
HAL Id: hal-01744513
https://hal.science/hal-01744513v1

Submitted on 3 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VisUML: a live UML visualization to help developers in
their programming task

Mickaël Duruisseau, J.C. Tarby, Xavier Le Pallec, Sébastien Gerard

To cite this version:
Mickaël Duruisseau, J.C. Tarby, Xavier Le Pallec, Sébastien Gerard. VisUML: a live UML visualiza-
tion to help developers in their programming task. HCI International, Jul 2018, Las Vegas, United
States. pp.3-22, �10.1007/978-3-319-92043-6_1�. �hal-01744513�

https://hal.science/hal-01744513v1
https://hal.archives-ouvertes.fr


VisUML: a live UML visualization to help
developers in their programming task

Mickaël Duruisseau1,2, Jean-Claude Tarby2, Xavier Le Pallec2, and Sébastien
Gérard1

1 CEA LIST - Boîte 94 - 91191 - Gif sur Yvette, France sebastien.gerard@cea.fr
2 Univ. Lille, UMR 9189 - CRIStAL - F-59000 Lille, France

mickael.duruisseau@gmail.com, jean-claude.tarby@univ-lille1.fr,
xavier.le-pallec@univ-lille1.fr

Abstract. Developers produce a lot of code and most of them have
to merge it to what already exists. The required time to perform this
programming task is thus dependent on the access speed to information
about existing code. Classic IDEs allow displaying textual representation
of information through features like navigation, word searching or code
completion. This kind of representation is not effective to represent links
between code fragments. Current graphical code representation modules
in IDE are suited to apprehend the system from a global point of view.
However, the cognitive integration cost of those diagrams is dispropor-
tionate related to the elementary coding task.
Our approach considers graphical representation but only with code el-
ements that are parts of the developer’s mental model during his pro-
gramming task. The corresponding cognitive integration of our graphical
representation is then less costly. We use UML for this representation be-
cause it is a widespread and well-known formalism. We want to show that
dynamic diagrams, whose content is modified and adapted in real-time
by monitoring developer’s actions can be of great benefit as their con-
tents are perfectly suited to the developer current task. With our live
diagrams, we provide to developers an efficient way to navigate through
textual and graphical representation.

Keywords: Human-Computer Interaction · Model Driven Engineering · Soft-
ware Engineering · Unified Modeling Language · Human-Centered Design

1 Introduction

Human-Computer Interaction (HCI) has significantly evolved in recent years
with the appearance of mobile and tactile devices, voice and gesture recognition,
augmented and virtual reality, etc. Nowadays, most of the smartphone users
know how to interact with a map, using simple interactions like touch, but also
some more complex, like swipe or pinch. In the meantime, software practition-
ers still develop applications only with a keyboard and a mouse. Furthermore,



"development tools are showing mainly text with (so much) obstinacy" [1] de-
spite some improvements concerning HCI in their IDE, like syntax coloration
and auto-completion. We may consider software visualization tools as an im-
provement of the HCI, but their place in IDE and their use remain anecdotal.
Visualization tools generally help developers to understand the global architec-
ture of the application they are working on or the impact of what they are
changing. Development consists mainly in producing code but not dealing with
considerations of macroscopic nature. We argue these visualization tools are not
focused on the most important and elementary task: programming. We claim
that a graphical representation of elements that are currently knitted by a de-
veloper may be more easily accepted. The first reason is it can quickly provide
information that is less visually explicit in textual code and still relevant for cod-
ing. More specifically it may highlight the different relations between elements
(structural relations or specific execution flow). The second reason is that graph-
ical representations are more suited to mobile and tactile devices (like tablets)
than textual code and so, by taking advantage of them, they can provide HCI
improvements of IDE.

In this paper, we present VisUML1,2 a tool which uses a “ live diagramming”
approach and implements this point of view of software visualization. We de-
fined live diagrams as being diagrams (UML or not) that display information
according to the current task of the developer. We assume that currently opened
elements in an IDE refer to this task and are therefore part of developers’ mental
models. These diagrams are updated instantly each time the code changes. Our
approach consists in reducing the number of displayed elements but also to ease
the navigation between code and diagrams.

To present this approach, we first describe the scientific background on which
VisUML is based, as well as our design guidelines. Second, we review works that
are related to our idea. Then we explain how VisUML works, with a focus on
user interactions. Finally we highlight the contributions of this tool and we
discuss its features and its evolutions. At last, we conclude with a summary and
perspectives.

2 Scientific background and design guidelines

The psychological mechanisms related to programming received much attention
during the 90s [2–4]. Notable among these was the fact that developers work in
little "spurts" [5] (sprint). Green [5] mentions the notion of spurts to emphasize
that programming is a series of small steps where each one refers to a mental
chunk or scheme. Therefore it is logical that the developer’s main concern consists
in connecting the spurt result with what has been produced so far. Indeed,
developers often read and analyze what has been done in order to properly
"knit" (link) what they do with the rest of code.

1 VisUML website : http://these.mickaelduruisseau.fr/VisUML/
2 VisUML demonstration video : https://youtu.be/buyGojmbUpQ



The development environment should therefore optimize the “reading / pro-
duction” cycle. It must be adapted to the current spurt and simultaneously
provides quick access to information that will help developers to link their code
to the existing one [6].

Thus, it is no wonder that most of current code editors propose shortcuts to
go quickly to the definition of the selected element or to list all the invocations
of the selected method. However, navigation is not the only way to find rele-
vant information. Changing visual properties of code elements is another way to
highlight what can interest the developers in their knitting task; for instance, the
indentation clearly shows the different control structures in which the current
line of code is nested, background color variation is sometimes used to identify
the different places where a variable is used, etc. Visual changes can go further
with concrete transformations of shapes and concerned elements. That is the spe-
ciality of what the software community called visualization tools. These ones are
of great help in order to understand the existing code; this is particularly men-
tioned in the SoftVis / VISSOFT conferences cycle. [1] insists on the necessity
of the requisite ubiquity of visualization in development environments, even if it
means rethinking them entirely. A majority of the work on software visualization
results in tools that allow finding or obtaining macroscopic information.

At the opposite, our approach provides microscopic information by focusing
on more specific and activity related data. We do not aim to provide information
about possible impacts of each modification, nor knowing which application’s
parts have to be rewritten. Instead, our goal is to allow developers to have a
visual support of their code. This will enable them to quickly find information
about entities and their relations and will also add an easy navigation mean. In
addition, this visual support could be shared with peoples that have different
needs in terms of visualization. For example, a product manager will not use the
same kind of representations than a developer, but the displayed entities remain
identical. In the same idea, developers can have a fully detailed class diagram,
whereas project leader may want to see a class diagram without attributes or
operations, with a color code that indicates the code quality of each class or
their modification date, number of commits, etc.

Developers constantly execute code reading operations to find information
in order to allow them to modify their code. We wish to shorten these reading
operations by giving a quick access to elements often used or viewed by the devel-
opers. These elements are mostly represented as entities connected by links. The
textual support is not very effective to represent a system with interconnected
elements; however the diagrammatic representations are much more efficient in
this task [7]. Furthermore, works on the psychology of senior developers show
that they have mainly problems understanding the control flow rather than the
basic bricks of a language (e.g. variables names) [8]. Thus, in addition to the two
aspects to be displayed (entities and links), we can add the control flow between
entities that are associated to the active coding task. To ensure that the access
of information through the graphical representation is as fast as possible, the
reading/decoding of this representation must take as little time as possible. The



cognitive fit is a main concern for our tool, and the time spent when switching
between a representation to another, or when switching between tasks in general
(e.g. code review vs. diagram creation, class dependencies search vs. debugging),
is thus very important. This concern is the heart of the cognitive dimensions [9]
and can be found as a rule cognitive integration in the physics of notations [10].
In our case, when switching from a textual code editor to a graphical represen-
tation, it is clearly necessary that developers keep their references. For example
it is important that developers recognize the entities they have just been manip-
ulating. Therefore the graphical representation has to be close to their mental
model and display information about:

– Entities linked to the active coding task: whether they are open or not in
the IDE and which element is currently active

– Neighbourhood data: accessible via variables of a method, attributes of an
object, inheritance...

– Control flow: the content of a currently consulted method, or at the origin
of a search or navigation.

We use the UML language for the graphical representation because it remains
a language known and mastered by developers, even if according to different
surveys it is not enough used in firms. This selection was made according to the
principle of cognitive integration [9]: adapt to the knowledge of developers.

Forward and Dzidek [11, 12] attest that two of the three most widely used
UML diagrams are the class and the sequence ones. We consequently chose them
in VisUML. The class diagram is important because developers can recognize
the entities they manipulate, as well as consult other related entities thanks to
the different types of links.

In order to display the control flow, especially for the body of a method, we
opted for the sequence diagram. We assume that this diagram is a complemen-
tary visual support for developers that are working on the implementation of a
method. They will be able to see all the classes that are involved in this method,
and especially the different exchanges (and thus links) between them. In addition,
the temporality of these exchanges is emphasized because it is represented on the
y-axis. This correspondence between y-axis and temporality reduces subjectivity
in the layout, and is therefore less subject to interpretation than communication
diagram, where the placement at x and y is arbitrary. Activity diagrams and
states machines can be used for the implementation of a method but their point
of view (activity or state) adds a semantic gap which is likely to increase the time
required for decoding (without taking into account the ordering of instructions).

The navigation between the code and these two types of representation (class
and sequence diagrams) is explained in the next section. Finally, we chose to
display our diagrams in web pages (of a web browser) so that we can easily
connect our module into any IDE. This aspect may seem purely technical but it
is not: one of the cognitive dimensions is the visibility in which the juxtaposition
of two points of view is a way to easily switch from one to the other. If the IDE
does not allow two large windows to be displayed next to each other (each one on
a screen or both on the same screen), it is natively possible with our approach,



even when using a tablet or any display device with an OS containing a web
browser. However, in addition to these web pages, we also made modeling tools
plugins (see section 4.4) that enable live diagrams on them.

3 Related Works

In this part, we first describe works about visualization tools for code, their UML
diagrams features as well as the possible interactions and navigation. Then we
talk about reverse-engineering tools, especially how they generate diagrams and
in what way the generated elements and source code are connected. Finally we
conclude with a summary of these reviews and an opening to the presentation
of our tool.

Code visualization tools usually allow to have graphical and exhaustive views
of projects. These views can use 2D or 3D (for example [13] uses 2D diagrams
connected in 3D and 2D diagrams overloaded with information in 3D like a city
map with buildings), even in virtual reality. However, they require significant
cognitive efforts (understanding the graphic representation, which is often un-
usual for the developers), as well as large screens or even specific equipment
for VR. The advantage of this type of representation is the “macroscopic” view
of projects (dependencies between packages or classes, code versioning...). The
major drawback of these representations is the “off-line” aspect since they do
not allow to reflect in real time the project in its current state. On the contrary,
and on a “microscopic” aspect, [14] can see in real time the code of a project in
a simplified way and thus making it easier to navigate in it. Unfortunately, this
representation is only textual and requires time to adapt to the developer.

Since class diagrams, sequence diagrams and code, share elements, IDE and
modeling tools propose more and more often a “find usages” or “find in diagram”
command. These commands may be triggered in two ways. The first one is by
using the top toolbar menus, but it requires to select which element must be
looked for. The second is via contextual menus; in that case, the element is
already selected and the menu shows only information and commands about
it. One of the easiest way currently implemented in MagicDraw3 is by adding
an item in the elements’ contextual menu. Thus right-clicking an element will
bring up the menu and browsing it will allow users to open a related diagram.
However this menu is yet too much complicated since it does not just show a
list of diagrams but displays the full (UML) path to a related element. Figure 1
shows this menu.

This navigation is indeed based on the UML relations between elements while
we have a user-centered approach. This is especially true for tools using EMF4,
such as Papyrus, since the relations are even more complicated and less direct
for the user; for instance a class inside a sequence diagram is the type of the
property that the lifeline represents (e.g. In figure 1, the lifeline property has
“Client” for type). This navigation action requires at least 8 clicks to switch
3 MagicDraw: http://www.nomagic.com/products/magicdraw.html
4 Eclipse Modeling Framework: https://eclipse.org/modeling/emf/



Fig. 1: MagicDraw - Class diagram: "Usage In" feature requires 8 clicks

from a class to any associated sequence diagram. At the opposite, in VisUML, a
simple click on a method in the class diagram updates immediately the sequence
diagram to display the correct method.

IntelliJ meanwhile implements a similar feature: when displaying a class di-
agram, it is possible for users to “Jump to Source” or “Find Usage” of any sub-
elements (attributes and methods). The advantages of IntelliJ over MagicDraw
is that it is directly linked to the code representation. As a result, it is possible
to quickly switch from a diagram view to the code. Two visualization modes are
available. The first one is classic: the diagram is displayed on a new tab (which
can be shown near another tab). The second is interesting as it creates a popup
window with the diagram inside. In the popup mode, nothing can be modified,
but this allows a quick preview of a diagram. Despite these two modes of visual-
ization, the work context is broken because developers must do several actions
in order to generate and see any diagrams.

IntelliJ only supports class diagrams, it is therefore not possible to create
the sequence diagram of a selected method. In addition, there is no navigation
between diagrams (whether class diagram to class diagram, or class diagram to
sequence diagram).

Figure 2 is an example of how IntelliJ shows usages of a class inside the
project: an unordered list of all the occurrences of this class, without filtering
options. In this example we wanted to find the class that extends Entity, the
useful results are bordered in green, only 4 of 18 lines are relevant.

Reverse engineering is now widespread among IDE and modeling tools. It
allows developers to create a graphical representation of their code, or part of
code. All the tools proposing reverse engineering allow developers to produce
class diagrams. However, sequence diagrams remain yet less common.

ObjectAid5 is one of the tools (together with MaintainJ6, VisualParadigm7

and MagicDraw) that handle sequence diagrams. Depending on the tools, there
are several ways to generate a sequence diagram. All of them (except MaintainJ)
use a common menu that allows developers to choose which elements they want
to reverse-engineer in a sequence diagram. ObjectAid and IntelliJ (only for class
diagrams) also add drag&drop support, from any location in the IDE. This

5 ObjectAid: http://www.objectaid.com/sequence-diagram
6 MaintainJ: http://maintainj.com/
7 VisualParadigm: https://www.visual-paradigm.com/



Fig. 2: IntelliJ - Find Usages of “Entity” (only 4 of 18 lines are relevant)

means that developers can add elements on diagrams easily, without having
to browse the entire project. However, it is still up to them to choose which
elements should appear or not. In VisualParadigm, developers have to navigate
through four windows, when they want to "instant" reverse a method. For this,
they must (1) select the source code folder and (2) find the correct class. Once
they’ve found it, they must (3) select the method they want to reverse. This
process is complicated as it takes at least twenty clicks.

At last, some tools are specialized in visualization after code execution, such
as MaintainJ, which only works at runtime, and ObjectAid which can analyze
Java stack-traces. These tools can therefore generate sequence diagrams that
reflect the execution of a particular method, but not its complete representation
(e.g. “alt” or “ loop” fragments are missing). Although they can generate a lot of
sequence diagrams which are interconnected, it is up to the developers to choose
which one to display, and then navigate through them, using basic interactions,
i.e. right click on a specific invocation to see its own sequence diagram.

Finally, among all the tools we have analyzed, none allows developers to
have live diagrams that fit their current task. Some presented solutions propose
to display diagrams at runtime, with information and values extracted from
stack traces or execution, but this does not necessarily correspond to the active
coding task. Moreover, interactions in these diagrams remain basic. Most of the
navigation actions must be triggered with contextual menus and clicks on ele-
ments, and they simply allow developers to switch from one diagram to one of its
sub-diagrams. In addition, some interactions can link the diagram with the code,
but most of them use the "search" function. Overall, each navigation interaction
forces users to choose from a list of elements, rather than automatically display
elements that are relevant to their task.



4 VisUML Presentation

VisUML is a tool composed of two parts: an IDE plugin, presented in section
4.3, and multiple visualization tools8 of two types of UML diagrams (class and
sequence diagrams). These two parts are connected through our communication
bus which is named WSE. This bus allows applications to send and receive infor-
mation in JSON messages. Those messages can contain any kind of information,
whether it comes from the IDE or from a diagram.

As previously described, we aim to help developers in their coding task. To
this end, all the information displayed on the UML diagrams refers to elements
currently opened in the developer’s IDE. This tool does not aim to do a full syn-
chronization between the code and the models, but focuses on the active coding
task of the developers. As a result, we use a light mechanism of synchronization,
using WSE as way of communication.

Figure 3 gives an overview of the interactions between the IDE and both
diagrams. In this section, we present the different parts of VisUML: the class
diagram view, the sequence diagram view, the IDE plugins and to conclude, a
Papyrus class diagram plugin.

The first two sub-sections are split into two parts: displayed elements and in-
teractions, in which we present the elements that our views display, as well as the
interactions that are triggered from these views. The IDE plugins part presents
the interactions triggered by the IDE, as well as the messages passing through
WSE. Finally, the Papyrus plugin sub-section shows that VisUML visualizations
also work on modeling tools.

4.1 VisUML Class Diagram view

The UML class diagram of our tool only shows the most important part of a class
diagram: the classifiers (class, interface...), their attributes and operations, as
well as the links (generalization, association...) between them, and the packages.
According to empirical studies on UML in industry [11, 15, 16], the class diagram
is often used in a simple way and informally. The displayed elements and the
possibilities offered by our template are thus enough for our use.

Displayed elements. Once activated, VisUML class diagram displays all the
Java elements that are currently opened in the IDE. These elements can be
classes, enumerations, interfaces, . . . and they may or may not be related to any
other element.

In addition to these elements, VisUML also displays unopened elements that
have at least one relation with an opened element. However, those elements are
differentiated by their opacity, as they appear more transparent than the others.

In order to highlight the element that is active in the IDE, we change the
color of the associated graphical representation to green. Moreover, any links
8 As of today, VisUML visualization tools are available on web pages, Papyrus and
GenMyModel plugins.



IDE
Class Diagram

Class

Attributes

Methods

Switch to associated tab

Update the highlighted element

Scroll to selected attribute

Scroll to selected method

Display clicked method

Sequence Diagram

Java File

Send opened elements information

Click or touch on A produces action on BactionA B

Lifeline A Lifeline B

messageSwitch associated tab / Scroll to element

Caret Listener I

alt

message

Display currently browsed method

Caret movement on A produces action on BactionA B

Fig. 3: Navigation interactions and resulting actions

(i.e. relations) that are connected to this representation appear in bold and red.
This allows users to easily detect related elements.

Figure 4 shows a class diagram with the active tab in a different color, as
well as unopened related elements.

Filters. In order to allow users to limit the number of displayed elements, we
added several filters to our class diagram view.

First, we added 4 visualization profiles (see part 1 of figure 5). Each profile
has a different configuration, showing or not part of the diagram.

– Packages only: Display only packages, without any classifier inside
– Classes: Display classes, without attributes or operations
– Public&Protected elements: Display classes, with only public and pro-

tected attributes or methods. Private fields are hidden.
– All details: Default profile. Display everything.

Moreover, a simple button toggles the visibility of unopened related elements.
This function aims to quickly switch between a diagram that matches exactly



Fig. 4: Class Diagram with unopened related elements and active tab highlighted

opened tabs in the IDE, and a diagram that also shows relations associated to
these elements. In the same idea, another button allows to show or hide getters
and setters operations in every classes. These buttons are in part 2 of figure 5.

VisUML displays two lists of elements (that are currently loaded in the tool).
These lists show respectively classifiers (class, enum, interface. . . ) and packages.
They are displayed in part 3 of figure 5. On each element of either list, a checkbox
allows to change the visibility of the related element. So, one can simply check or
uncheck any element, which allows to quickly filter elements according to their
name or package.

Finally, we chose to hide some elements that do not provide useful information
to developers. For example, we hide the java.lang.Object element because it is
inherited by all other Java classes. In the same idea, primitives types are also
hidden. In the same idea, we can hide elements according to a specific framework
or language. For example, when working on an Android project, we hide some
Android specific elements such as android.app.Activity. There is currently no
graphical interface to add or remove elements in this list, but this can be done
easily by modifying the source code of the class diagram.

Interactions. In order to make the class diagram visualization interactive, we
added interactions on each displayed element. These interactions send messages
on our communication bus, and those messages are then received by any con-
nected tools. Interactions in the class diagram view (also visible on figure 3)
are:



Fig. 5: VisUML Filters

– A click on a classifier (besides its attributes/methods) will update the IDE
by putting forward this element (changing the active tab, or opening the
corresponding file).

– A click on an attribute or a method will switch the active tab to the asso-
ciated file if needed, scroll the IDE to the definition of the chosen element
and highlight or select it. Moreover, in the case of a method, the sequence
diagram view will automatically be updated in order to display the selected
method body.

– Finally, a click on the cross (X) on the top right corner of an element will
delete its graphical representation and close the associated tab on the IDE.

Handling these events allows the IDE to remain entirely synchronized with
our graphical representations (“ live diagram” when the developer navigates in-
side a diagram or interact with it. It is therefore possible to switch between
the two representations (code and model) without losing the context of work
(since navigation inside the diagram or the IDE also updates the other). For
instance, the selected class (in the diagram) will always be the active tab in the
IDE. With this visual aid, the developer does not need to look for the active
element. Moreover, a clicked / selected attribute or method in the diagram will
always be visible (i.e. the IDE’s editor will scroll if needed) and highlighted in
the code. Finally, the currently browsed method (in the code, according to the
caret location) is emphasized in bold and blue.

4.2 VisUML Sequence Diagram view

In addition to the class diagram, we chose to implement a sequence diagram
view, as explained in section 2. This diagram is often used to represent control
flow, here the body of a method.



Displayed elements. UML is often used in an informal way [11, 15, 16] but we
chose to create a representation as close to the code as possible. However our
sequence diagram differs from the UML standard in several ways as explained
below.

Fig. 6: Sequence Diagram with colored fragments and highlighted message

First, our sequence diagram acts like an UML one, but with more code specific
information. For example, we create an “alt” fragment for each “try” and “catch”
block and we display invocation details such as parameters (types and values).
Moreover, when VisUML users let their mouse on an element, a tooltip appears
with all code comments associated to this element. Finally, we added a specific
color code on fragments which allows developers to easily recognize the type of
a specific fragment, as well as their nesting level. We chose to be closer to the
code in order to reduce the cognitive integration of the model, since our goal is
to help developers in their current task but not to abstract their code. Figure 6
shows an example of colored fragments.

Interactions. As explained in the previous section, visualizations allow users
to interact with the displayed elements. Possible interactions on this diagram
are similar to the ones implemented on the class diagram:

– A click on a lifeline (which can be created at any time during the method)
will scroll the IDE directly to the associated class, or variable assignment.



– A click on a message (link between two lifelines) or an activity (block on a
lifeline), which is linked to a method invocation, will scroll the IDE to the
corresponding code line.

– A click on a group, or fragment (alt, loop, ...), will highlight this group on
the IDE (full selection of all the lines of this group).

In addition to these interactions, we added a caret listener in the IDE. As
a result, when the developer moves the caret, we check if it is in the body of
a method and send a message containing information about this method, as
well as the line where the caret is located. This message is then received by
the sequence diagram view, which automatically updates its display to show the
graphical representation of this method. Moreover, since the message contains
the location of the caret (the line in the code file), the sequence diagram knows
what UML message (represented by links between Lifelines) is concerned and
we highlight it by changing its color. Figure 6 shows an example of highlighted
message (message setEntity is orange and bold).

Since the communication between the IDE and the visualizations is very
fast (less than 100ms between sending and receiving a message in normal condi-
tions), it is possible for the users to see, in real-time, the sequence diagram lights
up (highlight the related message) when the cursor moves in the code. This is
especially convenient when browsing methods inside a file.

4.3 VisUML IDE Plugins

The current VisUML IDE implementation refers to an IntelliJ9 plugin and an
Eclipse10 one. IntelliJ is a Java IDE developed by JetBrains. Android Studio 11

is based on this IDE, with specific functions for Android developers. IntelliJ uses
a plugin system, allowing us to add functionality to any IntelliJ based IDE.

As mentioned, IntelliJ (as well as Eclipse) offers an API that entirely manages
the interactive part of the IDE. Therefore it is possible to add listeners on any
kind of event. In our case, we are mainly listening to five events:

1. A file has been opened
2. A file has been saved (or its content has been modified)
3. The user has changed the active tab
4. A tab has been closed
5. The caret has been moved

Each handled event contains parameters, primarily the name of the concerned
file, which allows us to make a link between the code element inside it and the
file name, as well as create a representation of that element (in which we store
every needed information, such as its flags, attributes, methods, relations, etc.).
Once the event has been received and the element identified, the plugin sends a
specific message via WSE, to give an order to the connected applications.
9 IntelliJ: https://www.jetbrains.com/idea/

10 Eclipse: https://eclipse.org/
11 Android Studio: https://developer.android.com/studio/index.html



For events 1, 2 and 3, a "createOrUpdateUML" message is generated with all
the information of the class (or several messages, if there are intern or anonymous
classes in addition to the main class). These messages are then sent to WSE. Once
received the UML class diagram (whether on the web page or on Papyrus) will
create or update the UML graphical representations associated to this element.

The event 3 also sends a message of type "highlightClass", containing the
main class of the file in foreground on the IDE; it allows to put forward its
graphical representation. In this way, the active tab of the IDE will always be
highlighted on the diagrams, whether via a different background coloration, a
flashing border or a zooming effect. Figure 4 shows an example of highlighted
element.

The event 4 creates a "remove" message (or several) with the Fully Qualified
Name (FQN)12 of the element that has been closed by the user as parameter.

Finally, the event 5 sends a "highlightMethod" message, which is filled with
the active class information, the currently browsed method and the line on which
the caret is. This event is triggered by following the position of the user’s caret
in the code.

These five events allow the IDE and the diagram views to be synchronized
at any time.

4.4 Plugins for modeling tools

In addition to the visualization into web pages, we also made a Papyrus plugin
that listens to the same messages as these web pages, in order to create UML
class or sequence diagrams. Papyrus13 is an UML modeling tool based on Eclipse.
It is developed by the Laboratory of Model Driven Engineering for Embedded
Systems (LISE) which is a part of the French Alternative Energies and Atomic
Energy Commission (CEA-List)14. Papyrus can either be used as a standalone
tool or as an Eclipse plugin.

Our VisUML Papyrus plugin is still an early prototype. When connected to
an IDE, the current Papyrus model shows a live representation of the opened
tabs of the IDE. Several interactions have also been implemented, such as the
click on a class (switchToClass message) and on an attribute or method (high-
lightAttribute / highlightMethod).

The advantages of Papyrus compared to a web page is that it implements a
lot of useful features to UML diagrams, such as formal validation, exportation in
various formats, easy refactoring, code generation, etc. Even if in our web pages
the goal is to have live and transient diagrams, Papyrus allows users to store
these diagrams and do UML operations on them.

In the same idea, we are developing a GenMyModel15 plugin that works the
same way. GenMyModel is an online UML editor that provides collaboration to
12 A FQN is an unambiguous name that specifies an object (e.g.

com.myapp.model.Client).
13 Papyrus: https://eclipse.org/papyrus/
14 CEA LIST: http://www-list.cea.fr/
15 GenMyModel: https://www.genmymodel.com/



its users, as well as a history mechanism. With this history, each modification
is saved and can be replayed, helping users to understand the evolution of the
UML model.

To sum up, VisUML is independent of IDE and modeling tools or UML
visualizations. Any modeling tool with an open API and connectable to WSE
(i.e. able to send and receive HTTP requests) can be connected to VisUML.

5 VisUML contributions and discussion

In this section we will describe what are the contributions of VisUML. At first,
we will show that according to its technical implementation, VisUML is a flexible
tool. Then we will point out that it is developer-centered, which is an important
concept for such a tool, since we aim to ease the work of developers. With
all these points, we partly answer to Chaudron’s vision [17] (e.g. “mixing formal
notations with informal notations”, “higher level of integration of tools”). Indeed,
we use both formal and informal representations of UML models. More, we make
sure that our tools are focused on one specific aspect while being connected to
each other. Finally, even if there is not yet any particular gestural interaction,
our tools work on tablets and can manage touch and gestural events.

5.1 Distributed and linked applications

VisUML is composed of several applications that are independent and simply
connected through WSE. It is therefore easy to add an application at anytime,
or even replace one by another (e.g. UML visualization can be done by the
GoJS16 web pages as well as with the Papyrus plugin. With VisUML, a developer
can switch at anytime between those two visualizations). Figure 7 shows how
VisUML can be used in different work contexts.

In addition, because of their technologies and implementations, these appli-
cations are able to run on any platform and OS (Java works on Windows, OS
X and Linux). The web pages can even work on Android and iOS, in any web
browser app. Moreover, the UML class diagram view automatically switches to a
specific template when it is displayed on a smartphone (with a "small" screen).
This template shows only the name of the classes, but all the links between them.
A simple click (or touch) on a class display all its details.

Finally, the applications are able to run on different devices (PC, tablet and
smartphone) at the same time, allowing developers to use this tool in their
environment without changing their habits.

VisUML is then entirely multi-platform; developers can develop on a Mac or
PC, visualize their live diagrams on the same machine with a different screen,
or on their tablet or another machine. They can also have a PC with their code,
a laptop with Papyrus showing their UML class diagram, and a tablet with
the sequence diagram on it. Thanks to WSE, each view is synchronized and
interactive.
16 GoJS: https://gojs.net/



(a) 2 screens: IDE and Class Diagram (b) 2 screens, 1 tablet: IDE, Class Dia-
gram and Sequence Diagram

(c) 2 screens, 1 tablet: IDE, 2 Class Diagrams (VisUML and Papyrus)
and Sequence Diagram

Fig. 7: Examples of VisUML contexts of work

5.2 Displayed and highlighted information

In addition to this liberty of devices and displays, we aim to ensure that VisUML
is current-activity centred. Rather than reverse-engineering all the project to
create a gigantic and unreadable class diagram, we chose to only show the opened
tabs of the developer’s IDE. Although this solution works and allows the user to
switch easily between the two representations (code and model, since they are
exactly the same), a simple UML class diagram generation from opened tabs has
shown that some information were missing. Indeed, in the code, a developer can
rapidly know if a class extends another class or not. However, if a diagram only
shows opened Java classes, this kind of information will not be displayed.

In order to fix this lack of information, in addition to every opened elements,
VisUML displays all their related elements (an element can be in relation with
another if one extends or implements the other, or if there is an association
between them), even if they are not opened. This allows the developer to easily
navigate in the graphical representation without losing their context.

5.3 Simplify the use of diagrams

Another important aspect in VisUML is to reduce the number of required actions
for the developers to see and navigate in their diagrams. In most of the current



IDE or modeling tools, developers have to select which classes or elements they
want to reverse-engineer or model, by navigation through the list of all the
possible elements of the project and checking which one they want to process.

This results in a loss of the work context of the developers. They have to stop
their work, take time to select what to show, and then they can resume their
task. This is a big waste of time and concentration, because they changed their
context and active task (cognitive overload of short-term memory), then they
will have to do some cognitive work to restart their task. Moreover, if afterwards
they realize that they forgot some elements, they will have to redo all the process,
which will result in another waste of time, as well as a discouragement to build
UML diagrams.

With VisUML however, we want to reduce to a minimum this waste of time
and the consequences. Once developers started the plugin, everything is done
automatically, without any actions from them. Obviously, developers must do
some actions in their code (or IDE), for example open, edit or close a file, but
nothing specific to VisUML. They just have to work as usual with new live
diagrams views of the code on the desired screens and devices. If they want to
see an element, they just have to open it. If they open an element A that extends
another element B, then B will be shown (with lower opacity), and a simple click
on B will open the corresponding code in the IDE. Therefore, in addition to easily
navigate between UML diagrams and the corresponding code, VisUML adds a
new and efficient way of navigation inside UML diagrams; indeed, a simple click
on a method in the class diagram will update the sequence diagram to display
the representation of this method.

6 Discussion

In this section, we discuss some of the side effects of VisUML, as well as improve-
ments that can be made to this tool in order to makes it even more efficient.

6.1 Malleable environment

Our first goal with VisUML is to adapt to the current work environment of
developers. Instead of making a new IDE or modeling application, we created
plugins that work with commonly used IDEs. This reduce the changes needed
to adopt the tool and so ease its use.

In addition, we aim to add flexibility to the environment by separating fea-
tures in multiple applications that share data to each others. With VisUML,
most of the data come from the code and are transmitted through our com-
munication bus (WSE). Any compatible application can connected to WSE to
listen data and send actions if needed. This On-The-Go principle allows users to
configure their work environment as they wish.

Moreover, there is no limit on how many devices or applications can connect
to WSE. It is possible to be in any kind of configuration. For example, a user
could have VisUML views and code, another Papyrus and VisUML sequence



diagram view. A third could use only its IDE while sending data to others. Then
a fourth could use a tablet with GenMyModel.

On another hand, UML diagrams are not only used by developers. They
are commonly used in firms by multiple peoples, all of them doing specific ac-
tions. We previously describe “profiles” in the class diagram view. The profiles
we defined are developers oriented, but we thought about job oriented profiles.
According to its job, a user could see only a part of a diagram, add extra informa-
tion such as code quality, or even implementation of specific view, like Android
layouts or SQLite databases.

As explained in section 4.4, in addition to web pages, VisUML views are
also available as a plugin for Papyrus (and soon GenMyModel). This allows
developers to benefit from the modeler features (e.g. save, UML validation, XMI
export, code generation...) without having to create the model and diagrams, as
they are generated by VisUML. This aspect validates one of our goals, which
was to adapt to the developers environments by implementing live diagrams on
modeling tools.

6.2 Evolutions

Because our goal is to display information about the active task and not to
ensure a complete synchronization, we did not add model to code transformation
even if it would be easy to do it. This would allow a bidirectional modification
between the model and the code, which would increase the efficiency of VisUML
by reducing the number of switches between code and model.

In the same idea, many refactoring interactions are considered (some of them
currently tested in a prototype) in both the class and sequence diagrams. For
example, messages (links) in a sequence diagram could be moved, which im-
plies a reorganization of the invocations order (code refactoring), as well as their
belonging to a fragment or not. In the same idea, a simple deletion of the graph-
ical representation of a link or a group could delete their corresponding element
in the code. Likewise in the class diagram, developers could be able to move
elements in or out packages.

Finally we also thought about adding new listeners on the IDE. For example,
listeners on the code execution would enable information of debugging (break-
points, execution errors, ...) to be displayed on diagrams. In the same idea,
listeners on the syntax errors or code errors (shown in the IDE) could also be
displayed on a sequence diagram (e.g. an incorrect type or a private method
called in a wrong context would be highlighted).

7 Conclusion

In this paper we presented VisUML, a tool that helps developers in their coding
and debugging tasks. We explained the current limitations of visualizations tools
and the contributions provided by VisUML.



Whether it is to understand a project or to find interesting classes, developers
spend their time looking for files, classes or methods. These subtasks disrupt
developers concentration, as they force them to switch from one activity (e.g.
write code) to another (e.g. find an element) and thus it breaks their context of
work and overload their short-term memory. Indeed, most of the time, developers
look at the code editor part of their IDE. However in order to find files they must
look at menus, sub-menus and other windows, which is not efficient and results
in a waste of time.

UML could help them to quickly understand a project architecture and its
elements relations, since graphical representations of the code are more efficient
for developers to understand all the existing relationships than text. However,
modeling tools and UML itself are not generally used, or used in an informal way.
Nowadays tools allow developers to reverse-engineer the entire project, which
results for instance in a unreadable UML class diagram. It is also possible to
create a class diagram using a subset of the project, but this requires a lot of
interactions and time for developers, as they have to select which files should be
considered.

Finally, we show that with our tool, developers could be able to access a
view displaying live diagrams of their projects. These diagrams are designed to
be easy to read as they only use information provided by the developers IDE.

We focused on two UML diagrams for the moment, but we do consider ex-
tending this set to other UML diagrams, such as Activity diagram (work in
progress) or Object diagram. In the same idea, since our tool is not a modeling
tool, we decided to use UML diagrams informally, and add extra information on
them. For example, we thought about Android activities representations, using
the XML layout, as well as the intents to build links between those activities.
This would really be helpful for Android developers to be able to see their views
and the links between them in a simple interface, without having to navigate
through different files (activities and layouts files).

On the other hand, improving the visual representation of our diagrams would
be interesting, but these changes are slightly outside the main domain of our
work, which are interaction and navigation for the developers. Indeed, another
thesis in the team [18], and in collaboration with CEA LIST, works on UML
representations and semiology of graphics, which is complementary to this work.

References
1. Girba, T., Chis, A.: Pervasive software visualizations (keynote). In: 2015 IEEE

3rd Working Conference on Software Visualization, VISSOFT 2015 - Proceedings.
(sep 2015) 1–5

2. Brooks, R.: Towards a Theory of the Cognitive Processes in Computer Program-
ming. Int. J. Hum.-Comput. Stud. 51(2) (1999) 197–211

3. Davies, S.P.: Skill Levels and Strategic Differences in Plan Comprehension and
Implementation in Programming. In: Proceedings of the Fifth Conference of the
British Computer Society, Human-Computer Interaction Specialist Group on Peo-
ple and Computers V, New York, NY, USA, Cambridge University Press (1989)
487–502



4. Détienne, F.: Expert Programming Knowledge: A Schema-based Approach. In
J-M Hoc T.R.G. Green, R.S.D.G., ed.: Psychology of Programming. People and
Computer series. Academic Press (1990) 205–222

5. Olson, G.M., Sheppard, S., Soloway, E.: Empirical studies of programmers : sec-
ond workshop. In Olson, G.M., Sheppard, S., Soloway, E., eds.: Empirical studies
of programmers: second workshop. Ablex Publishing Corp., Norwood, NJ, USA
(1987) 263

6. Davies, S.P.: Externalising Information During Coding Activities: Effects of Exper-
tise, Environment and Task. In: Empirical Studies of Programmers: Fifth Work-
shop. (1993) 42–61

7. Larkin, J., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand
Words. Cognitive Science 11(1) (1987) 65–99

8. Church, L., Marasoiu, M.: A fox not a hedgehog: What does PPIG know? In:
PPIG 2016 - 27th Annual Workshop. (2016) 17–31

9. Green, T., Petre, M.: Usability Analysis of Visual Programming Environments:
A ‘Cognitive Dimensions’ Framework. Journal of Visual Languages & Computing
7(2) (1996) 131–174

10. Moody, D.L.: The “Physics” of Notations: Toward a Scientific Basis for Construct-
ingVisual Notations in Software Engineering. IEEE Transactions on Software En-
gineering 35(6) (2009) 756–779

11. Lethbridge, T.C., Ave, K.E.: Perceptions of Software Modeling : A Survey of
Software Practitioners Table of Contents. In: 5th workshop from code centric
to model centric: evaluating the effectiveness of MDD (C2M: EEMDD). Number
March. (2008) 1–102

12. Dzidek, W.J., Arisholm, E., Briand, L.C.: A realistic empirical evaluation of the
costs and benefits of UML in software maintenance. IEEE Transactions on Software
Engineering 34(3) (2008) 407–432

13. Gregorovic, L., Polasek, I.: Analysis and Design of Object-oriented Software Us-
ing Multidimensional UML. Proceedings of the 15th International Conference on
Knowledge Technologies and Data-driven Business (2015) 47:1—-47:4

14. De Line, R., Czerwinski, M., Meyers, B., Venolia, G., Drucker, S., Robertson, G.:
Code Thumbnails: Using spatial memory to navigate source code. Proceedings -
IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC
2006 (2006) 11–18

15. Chaudron, M.R., Heijstek, W., Nugroho, A.: How effective is UML modeling?: An
empirical perspective on costs and benefits. Software and Systems Modeling 11(4)
(2012) 571–580

16. Petre, M.: UML in practice. Proceedings - International Conference on Software
Engineering (2013) 722–731

17. Chaudron, M.R.V., Jolak, R.: A Vision on a New Generation of Software Design
Environments. HuFaMo@ MoDELS (2015) 11–16

18. El Ahmar, Y., Gerard, S., Dumoulin, C., Le Pallec, X.: Enhancing the commu-
nication value of UML models with graphical layers. In: 2015 ACM/IEEE 18th
International Conference on Model Driven Engineering Languages and Systems,
MODELS 2015 - Proceedings. (sep 2015) 64–69


