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On The Integral Expression for Converging Series and its Possible Application to the Zeta Function

We establish an integral-expression A ζ for series of the form:

0 with a margin of error less than or equal to f (1). We then use the result obtained to minimize the approximation of ζ(s). The result will show that IM (A ζ(x+it) ) = 0 at x = 1 2 .

Introduction.

The origins and details surrounding series-analysis can be found in almost any serious treatise on Real-Analysis. A primary concern is ascertaining whether a given series is convergent or not and for this purpose alone there exists a set of well known tests and analytic techniques and are covered in most undergraduate courses in mathematical analysis. The field of infinite sum analyses alone is quite vast and though techniques and tests have been formulated over the centuries; only the 'well behaved' or the monotone subset of such series is fairly well understood. The Wikipedia article Convergence tests. https://en.wikipedia.org/wiki/Convergence_tests provides a good summery of available tests.

An infinite sum, written: ∀j a j expresses in shorthand the sum of terms: a 0 + a 1 + ... + a n + .... For instance, the harmonic series is expressed as:

∀n 1 n .
This is an example of a well behaved monotone series, and one of the tests that can be used to prove its divergence is the Integral-Test:

Integral Test For a continuous function f defined over [N, ∞) that is monotone-decreasing; ∞ n=N f (n) converges to a real number if and only if the improper integral ∞ N f (x)dx exists1.
1 Dedicated to Usha. D, Devaraj. N and Ghizlane. L
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Going back to the harmonic series and applying the integral test we obtain:

∞ 1 1 x dx = [ln(x)] ∞
1 which is clearly divergent. For non-monotone, oscillating functions, the task of ascertaining whether the associated series converges or not can be difficult to seemingly impossible. Taking for instance the alternating series test:

Alternating Series Test

If for all n, a n is positive, non-increasing (i.e. 0 < a n+1 ≤ a n ), and approaching zero, then the alternating series

∞ 1 (-1) n a n and ∞ 1 (-1) n-1 a n both converge1.
This test explicitly requires that a n be monotone convergent, so one can't for instance, establish convergence of:

∞ 1 Sin(x)
x using this test alone. However we are saved by the Squeeze-Theorem which can be used to establish convergence by means of the following argument:

-1 x ≤ Sin(x) x ≤ 1 
x , since the series associated with either ends of the inequality are both absolutely convergent, it follows for:

∞ 1 Sin(x)
x as well.

The following proposal which can be perceived as somewhat of a low lying fruit actually stemmed from a subtle but persistent feeling that an integral expression exists that is closely coupled in some manner to converging series, much like the integral test but for both monotone and non-monotone series.

Proposition 1 (Part I).

Given a single valued function f continuous and differentiable over [0, ∞) with

Lim x→∞ f (x) = 0 , the series ∞ 1 f n is convergent if the integral : Lim h→∞ h 1 xf ′ (x)dx exists. Proposition 1 (Part II). ∞ 1 f n = Lim h→∞ h 1 xf ′ (x)dx + O where O < |f 1 |. Proof ∞ c f (x)dx = - c ∞ f (x)dx
From the above, we have that:

- ∞ 1 f n = ∞ 1 f ′ (x)dx + ∞ 2 f ′ (x)dx + .. + ∞ k f ′ (x)dx + ...
It is easy to see that over each interval [START_REF]Convergence tests[END_REF]2], [2,3] etc. The integrals may be 2 re-written as: 1

2 1 f ′ (x)dx + 2 3 2 f ′ (x)dx + .
. and so on, as there is a repetition of the area in proportion with each integral value over which the original sum is evaluated. Given that this is the case, one may re-write the above in approximation by use of the formula:

∞ 1 xf ′ (x)dx.
In the way of establishing part two of the proposition, we note that the difference between: 1

∞ 1 f ′ (x)dx + 2 ∞ 2
f ′ (x)dx + ... (an upper-bound) and:

0 ∞ 1 f ′ (x)dx + 1 ∞ 2 f ′ (x)dx + ... (a lower-bound) is simply ∞ 1 f ′ (x)dx.
There is a lot of narration left to further clarify the above and is unfortunately the most difficult portion; to convince an audience of. We firstly note trivially that:

Lim h→∞ - h c f ′ (x)dx = (-1)Lim h→∞ [f (h)] h c = f (c).
Further to this we have that:

∞ 1 f n = f (1)+ f (2)+ ..+ f (n)+ .
. Which can be expressed as the sum of the entries in the last column of the matrix that follows:

∞ 1 f n =             2 1 f ′ (x)dx 3 2 f ′ (x)dx 4 3 f ′ (x)dx . n+1 n f ′ (x)dx ...| ∞ 1 f ′ (x)dx 0 3 2 f ′ (x)dx 4 3 f ′ (x)dx . n+1 n f ′ (x)dx ...| ∞ 2 f ′ (x)dx 0 0 4 3 f ′ (x)dx . n+1 n f ′ (x)dx ...| ∞ 3 f ′ (x)dx 0 0 0 . n+1 n f ′ (x)dx ...| ∞ n f ′ (x)dx            
Resulting in the approximation:

∞ 1 xf ′ (x)dx.
An example of Proposition part 1. in practice is to prove the divergence of the harmonic series. Taking 1 n ; with the obvious substitutions, we have

xf ′ (x) = -x( 1 
x 2 )dx which becomes: -1 x dx, the integral of which forms:

-ln(x) + C which clearly diverges as: x → ∞.

Another simple example is the divergence of 1 √ n . Again with substitution;

xf ′ (x)dx = - 1 2 x(x -3 2 )dx = - √ x + C which again clearly diverges as: x → ∞.
The above follows trivially from the relation: n -iy = e -iyLn(n) = Cos(-yLn(n))+ iSin(-yLn(n)).

Note: This is a critical juncture at which there exists vast potential for confusion. The complex value in the integrand is fix valued and acts merely as a parameter. The sum is in fact over the range of values for real valued n. The effect of this parameter is simply i × Sin(-yln(n)) in the second term. As such, we may treat the terms separately, with an understanding that i will be multiplied to the result of the second term.

Given trivially that: n(-x)n -x-1 = (-x)n -x we wish to obtain an expression thus for: nζ ′ (s) which we do by evaluating the derivative w.r.t n and multiplying the resulting expression by n:

n -x (-x)[Cos(-yln(n))+iSin(-yln(n))]+n 1-x ( -y n )[-Sin(-yln(n))+iCos(-yln(n))]
(8) To make use of Proposition(part II), we need to integrate the terms respectively so as to find 

Using integral tables to integrate the above general form [2], we have for the real part:

x y [ e u(x-1) y 

( (x-1) y ) 2 + 1 ]( (x -1) y Cos(u)+Sin(u))-[ e u(x-1) y ( (x-1) y ) 2 + 1 ]( (x -1) y Sin(u)-Cos(u)) ( 
( (x-1) y ) 2 + 1 ]( (x -1) y Cos(u)-Sin(u)) (13) 
When evaluated over the limits, and taking note that for x < 1 and non-zero y the expression in both cases reduces to zero at u → ∞, we have:

- x y [ 1 
( (x-1) y ) 2 + 1 ]( (x -1) y ) + [ 1 ( (x-1) y ) 2 + 1 ](-1) (14) - x y [ 1 
( (x-1) y ) 2 + 1 ](1) -[ 1 
( (x-1) y ) 2 + 1 ]( (x -1) y ) (15) 
-[ 1

( (x-1) y ) 2 + 1 ]( x y ( (x -1) y ) + 1) (16) - y 2 (x -1) 2 + y 2 (( (2x -1) y )) (17) 
Real:

-

y 2 (x -1) 2 + y 2 ( x(x -1) + y 2 y 2 ) (18) Imaginary: 
-

y(2x -1) (x -1) 2 + y 2 (19) 
Naturally minimal at x = 1 2 Real: From (20), the roots become:

- x(x -1) + y 2 (x -1) 2 + y 2 (20) - x + y 2 x-1 (x -1) + y 2 x-1 (21) 
1± √ 1-4y 2 2
, implying a range of zeros for x spanning -1 2 ≤ y ≤ 1 2 , which includes x = 1 2 as a zero. With the only requirement on the imaginary part being x = 1 2 , we have the intersecting minimization for both the real and imaginary portions at x = 1 2 . What is of exceptional importance to note is that ζ(1) has a real component and no complex counterpart i.e., it has no complex error, the error margin is zero. Furthermore, the error as we know is a real fraction of f (1) and therefore can't be complex. One can make the argument that as such the minimal values for ζ is thus at x = 1/2. 

∞ 1 nζ=

 1 ′ (s)dnLet u = -yln(n). We than have that: du = -y n dn and e -u = n y ; e n -x , with new bounds [0, ∞].Finally, given the previous; the expression for the real portion of the integrand follows as: Cos(u)du -e au Sin(u)du (10) in the imaginary case :x y e au Sin(u)du + e au Cos(u)du
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Calculations on the Zeta-Function Its natural to provide a basic introduction to the origins of the zeta function. It's significance is best seen with the aide of the following equation:

3 One of the most significant results on the zeta function ζ(s) due to Hardy is that there are an infinite number of zeros on the critical strip x = 1 2 4. The outline of this fantastic result follows with Ξ(t) having real zeros for zeros of ζ.

Using a result by Ramanujan on integrals involving Ξ(t), we have:

where ψ(s) := ∞ n=1 e -n 2 πs is the theta function. Now setting x := -iα, we get:

The following integral for 0 ≤ α ≤ π 4 is uniformly convergent with respect to α:

With signs alternating infinitely often in the resulting algebra along with the left-hand side having the same sign for sufficiently large values of n, we can infer that ζ 1 2 + it has an infinite number of zeros5.

Calculations on the Zeta function.

The aim from here on is to leverage off of our proposal allowing us to approximate ∞ 1 1 n s to a significant level of accuracy (i.e. Within f (1)) and to ascertain when the approximate sum is minimal. We begin with the simple expression: n -x-iy = n -x [Cos(-yln(n)) + iSin(-yln(n))]

(7)