initiate the transcription and the release of 
proinfammatory molecules such as IL-6, TNF-α, and resistin. NLRP3 inflammasome is a 
sensor in the nod-like receptor family of the innate immune cell system that activates 
caspase-1, and mediates the processing and release of IL-1β by the adipocyte, and 
thereby has a central role in the EAT-induced inflammatory response. 


