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Simulation results are discussed in Section A. The proofs of all theoretical results in the main

paper and additional technical results are provided in Section B.

A Some simulation evidence

The aim of this section is to explore some features that were mentioned in Section 5.2 of the main

article.

We have undertaken simulation experiments to evaluate finite-sample performance of the com-

posite versions ĆXES
‹

pτ 1nppnq
, XES

‹

pτ 1nppnq
pβq and zXES

‹

pτ 1nppnq
pβq studied in Theorem 9. These composite

expectile-based estimators estimate the same conventional expected shortfall QESpn as the direct

quantile-based estimator zQES
‹

pn ”
zXES

‹

pτ 1nppnq
pβ “ 1q.

In order to illustrate the behavior of the presented estimation procedures, we use the same

considerations as in Section 5 of the main paper. Namely, we consider the Student t-distribution

with degree of freedom 1{γ, the Fréchet distribution F pxq “ e´x
´1{γ

, x ą 0, and the Pareto

distribution F pxq “ 1 ´ x´1{γ, x ą 1. The finite-sample performance of the different estima-

tors is evaluated through their relative Mean-Squared Error (MSE) and bias, computed over 200

replications. The accuracy of the weighted estimators is investigated for various values of the

weight β P t0, 0.2, 0.4, 0.6, 0.8, 1u. All the experiments have sample size n “ 500 and tail index

γ P t0.05, 0.25, 0.45u. In our simulations we used the extreme level pn “ 1´ 1
n

and the intermediate

level τn “ 1´ k
n
, where the integer k can be viewed as the effective sample size for tail extrapolation.

We first examined the accuracy of ĆXES
‹

pτ 1nppnq
and zQES

‹

pn (both independent of β) in comparison

with XES
‹

pτ 1nppnq
pβq, in Figures 1-2, and with zXES

‹

pτ 1nppnq
pβq in Figures 3-4.

Figures 1 and 2 give, respectively, the MSE (in log scale) and bias estimates of zQES
‹

pn{QESpn
(grey curves), ĆXES

‹

pτ 1nppnq
{QESpn (black curves) and XES

‹

pτ 1nppnq
pβq{QESpn (colored curves), against

k. In the case of the Student distribution (top panels), it may be seen that the black curves

perform globally quite well in terms of MSE and bias. In the cases of Fréchet distribution (panels

in the middle) and Pareto distribution (bottom panels), the grey and orange curves seem to be

superior.
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Figure 1: MSE estimates (in log scale) of zQES
‹

pn{QESpn (grey), ĆXES
‹

pτ 1nppnq
{QESpn (black) and

XES
‹

pτ 1nppnq
pβq{QESpn (colour-scheme), against k, for Student (top), Fréchet (middle) and Pareto

(bottom) distributions, with γ “ 0.05 (left), γ “ 0.25 (middle) and γ “ 0.45 (right).
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Figure 2: Bias estimates of zQES
‹

pn{QESpn (grey), ĆXES
‹

pτ 1nppnq
{QESpn (black) and

XES
‹

pτ 1nppnq
pβq{QESpn (colour-scheme).
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Figures 3 and 4 give, respectively, the MSE (in log scale) and bias estimates of ĆXES
‹

pτ 1nppnq
{QESpn

(black curves) and zXES
‹

pτ 1nppnq
pβq{QESpn (colored curves), against k. Note that the orange curves

pβ “ 1q correspond to the Monte-Carlo estimates of zQES
‹

pn{QESpn , since zXES
‹

pτ 1nppnq
pβ “ 1q ”

zQES
‹

pn . In the case of the Student distribution (top panels), the black curves still perform quite

well. By contrast, in both cases of the Fréchet distribution (panels in the middle) and Pareto

distribution (bottom panels), the orange curves seem to be superior.

When comparing the four estimators zQES
‹

pn , ĆXES
‹

pτ 1nppnq
, XES

‹

pτ 1nppnq
pβq and zXES

‹

pτ 1nppnq
pβq with

each other, we arrive at the following tentative conclusions:

• In the case of the real-valued profit-loss Student distribution, the best estimator seems to be

ĆXES
‹

pτ 1nppnq
;

• In the case of the non-negative Fréchet and Pareto loss distributions, the best estimators

seem to be XES
‹

pτ 1nppnq
pβ “ 1q and/or zQES

‹

pn ”
zXES

‹

pτ 1nppnq
pβ “ 1q.
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Figure 3: MSE estimates (in log scale) of ĆXES
‹

pτ 1nppnq
{QESpn (black) and zXES

‹

pτ 1nppnq
pβq{QESpn

(colour-scheme), against k, for Student (top), Fréchet (middle) and Pareto (bottom) distributions,

with γ “ 0.05 (left), γ “ 0.25 (middle) and γ “ 0.45 (right).

5



pareto : γ = 0.05 pareto : γ = 0.25 pareto : γ = 0.45

frechet : γ = 0.05 frechet : γ = 0.25 frechet : γ = 0.45

student : γ = 0.05 student : γ = 0.25 student : γ = 0.45

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

25 50 75 25 50 75 25 50 75
-0.5

0.0

0.5

1.0

1.5

2.0

-0.5

0.0

0.5

1.0

1.5

2.0

-0.5

0.0

0.5

1.0

1.5

2.0

k

B
ia
s

variable
b=0

b=.2

b=.4

b=.6

b=.8

b=1

tilde

Figure 4: Bias estimates of ĆXES
‹

pτ 1nppnq
{QESpn (black) and zXES

‹

pτ 1nppnq
pβq{QESpn (colour-scheme).
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B Proofs

In all proofs, the sequence τn is replaced by the sequence k “ np1´ τnq.

Proof of Proposition 1. We start by showing (i). By Proposition 1 in Daouia et al. (2018):

F pξτ q

1´ τ
“ pγ´1 ´ 1qp1` εpτqq

with εpτq “ ´
pγ´1 ´ 1qγ

qτ
pEpY q ` op1qq ´

pγ´1 ´ 1q´ρ

γp1´ γ ´ ρq
App1´ τq´1qp1` op1qq as τ Ñ 1.

Using this convergence together with local uniformity of condition C2pγ, ρ, Aq, we find that

1

App1´ τq´1q

„

Up1{F pξτ qq

Upp1´ τq´1q
´ pγ´1 ´ 1q´γp1` εpτqq´γ



Ñ pγ´1 ´ 1q´γ
pγ´1 ´ 1q´ρ ´ 1

ρ

as τ Ñ 1, or equivalently

Up1{F pξτ qq

qτ
“ pγ´1 ´ 1q´γ

ˆ

1`
γpγ´1 ´ 1qγ

qτ
pEpY q ` op1qq

`

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

App1´ τq´1q

˙

as τ Ñ 1.

A use of Lemma 1 at t “ ξτ makes it possible to replace Up1{F pξτ qq by ξτ asymptotically, thus

completing the proof of (i).

To show (ii), first note that if s “ 1, there is nothing to prove. Otherwise, write

ξ1´ks{n
ξ1´k{n

“
ξ1´ks{n
q1´ks{n

ˆ
q1´k{n
ξ1´k{n

ˆ
q1´ks{n
q1´k{n

. (B.1)

With alternatively τ “ 1´ k{n and τ “ 1´ ks{n in (i), we obtain

ξ1´k{n
q1´k{n

“ pγ´1 ´ 1q´γ
ˆ

1`
γpγ´1 ´ 1qγ

q1´k{n
pEpY q ` op1qq

`

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

Apn{kq

˙

and

ξ1´ks{n
q1´ks{n

“ pγ´1 ´ 1q´γ
ˆ

1` sγ
γpγ´1 ´ 1qγ

q1´k{n
pEpY q ` op1qq

`

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

s´ρApn{kq

˙

because of the regular variation property of t ÞÑ q1´t´1 and |A|. Besides, it is a consequence of

condition C2pγ, ρ, Aq that

q1´ks{n
q1´k{n

“
Upn{ksq

Upn{kq
“ s´γ

ˆ

1` Apn{kq
s´ρ ´ 1

ρ
` opApn{kqq

˙

.

Combining these three expansions with (B.1) yields the desired result.
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Proof of Theorem 1. Note that, for any τ P p0, 1q,

rξτ ´
1

n

n
ÿ

i“1

Yi “
2τ ´ 1

1´ τ
ˆ

1

n

n
ÿ

i“1

pYi ´ rξτ q1tYiąrξτ u

which is a straightforward consequence of the definition of rξτ as a minimiser (see e.g. Equation

(2.7) in Newey and Powell, 1987, applied to the empirical distribution function). We use this with

τ “ 1´ ks{n, s P p0, 1s, in order to write

ks{n

1´ 2ks{n
prξ1´ks{n ´ Y nq “

ż 8

rξ1´ks{n

pF npuqdu (B.2)

where Y n denotes the empirical mean and pF npuq “ n´1
řn
i“1 1tYiąuu is the empirical survival

function of the sample. The idea is now to obtain a uniform (in s) “asymptotic expansion” of the

integral on the right-hand side.

Our main tool will be Lemma 2(ii): we may enlarge the underlying sample space and choose a

suitable version of the empirical process pFn so that there is a sequence of standard Brownian

motions ĂWn such that for any ε ą 0 small enough (which we shall fix later):

n

k
pF n

`

xq1´k{n
˘

´ x´1{γ “
1
?
k

ˆ

ĂWnpx
´1{γ

q `
?
kApn{kqx´1{γ

xρ{γ ´ 1

γρ
` xpε´1{2q{γ oPp1q

˙

uniformly in half-lines of the form x P rx0,8q, for x0 ą 0. Note then that, as a consequence of the

monotonicity of expectiles together with convergence

ξτ
qτ
Ñ

`

γ´1 ´ 1
˘´γ

as τ Ñ 1 (B.3)

(see Bellini and Di Bernardino, 2017) and Lemma 3, we have

@s P p0, 1s,
rξ1´ks{n
q1´k{n

ě
rξ1´k{n
q1´k{n

P
ÝÑ pγ´1 ´ 1q´γ as nÑ 8.

Consequently

P

˜

@s P p0, 1s,
rξ1´ks{n
q1´k{n

ą
1

2
pγ´1 ´ 1q´γ

¸

Ñ 1 as nÑ 8. (B.4)

It then follows from the above approximation by a sequence of Brownian motions that, with

arbitrarily large probability:
ż 8

rξ1´ks{n

pF npuqdu

“ q1´k{n

ż 8

rξ1´ks{n{q1´k{n

pF npxq1´k{nqdx

“
k

n
q1´k{n

˜

ż 8

rξ1´ks{n{q1´k{n

x´1{γ dx`
1
?
k

ż 8

rξ1´ks{n{q1´k{n

ĂWnpx
´1{γ

q dx

` Apn{kq

ż 8

rξ1´ks{n{q1´k{n

x´1{γ
xρ{γ ´ 1

γρ
dx` oP

˜

1
?
k

ż 8

rξ1´ks{n{q1´k{n

xpε´1{2q{γ dx

¸¸

(B.5)
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uniformly in s P p0, 1s. Note that the last term is indeed well-defined, if ε is taken close enough to

0, because γ P p0, 1{2q. We choose such an ε here and in the sequel.

The next step is to use Lemma 4, primarily to remove the randomness in the lower bound of

the integral of the Brownian motion ĂWn in (B.5). Lemma 4 only allows us to do so on the

restricted range rk´1`δ, 1s, and we therefore focus on this case for now; we will take care of the

case s P p0, k´1`δq separately afterwards. Use first (B.4) to get, for any sufficiently small δ ą 0

and with arbitrarily large probability irrespective of s P rk´1`δ, 1s:

sγ

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

rξ1´ks{n{q1´k{n

ĂWnpx
´1{γ

q dx´

ż 8

pγ´1´1q´γs´γ

ĂWnpx
´1{γ

q dx

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

sγ rξ1´ks{n{q1´k{n

ĂWnps u
´1{γ

q du´

ż 8

pγ´1´1q´γ

ĂWnps u
´1{γ

q du

ˇ

ˇ

ˇ

ˇ

ˇ

ď sγ

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
q1´k{n

´ pγ´1 ´ 1q´γs´γ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ sup
0ďtďpγ´1´1q{2´1{γ

|ĂWnpstq|.

Self-similarity of the Brownian motion ĂWn w.r.t. scaling gives

sup
0ďtďpγ´1´1q{2´1{γ

|ĂWnpstq|
d
“
?
s sup
0ďtďpγ´1´1q{2´1{γ

|ĂWnptq| “ OPp
?
sq

uniformly in s, because a standard Brownian motion is almost surely bounded on any compact

interval by almost sure continuity of its sample paths. A use of Lemma 4 then entails

sup
k´1`δďsď1

sγ´1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

rξ1´ks{n{q1´k{n

ĂWnpx
´1{γ

q dx´

ż 8

pγ´1´1q´γs´γ

ĂWnpx
´1{γ

q dx

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q.

Similarly,

sup
k´1`δďsď1

sγ´1

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

rξ1´ks{n{q1´k{n

x´1{γ
xρ{γ ´ 1

γρ
dx´

ż 8

pγ´1´1q´γs´γ
x´1{γ

xρ{γ ´ 1

γρ
dx

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q

and sup
k´1`δďsď1

sγ´1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

rξ1´ks{n{q1´k{n

xpε´1{2q{γ dx´

ż 8

pγ´1´1q´γs´γ
xpε´1{2q{γ dx

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q.

Therefore, we have, uniformly in s P rk´1`δ, 1s and with arbitrarily large probability, that

ż 8

rξ1´ks{n

pF npuqdu “
k

n
q1´k{n

¨

˝

γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`
1
?
k

ż 8

pγ´1´1q´γs´γ

ĂWnpx
´1{γ

q dx

` Apn{kq

ż 8

pγ´1´1q´γs´γ
x´1{γ

xρ{γ ´ 1

γρ
dx` oP

ˆ

1
?
k

ż 8

pγ´1´1q´γs´γ
xpε´1{2q{γ dx

˙

` oP

ˆ

s´γ`1{2´ε
?
k

˙˙

.
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We now rewrite each integral as follows: firstly, a change of variables and self-similarity of the

Brownian motion w.r.t. scaling yield
ż 8

pγ´1´1q´γs´γ

ĂWnpx
´1{γ

q dx “ pγ´1 ´ 1q´γγ

ż s

0

ĂWnppγ
´1
´ 1qtq t´γ´1 dt

“ pγ´1 ´ 1q1{2´γγ

ż s

0

Wnptq t
´γ´1 dt (B.6)

whereWnptq :“ pγ´1´1q´1{2ĂWnppγ
´1´1qtq defines another sequence of standard Brownian motions.

Secondly, a straightforward integration gives
ż 8

pγ´1´1q´γs´γ
x´1{γ

xρ{γ ´ 1

γρ
dx “

pγ´1 ´ 1q1´γs1´γ

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



.

Thirdly and finally, another direct integration entails
ż 8

pγ´1´1q´γs´γ
xpε´1{2q{γ dx “ O

`

s´γ`1{2´ε
˘

.

All in all, and combining these calculations with (B.2), we obtain, uniformly in s P rk´1`δ, 1s:

s

1´ 2ks{n

˜

rξ1´ks{n
q1´k{n

´
Y n

q1´k{n

¸

“
γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`
1
?
k
pγ´1 ´ 1q1{2´γγ

ż s

0

Wnptq t
´γ´1 dt

` Apn{kq
pγ´1 ´ 1q1´γs1´γ

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



` oP

ˆ

s´γ`1{2´ε
?
k

˙

. (B.7)

Recall now the following equivalent characterisation of population expectiles:

ξτ ´ EpY q “
2τ ´ 1

1´ τ
EppY ´ ξτ q1tYąξτ uq. (B.8)

We use this identity with τ “ 1´ k{n to get:

1

1´ 2k{n

ˆ

ξ1´k{n
q1´k{n

´
EpY q
q1´k{n

˙

“
n

k
ˆ

1

q1´k{n

ż 8

ξ1´k{n

F puqdu

“
n

k
F pq1´k{nq

˜

γ

1´ γ

„

ξ1´k{n
q1´k{n

1´1{γ

` Apn{kq
pγ´1 ´ 1q1´γ

ρ

„

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´

1

1´ γ

˙

` opApn{kqq

thanks to convergence (B.3), the asymptotic equivalence F pq1´k{nq „ k{n from Lemma 1(ii) and

used inside the regularly varying function A, Lemma 5 and calculations identical to those we have

carried out so far. Using the condition
?
kApn{kq “ Op1q and the convergence

lim
nÑ8

1

Apn{kq

´n

k
F pq1´k{nq ´ 1

¯

“ 0

10



which follows from Lemma 1(ii), we obtain

1

1´ 2k{n

ˆ

ξ1´k{n
q1´k{n

´
EpY q
q1´k{n

˙

“
γ

1´ γ

„

ξ1´k{n
q1´k{n

1´1{γ

` Apn{kq
pγ´1 ´ 1q1´γ

ρ

„

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´

1

1´ γ



` o

ˆ

1
?
k

˙

. (B.9)

Dividing (B.7) by (B.9) and using convergence (B.3) together with a Taylor expansion, we get

s
1´ 2k{n

1´ 2ks{n
ˆ

rξ1´ks{n ´ Y n

ξ1´k{n ´ EpY q

“

»

–

γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`
1
?
k
pγ´1 ´ 1q1{2´γγ

ż s

0

Wnptq t
´γ´1 dt

` Apn{kq
pγ´1 ´ 1q1´γs1´γ

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



` oP

ˆ

s´γ`1{2´ε
?
k

˙

ˆ
1´ γ

γ

„

q1´k{n
ξ1´k{n

1´1{γ ˆ

1´ Apn{kq
γ´1 ´ 1

ρ

„

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´

1

1´ γ



` o

ˆ

1
?
k

˙˙

“

«

rξ1´ks{n
ξ1´k{n

ff1´1{γ

`
1
?
k
γ
a

γ´1 ´ 1

ż s

0

Wnptq t
´γ´1 dt

` Apn{kq
pγ´1 ´ 1qs1´γ

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



´ Apn{kq

«

rξ1´ks{n
ξ1´k{n

ff1´1{γ
γ´1 ´ 1

ρ

„

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´

1

1´ γ



` oP

ˆ

s´γ`1{2´ε
?
k

˙

.

Define now a random process s ÞÑ rnpsq by the equality

sγ
rξ1´ks{n
ξ1´k{n

“ 1` rnpsq.

We know, by a combination of convergence (B.3) and Lemma 4, that rnpsq
P
ÝÑ 0 uniformly in

s P rk´1`δ, 1s. The above expansion then simplifies as

s
1´ 2k{n

1´ 2ks{n
ˆ

rξ1´ks{n ´ Y n

ξ1´k{n ´ EpY q
“

«

rξ1´ks{n
ξ1´k{n

ff1´1{γ

`
1
?
k
γ
a

γ´1 ´ 1

ż s

0

Wnptq t
´γ´1 dt

` Apn{kq ˆ
pγ´1 ´ 1q1´ρ

1´ γ ´ ρ
ˆ s1´γ

s´ρ ´ 1

ρ
` oP

ˆ

s´γ`1{2´ε
?
k

˙

. (B.10)

We now work on the left-hand side of the above identity. Note that we can write, uniformly in

s P p0, 1s:
1´ 2k{n

1´ 2ks{n
“ 1´

2k

n
ˆ

1´ s

1´ 2ks{n
“ 1´

2k

n
p1´ sq

„

1`O

ˆ

k

n

˙

.
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Moreover,

rξ1´ks{n ´ Y n

ξ1´k{n ´ EpY q
“

˜

rξ1´ks{n
ξ1´k{n

´ 1

¸

ˆ

1`
EpY q

ξ1´k{n ´ EpY q

˙

`
ξ1´k{n ´ Y n

ξ1´k{n ´ EpY q

“ 1`

˜

rξ1´ks{n
ξ1´k{n

´ 1

¸

ˆ

1`
pγ´1 ´ 1qγEpY q

q1´k{n
p1` op1qq

˙

`OP

ˆ

1

q1´k{n
?
n

˙

by asymptotic proportionality of q1´k{n and ξ1´k{n, and the central limit theorem. Since γ ă 1{2,

we have by regular variation of t ÞÑ q1´t´1 that

1

q1´k{n
?
n

N

1
?
k
“

c

k

n
q1´k{n “ op1q.

Consequently

sγ
rξ1´ks{n ´ Y n

ξ1´k{n ´ EpY q
“ 1` rnpsq p1` oPp1qq ` p1´ s

γ
q
pγ´1 ´ 1qγEpY q

q1´k{n
p1` oPp1qq ` oP

ˆ

1
?
k

˙

.

Notice finally that, by the mean value theorem:

1 ď sup
0ďsă1

"

1´ s

1´ sγ

*

ă 8

so that, using the relationship q1´k{n “ opn{kq, we get again that

1´ 2k{n

1´ 2ks{n
ˆ sγ

rξ1´ks{n ´ Y n

ξ1´k{n ´ EpY q

“ 1` rnpsq p1` oPp1qq ` p1´ s
γ
q
pγ´1 ´ 1qγEpY q

q1´k{n
p1` oPp1qq ` oP

ˆ

1
?
k

˙

.

Because, uniformly in s P rk´1`δ, 1s,
«

rξ1´ks{n
ξ1´k{n

ff1´1{γ

“ s1´γp1` rnpsqq
1´1{γ

“ s1´γ
ˆ

1`

„

1´
1

γ



rnpsqp1` oPp1qq

˙

we obtain using (B.10) that:

1` rnpsq p1` oPp1qq ` p1´ s
γ
q
pγ´1 ´ 1qγ

q1´k{n
pEpY q ` oPp1qq ` oP

ˆ

1
?
k

˙

“ 1`

„

1´
1

γ



rnpsqp1` oPp1qq `
1
?
k
γ
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt

` Apn{kq ˆ
pγ´1 ´ 1q1´ρ

1´ γ ´ ρ
ˆ
s´ρ ´ 1

ρ
` oP

ˆ

s´1{2´ε
?
k

˙

.

Rearrange and solve for rnpsq to get, uniformly in s P rk´1`δ, 1s:

rnpsq “ psγ ´ 1q
γpγ´1 ´ 1qγ

q1´k{n
pEpY q ` oPp1qq

`
1
?
k
γ2
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt

` Apn{kq ˆ
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ
ˆ
s´ρ ´ 1

ρ
` oP

ˆ

s´1{2´ε
?
k

˙

.
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This is precisely what we wanted to show, but in the restricted case s P rk´1`δ, 1s.

We conclude the proof by focusing on the case s P p0, k´1`δq. To this end, we choose δ P p0, ε{p2ε`

1 ` 2γqq and we note that
?
k s1{2`ε Ñ 0 uniformly in s P p0, k´1`δq. It then follows that, by a

direct calculation:

?
k sup

0ăsăk´1`δ

s1{2`ε
ˆ

1

q1´k{n
`

1
?
k
sγ´1

ˇ

ˇ

ˇ

ˇ

ż s

0

Wnptq t
´γ´1 dt

ˇ

ˇ

ˇ

ˇ

` |Apn{kq|

˙

P
ÝÑ 0.

It is then enough to show that

?
k sup

0ăsăk´1`δ

s1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

sγ
rξ1´ks{n
ξ1´k{n

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

“
?
k sup

0ăsăk´1`δ

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´k{n

´ s´γ

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0.

Recall that expectiles of an arbitrary distribution are monotonically increasing and exactly cover

its support, and apply this to the empirical distribution to get rξ1´ks{n ď rξ1 “ Yn,n for any s P p0, 1q.

Write then

?
k sup

0ăsăk´1`δ

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´k{n

´ s´γ

ˇ

ˇ

ˇ

ˇ

ˇ

ď k1{2`p´1`δqpγ`1{2`εq
Yn,n
ξ1´k{n

` op1q.

Using Lemma 2(i) with s “ 1{p2kq and ε{2 in place of what was an arbitrary η there, gives:

Yn,n
q1´k{n

“ oPpk
γ`ε{2

q

and therefore, by a use of (B.3) again, we get

?
k sup

0ăsăk´1`δ

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´k{n

´ s´γ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP
`

kδpγ`1{2`εq´ε{2
˘

` op1q.

Recalling that δ ă ε{p2ε` 1` 2γq, we obtain

?
k sup

0ăsăk´1`δ

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´k{n

´ s´γ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q.

This concludes the proof of the approximation result for the tail expectile process.

To complete the proof, just note that the sequence Wn has the closed form expression

Wnptq “
1

a

γ´1 ´ 1
ĂWn

`

pγ´1 ´ 1qt
˘

,

where ĂWn denotes the sequence of standard Brownian motions appearing in Lemma 3(ii), see (B.6).

This sequence of Brownian motions is also the one appearing in Lemma 3(i), which is nothing but

the Gaussian approximation of the tail quantile process. We omit the remaining straightforward

technical details.
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Proof of Theorem 2. The idea is to use (B.7) in the proof of Theorem 1 together with an

analogue of (B.9), with ξ1´k{n replaced by ξ1´ks{n and valid uniformly in s P p0, 1s. To prove such

an analogue relationship, note first that

ξ1´ks{n
q1´k{n

“
ξ1´ks{n
q1´ks{n

ˆ
Upn{ksq

Upn{kq
.

Recall that since ρ ă 0, the function t ÞÑ Uptq is equivalent to a constant multiple of t ÞÑ tγ in a

neighbourhood of infinity, see p.49 of de Haan and Ferreira (2006). Using (B.3), we obtain

ξ1´ks{n
q1´k{n

“ pγ´1 ´ 1q´γs´γp1` op1qq (B.11)

uniformly in s P p0, 1s. Use then (B.8) with τ “ 1´ ks{n to get

s

1´ 2ks{n

ˆ

ξ1´ks{n
q1´k{n

´
EpY q
q1´k{n

˙

“
n

k
ˆ

1

q1´k{n

ż 8

ξ1´ks{n

F puqdu.

Use now the asymptotic equivalence F pq1´k{nq „ k{n following from Lemma 1(ii) and used inside

the regularly varying function A together with Lemma 5 to obtain, for any small κ ą 0,

s

1´ 2ks{n

ˆ

ξ1´ks{n
q1´k{n

´
EpY q
q1´k{n

˙

“
n

k
F pq1´k{nq

„

ξ1´ks{n
q1´k{n

1´1{γ
˜

γ

1´ γ
` Apn{kq

1

ρ

«

1

1´ γ ´ ρ

„

ξ1´ks{n
q1´k{n

ρ{γ

´
1

1´ γ

ff¸

` o

˜

Apn{kq

„

ξ1´ks{n
q1´k{n

1´p1´ρq{γ`κ
¸

uniformly in s P p0, 1s. According to (B.11),

sup
0ăsď1

„

ξ1´ks{n
q1´k{n

ρ{γ`κ

ď 2pγ´1 ´ 1q´ρ´κγ sup
0ăsď1

s´ρ´κγ “ 2pγ´1 ´ 1q´ρ´κγ ă 8

for κ small enough (recall that ρ ă 0) and n large enough. Therefore, by (B.11) again:

s

1´ 2ks{n

ˆ

ξ1´ks{n
q1´k{n

´
EpY q
q1´k{n

˙

“
γ

1´ γ

„

ξ1´ks{n
q1´k{n

1´1{γ ˆ

1` Apn{kq
γ´1 ´ 1

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



` o

ˆ

1
?
k

˙˙
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uniformly in s P p0, 1s. Divide (B.7) by this expansion and use once again (B.11) to get:

rξ1´ks{n ´ Y n

ξ1´ks{n ´ EpY q

“

»

–

γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`
1
?
k
pγ´1 ´ 1q1{2´γγ

ż s

0

Wnptq t
´γ´1 dt

` Apn{kq
pγ´1 ´ 1q1´γs1´γ

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



` oP

ˆ

s´γ`1{2´ε
?
k

˙

ˆ
1´ γ

γ

„

q1´k{n
ξ1´ks{n

1´1{γ ˆ

1´ Apn{kq
γ´1 ´ 1

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



` o

ˆ

1
?
k

˙˙

“

«

rξ1´ks{n
ξ1´ks{n

ff1´1{γ

`
1
?
k
γ
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt

` Apn{kq
γ´1 ´ 1

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



¨

˝1´

«

rξ1´ks{n
ξ1´ks{n

ff1´1{γ
˛

‚` oP

ˆ

s´1{2´ε
?
k

˙

uniformly in s P rk´1`δ, 1s and with arbitrarily large probability (here, as in the proof of Theorem 1,

δ is a sufficiently small positive number to be chosen later). Define a random process s ÞÑ Rnpsq

by the equality
rξ1´ks{n
ξ1´ks{n

“ 1`Rnpsq.

We know, by a combination of convergence (B.11) and Lemma 4, that Rnpsq
P
ÝÑ 0 uniformly in

s P rk´1`δ, 1s. Recalling that
?
kApn{kq “ Op1q, the above expansion then reads

rξ1´ks{n ´ Y n

ξ1´ks{n ´ EpY q

“

«

rξ1´ks{n
ξ1´ks{n

ff1´1{γ

`
1
?
k
γ
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt` oP

ˆ

s´1{2´ε
?
k

˙

. (B.12)

We now work on the left-hand side of this identity:

rξ1´ks{n ´ Y n

ξ1´ks{n ´ EpY q
“

˜

rξ1´ks{n
ξ1´ks{n

´ 1

¸

ˆ

1`
EpY q

ξ1´ks{n ´ EpY q

˙

`
ξ1´ks{n ´ Y n

ξ1´ks{n ´ EpY q

“ 1`

˜

rξ1´ks{n
ξ1´k{n

´ 1

¸

p1` op1qq `OP

ˆ

1

q1´k{n
?
n

˙

by asymptotic proportionality of q1´k{n and ξ1´k{n and the central limit theorem. Since moreover

γ ă 1, we obtain
rξ1´ks{n ´ Y n

ξ1´ks{n ´ EpY q
“ 1`Rnpsq p1` oPp1qq ` oP

ˆ

1
?
k

˙

.
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Because, uniformly in s P rk´1`δ, 1s,

«

rξ1´ks{n
ξ1´ks{n

ff1´1{γ

“ p1`Rnpsqq
1´1{γ

“

ˆ

1`

„

1´
1

γ



Rnpsqp1` oPp1qq

˙

we obtain, using (B.12) and solving for Rnpsq, that:

Rnpsq “
1
?
k
γ2
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt` oP

ˆ

s´1{2´ε
?
k

˙

.

This is the desired result in the restricted case s P rk´1`δ, 1s.

We conclude the proof by focusing on the case s P p0, k´1`δq. The idea is very similar to that of

the final stages of the proof of Theorem 1. Choose δ P p0, ε{p2ε ` 1 ` 2γqq: it is enough to show

that
?
k sup

0ăsăk´1`δ

s1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´ks{n

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0.

Write then

?
k sup

0ăsăk´1`δ

s1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´ks{n

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
?
k sup

0ăsăk´1`δ

s1{2`ε
"

Yn,n
ξ1´ks{n

*

` op1q.

Using (B.11) again, we obtain

?
k sup

0ăsăk´1`δ

s1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´ks{n

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

?
k sup

0ăsăk´1`δ

sγ`1{2`ε
"

Yn,n
q1´k{n

*˙

` op1q.

Argue then as in the end of the proof of Theorem 1 to conclude the present proof.

Proof of Theorem 3. Let us start by remarking that

pγk “

ż 1

0

log

ˆ

pq1´tkus{n

q1´tku{n

˙

ds´ log

ˆ

pq1´tku{n

q1´tku{n

˙

.

Note that, in Theorem 1, the sequence of Brownian motions is left unchanged if k is changed into

tku or rks; this is indeed the fundamental argument behind the proof of Lemma 3(i). Set then

sn “ tku´p1´εq{p1`2εq for some sufficiently small ε P p0, 1{4q, and write

pγk ` log

ˆ

pq1´tku{n

q1´tku{n

˙

“

ż sn

0

log

ˆ

pq1´tkus{n

q1´tku{n

˙

ds`

ż 1

sn

log

ˆ

pq1´tkus{n

q1´tku{n

˙

ds “: In,1 ` In,2. (B.13)

In,1 is controlled by writing

|In,1| ď sn log

ˆ

Yn,n
pq1´tku{n

˙

.

Using further the heavy-tailed assumption on the distribution on Y , it follows from Theorem 1.1.6,

Theorem 1.2.1 and Lemma 1.2.9 in de Haan and Ferreira (2006) that

Yn,n
Upnq

d
ÝÑ 1` γGγ
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where Gγ has distribution function x ÞÑ expp´p1 ` γxq´1{γq, for x ą ´1{γ. It follows that the

limiting variable 1` γGγ is positive and thus logpYn,n{Upnqq “ OPp1q by the continuous mapping

theorem. Besides, pq1´tku{n{Upn{tkuq “ pq1´tku{n{q1´tku{n
P
ÝÑ 1, by Lemma 2(i) again. Therefore

log

ˆ

Yn,n
pq1´tku{n

˙

“ log

ˆ

Upnq

Upn{tkuq

˙

`OPp1q “ OPplog kq

by Potter bounds (see e.g. Proposition B.1.9.5 in de Haan and Ferreira, 2006). Recalling that

sn “ k´p1´εq{p1`2εq with ε ă 1{4, it is now straightforward to get

?
k|In,1| “ OP

´

sn ˆ
?
k log k

¯

“ oPp1q.

Combining then (B.13) with this convergence along with Theorem 1, a Taylor expansion of the

logarithm function within In,2 and some straightforward calculus, we find that

?
kppγk ´ γq “

λ1
1´ ρ

` γ
a

γ´1 ´ 1

ˆ
ż 1

0

1

s
Wn

ˆ

s

γ´1 ´ 1

˙

ds´Wn

ˆ

1

γ´1 ´ 1

˙˙

` oPp1q. (B.14)

Using Theorem 1 twice more, we can also write

?
k

ˆ

pq1´k{n
q1´k{n

´ 1

˙

“ γ
a

γ´1 ´ 1Wn

ˆ

1

γ´1 ´ 1

˙

` oPp1q (B.15)

as well as
?
k

˜

rξ1´k{n
ξ1´k{n

´ 1

¸

“ γ2
a

γ´1 ´ 1

ż 1

0

Wnptqt
´γ´1dt` oPp1q. (B.16)

As a consequence, the random vector

?
k

˜

pγk ´ γ,
pq1´k{n
q1´k{n

´ 1,
rξ1´k{n
ξ1´k{n

´ 1

¸

is asymptotically trivariate Gaussian. To complete the proof, we analyse the marginal asymptotic

behaviour of each of the three components in this vector, as well as their pairwise asymptotic

covariance structure.

Marginal asymptotic behaviour of pγk: We know from Theorem 3.2.5 in de Haan and Ferreira (2006)

that
?
kppγk ´ γq

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

Marginal asymptotic behaviour of pq1´k{n: It is a straightforward byproduct of Equation (B.15) that

?
k

ˆ

pq1´k{n
q1´k{n

´ 1

˙

d
ÝÑ N p0, γ2q.

Marginal asymptotic behaviour of rξ1´k{n: It is a direct consequence of Theorem 1 that

?
k

˜

rξ1´k{n
ξ1´k{n

´ 1

¸

d
ÝÑ N

ˆ

0,
2γ3

1´ 2γ

˙

.
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Asymptotic covariance structure of ppγk, pq1´k{nq: It is a consequence of the asymptotic representation

of pγk ´ γ obtained in the proof of Theorem 3.2.5 in de Haan and Ferreira (2006) together with

Lemma 3.2.3 therein that pγk ´ γ and pq1´k{n{q1´k{n ´ 1 are asymptotically independent.

Asymptotic covariance structure of ppγk, rξ1´k{nq: It follows from Equations (B.14) and (B.16) that

the limiting covariance of
?
kppγk ´ γ, rξ1´k{n{ξ1´k{n ´ 1q is

COV “ γ2p1´ γq

„
ż 1

0

ż 1

0

minppγ´1 ´ 1q´1s, tq

s
t´γ´1ds dt´

ż 1

0

minppγ´1 ´ 1q´1, tqt´γ´1dt



.

Direct computations yield

COV “ γ2
ˆ

pγ´1 ´ 1qγ

p1´ γq2
´ 1

˙

´ γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

“
γ3pγ´1 ´ 1qγ

p1´ γq2
.

Asymptotic covariance structure of ppq1´k{n, rξ1´k{nq: Combining Equations (B.15) and (B.16), we

find that the limiting covariance of
?
kppq1´k{n{q1´k{n ´ 1, rξ1´k{n{ξ1´k{n ´ 1q is

γ2p1´ γq

ż 1

0

minpt, pγ´1 ´ 1q´1qt´γ´1dt “ γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

after some straightforward calculations.

Combining these arguments on marginal convergence and asymptotic covariance structure, we get

?
k

˜

pγk ´ γ,
pq1´k{n
q1´k{n

´ 1,
rξ1´k{n
ξ1´k{n

´ 1

¸

d
ÝÑ N pm,Vq

with m and V as in the statement of Theorem 3. This concludes the proof.

Proof of Theorem 4. Applying Theorem 3 and arguing as in the proof of Theorem 1 in Daouia

et al. (2018), we get the joint convergence

?
k

˜

pξ1´k{n
ξ1´k{n

´ 1,
rξ1´k{n
ξ1´k{n

´ 1

¸

d
ÝÑ

`

rp1´ γq´1 ´ logpγ´1 ´ 1qsΓ`Θ´ λ, Ξ
˘

where pΓ,Θ,Ξq is the limiting vector in Theorem 3, and

λ :“

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ

˙

λ1 ` γpγ
´1
´ 1qγEpY qλ2.

Then clearly

?
k

˜

ξ1´k{npβq

ξ1´k{n
´ 1

¸

d
ÝÑ rp1´ γq´1 ´ logpγ´1 ´ 1qsβΓ` βΘ` p1´ βqΞ´ βλ.

Rearrange the bias component to complete the proof.
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Proof of Theorem 5. Define pn “ 1´ τ 1n and note that

log

˜

ξ
‹

1´pnpβq

ξ1´pn

¸

“ ppγ1´k{n ´ γq log

ˆ

k

npn

˙

` log

˜

ξ1´k{npβq

ξ1´k{n

¸

´ log

ˆ

”npn
k

ıγ ξ1´pn
ξ1´k{n

˙

.

The convergence logrk{pnpnqs Ñ 8 yields
?
k

logrk{pnpnqs
log

˜

ξ1´k{npβq

ξ1´k{n

¸

“ OP p1{ logrk{pnpnqsq “ oPp1q (B.17)

and

?
k

logrk{pnpnqs
log

ˆ

”npn
k

ıγ ξ1´pn
ξ1´k{n

˙

“

?
k

logrk{pnpnqs

ˆ

log

ˆ

ξ1´pn
q1´pn

˙

´ log

ˆ

ξ1´k{n
q1´k{n

˙

` log

ˆ

”npn
k

ıγ q1´pn
q1´k{n

˙˙

“ O

˜ ?
k

logrk{pnpnqs

„

1

q1´k{n
` |Apn{kq|



¸

“ op1q. (B.18)

Here, convergence (B.17) is a consequence of Theorem 4. Convergence (B.18) follows from a

combination of Proposition 1, Theorem 2.3.9 in de Haan and Ferreira (2006) and the regular

variation of |A|. Combining these convergences and using the delta-method leads to the desired

result.

Proof of Proposition 2. Statement (i) is a clear consequence of the fact that the expectile-based

ES at level τ is an increasing linear functional of the restriction of the expectile function on the

interval rτ, 1s, in the sense that

ξ
p1q
t ď ξ

p2q
t @t P rτ, 1s ñ XESp1qτ :“

1

1´ τ

ż 1

τ

ξ
p1q
t dt ď

1

1´ τ

ż 1

τ

ξ
p2q
t dt “: XESp2qτ .

To show statement (ii), note that, for τ ě 1{2, XTCEτ is clearly translation invariant and positive

homogeneous (because so are expectiles above level τ ě 1{2, and conditional expectations). A

simple counter-example to monotonicity and subadditivity is the following: set τ “ 1{2, so that

XTCE1{2pZq “ EpZ |Z ą ξ1{2pZqq “ EpZ |Z ą EpZqq.

We then actually show that XTCE1{2 is neither monotonic nor subadditive. For this, we consider

a uniform random variable U on r0, 1s and we set

X “ 21t5{6ďUă1u and Y “ 1t1{2ďUă5{6u ` 21t5{6ďUă1u.

Then clearly X ď Y with probability 1, and X and Y are discrete variables taking values in the

set t0, 1, 2u, with EpXq “ EpX1tXą0uq “ 1{3 and EpY q “ EpY 1tYą0uq “ 2{3. As such

EpX |X ą EpXqq “ EpX |X ą 0q “ 2

and EpY |Y ą EpY qq “ EpY |Y ą 0q “
2{3

1{2
“

4

3
.
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This establishes that EpY |Y ą EpY qq ă EpX |X ą EpXqq: XTCE1{2 is not a monotonic risk

measure. Besides,

X ` Y “ 1t1{2ďUă5{6u ` 41t5{6ďUă1u

so that EpX ` Y q “ EprX ` Y s1tX`Yą0uq “ 1 and then

EpX ` Y |X ` Y ą EpX ` Y qq “ EpX ` Y |X ` Y ą 1q “ 4.

This shows that EpX ` Y |X ` Y ą EpX ` Y qq ą EpX |X ą EpXqq ` EpY |Y ą EpY qq, proving

that XTCE1{2 is not a subadditive risk measure either.

Proof of Proposition 3. It follows from the asymptotic proportionality relationship ξτ{qτ „

pγ´1 ´ 1q´γ as τ Ñ 1 (see Bellini and Di Bernardino, 2017) that

XESτ “
1

1´ τ

ż 1

τ

ξα dα “ pγ
´1
´ 1q´γ

"

1

1´ τ

ż 1

τ

qαp1` rpαqqdα

*

where rpαq Ñ 0 as αÑ 1. It is then clear that

XESτ „ pγ
´1
´ 1q´γ

"

1

1´ τ

ż 1

τ

qα dα

*

“ pγ´1 ´ 1q´γQESτ as τ Ñ 1.

This proves that
XESτ
QESτ

„ pγ´1 ´ 1q´γ „
ξτ
qτ

as τ Ñ 1,

by asymptotic proportionality again. Besides, the equality qα “ Upp1 ´ αq´1q and a change of

variables entail
QESτ
qτ

“
1

1´ τ

ż 1

τ

qα
qτ
dα “

ż 8

1

y´1
Upp1´ τq´1yq

Upp1´ τq´1q

dy

y
.

The condition γ ă 1 and a uniform convergence theorem such as Proposition B.1.10 in de Haan

and Ferreira (2006, p.360) entail

QESτ
qτ

Ñ

ż 8

1

yγ´2dy “
1

1´ γ
as τ Ñ 1.

Consequently
XESτ
ξτ

„
QESτ
qτ

Ñ
1

1´ γ
as τ Ñ 1.

Let us now turn to the terms XTCEτ{QTCEτ and XTCEτ{ξτ . On the one hand, we have

XTCEτ “
E rpY ´ ξτ q`s

F pξτ q
` ξτ and QTCEτ “

E rpY ´ qτ q`s
F pqτ q

` qτ ,

where y` “ maxpy, 0q. On the other hand, it follows from the proof of Theorem 11 in Bellini et

al. (2014) that
E rpY ´ tq`s

F ptq
„

t

γ´1 ´ 1
as tÑ 8.

Therefore
XTCEτ

ξτ
„

1

1´ γ
and

QTCEτ

qτ
„

1

1´ γ
as τ Ñ 1.

Whence XTCEτ{QTCEτ „ ξτ{qτ as τ Ñ 1, which completes the proof.
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Proof of Proposition 4. The starting point to show the first expansion is Proposition 1(i), which

yields

XESτ “
1

1´ τ

ż 1

τ

ξα dα

“ pγ´1 ´ 1q´γ

˜

QESτ ` γpγ
´1
´ 1qγEpY qp1` op1qq

`

"

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

*

1

1´ τ

ż 1

τ

qαApp1´ αq
´1
qdα

¸

.

Use a change of variables to get

1

1´ τ

ż 1

τ

qαApp1´ αq
´1
qdα “ Upp1´ τq´1qApp1´ τq´1q

ż 8

1

y´1
Upp1´ τq´1yqApp1´ τq´1yq

Upp1´ τq´1qApp1´ τq´1q

dy

y
.

This entails, using a uniform convergence theorem such as Proposition B.1.10 in de Haan and

Ferreira (2006, p.360), that

1

1´ τ

ż 1

τ

qαApp1´ αq
´1
qdα „ Upp1´ τq´1qApp1´ τq´1q

ż 8

1

yγ`ρ´2dy as τ Ñ 1

“
qτApp1´ τq

´1q

1´ γ ´ ρ
.

Since QESτ „ qτ{p1´ γq, our earlier expansion yields

XESτ
QESτ

“ pγ´1 ´ 1q´γ

˜

1`
γp1´ γqpγ´1 ´ 1qγEpY q

qτ
p1` op1qq

`

"

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

*

1´ γ

1´ γ ´ ρ
App1´ τq´1q

¸

. (B.19)

Furthermore, it is a consequence of a uniform inequality such as Theorem 2.3.9 in de Haan and

Ferreira (2006) applied to the function U that

QESτ
qτ

“

ż 8

1

y´1
Upp1´ τq´1yq

Upp1´ τq´1q

dy

y

“

ż 8

1

y´1
ˆ

yγ ` App1´ τq´1qyγ
yρ ´ 1

ρ
p1` op1qq

˙

dy

y

“

ż 8

1

yγ´2dy `
App1´ τq´1q

ρ

ż 8

1

`

yγ`ρ´2 ´ yγ´2
˘

dyp1` op1qq

“
1

1´ γ

ˆ

1`
1

1´ γ ´ ρ
App1´ τq´1qp1` op1qq

˙

. (B.20)

Finally, Proposition 1(i) reads

qτ
ξτ

“ pγ´1 ´ 1qγ

˜

1´
γpγ´1 ´ 1qγEpY q

qτ
p1` op1qq

´

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

App1´ τq´1q

¸

. (B.21)
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A use of the identity
XESτ
ξτ

“
XESτ
QESτ

ˆ
QESτ
qτ

ˆ
qτ
ξτ

and a combination of (B.19), (B.20) and (B.21) complete the proof after some straightforward

computations.

Proof of Theorem 6. By Theorem 2:

ĆXES1´k{n

XES1´k{n

´ 1 “
1
?
k
γ2
a

γ´1 ´ 1ˆ

ş1

0
p
şs

0
Wnptqt

´γ´1 dtqsγ´1ξ1´ks{n ds
ş1

0
ξ1´ks{n ds

` oP

˜

1
?
k
ˆ

ş1

0
s´1{2´εξ1´ks{n ds
ş1

0
ξ1´ks{n ds

¸

.

Using (B.11) and the fact that γ ă 1{2, we obtain:

ĆXES1´k{n

XES1´k{n

´ 1 “
1
?
k
pγr1´ γsq3{2

ż 1

0

ˆ
ż s

0

Wnptqt
´γ´1 dt

˙

ds

s
` oP

ˆ

1
?
k

˙

.

Denoting by W a standard Brownian motion, we get, using an integration by parts, that:

?
k

˜

ĆXES1´k{n

XES1´k{n

´ 1

¸

d
ÝÑ pγr1´ γsq3{2

ż 1

0

W psqs´γ´1 logpsq ds.

Since the rhs above is a centred Gaussian random variable, it only remains to compute its variance,

which is

v “ γ3p1´ γq3
ż 1

0

ż 1

0

minps, tqs´γ´1t´γ´1 logpsq logptq ds dt.

It then follows from straightforward but lengthy computations that

v “
2γ3p1´ γqp3´ 4γq

p1´ 2γq3

as required.

Proof of Theorem 7. The proof of this result is entirely similar to that of Theorem 5 (applying

Theorem 6 instead of Theorem 4, and Proposition 4 instead of Proposition 1). We omit the details.

Proof of Theorem 8. We examine first the convergence of XES
‹

1´pnpβq. Define pn “ 1´ τ 1n and

write

log

˜

XES
‹

1´pnpβq

XES1´pn

¸

“ log

˜

ξ
‹

1´pnpβq

ξ1´pn

¸

` log

ˆ

r1´ pγ1´k{ns
´1

r1´ γs´1

˙

´ log

ˆ

XES1´pn

r1´ γs´1ξ1´pn

˙

.
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By Theorem 5 and the delta-method,
?
k

logrk{pnpnqs
log

˜

ξ
‹

1´pnpβq

ξ1´pn

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

. (B.22)

Using then Theorem 3.2.5 in de Haan and Ferreira (2006), the delta-method and the convergence

logrk{pnpnqs Ñ 8, we get
?
k

logrk{pnpnqs
log

ˆ

r1´ pγ1´k{ns
´1

r1´ γs´1

˙

P
ÝÑ 0. (B.23)

Using finally a combination of Proposition 1(i), Proposition 4 and the regular variation of |A| and

t ÞÑ q1´t´1 , we obtain ?
k

logrk{pnpnqs
log

ˆ

XES1´pn

r1´ γs´1ξ1´pn

˙

Ñ 0. (B.24)

Combining convergences (B.22), (B.23) and (B.24), it follows that
?
k

logrk{pnpnqs
log

˜

XES
‹

1´pnpβq

XES1´pn

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

Another use of the delta-method completes the proof of the convergence of XES
‹

1´pnpβq.

We now show the convergence of zXES
‹

1´pnpβq. For this we write

log

˜

zXES
‹

1´pnpβq

XES1´pn

¸

“ log

˜

ξ
‹

1´pnpβq

ξ1´pn

¸

` log

˜

zQES1´k{n

pq1´k{n
¨

q1´k{n
QES1´k{n

¸

` log

ˆ

QES1´k{n

q1´k{n

˙

´ log

ˆ

XES1´pn

ξ1´pn

˙

where we set

zQES1´k{n :“
1

tku

tku
ÿ

i“1

Yn´i`1,n “

ż 1

0

pq1´tkus{n ds.

Remark now that, since pq1´tku{n “ Yn´tku,n “ pq1´k{n, we have

log

˜

zQES1´k{n

pq1´k{n
¨

q1´k{n
QES1´k{n

¸

“ log

ˆ
ż 1

0

pq1´tkus{n

pq1´tku{n

ds

˙

´ log

ˆ

QES1´k{n

q1´k{n

˙

.

Combine then Theorem 1, the delta-method, and (B.20) together with a Taylor expansion to obtain
?
k

logrk{pnpnqs
log

˜

zQES1´k{n

pq1´k{n
¨

q1´k{n
QES1´k{n

¸

“ OP

ˆ

1

logrk{pnpnqs

˙

“ oPp1q. (B.25)

Besides, a combination of Equation (B.20) and Proposition 4 with a Taylor expansion yields
?
k

logrk{pnpnqs

„

log

ˆ

QES1´k{n

q1´k{n

˙

´ log

ˆ

XES1´pn

ξ1´pn

˙

“ O

˜ ?
k

logrk{pnpnqs

„

1

q1´k{n
` |Apn{kq|



¸

“ op1q. (B.26)

Finally, use together (B.22), (B.25) and (B.26) and the delta-method to complete the proof.
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Proof of Theorem 9. We only show the result for ĆXES
‹

pτ 1nppnq
as the proofs of the other conver-

gences are entirely similar. The key point is to write

ĆXES
‹

pτ 1nppnq
“

ˆ

1´ pτ 1nppnq

1´ τ 1nppnq

˙´pγτn
ĆXES

‹

τ 1nppnq
. (B.27)

It is, moreover, shown as part of the proof of Theorem 6 in Daouia et al. (2018) that

1´ pτ 1nppnq

1´ τ 1nppnq
“ 1`OP

˜

1
a

np1´ τnq

¸

(combine (B.52), (B.53), (B.54) and (B.55) in the supplementary material document of [Daouia et

al., 2018], noting that the strict monotonicity of FY is not required thanks to Proposition 1(i) in

the present paper; this also results in a corrected version of (B.51) in the former paper). Therefore,

by the
a

np1´ τnq´convergence of pγτn ,

ˆ

1´ pτ 1nppnq

1´ τ 1nppnq

˙´pγτn

“ 1`OP

˜

1
a

np1´ τnq

¸

. (B.28)

Furthermore, using Proposition 5, we conclude that the conditions of Theorem 7 are satisfied if

the parameter τ 1n there is set equal to τ 1nppnq. By Theorem 7 then:

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nppnqqs

˜

ĆXES
‹

τ 1nppnq

XESτ 1nppnq
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

Now

log

„

1´ τn
1´ τ 1nppnq



“ log

„

1´ τn
1´ pn



` log

„

1´ pn
1´ τ 1nppnq



and in the right-hand side of this identity, the first term tends to infinity, while the second term

converges to a finite constant in view of Proposition 5. As a conclusion

log

„

1´ τn
1´ τ 1nppnq



„ log

„

1´ τn
1´ pn



.

Hence the convergence

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

ĆXES
‹

τ 1nppnq

XESτ 1nppnq
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

. (B.29)

We conclude the proof by writing

XESτ 1nppnq “ QESpn ˆ

"

p1´ γq
XESτ 1nppnq
ξτ 1nppnq

*

ˆ

"

p1´ γq
QESpn
qpn

*´1

(since ξτ 1nppnq ” qpn by definition). By a combination of Propositions 4 and 5 with the regular

variation of the functions |A| and t ÞÑ q1´t´1 , one gets

p1´ γq
XESτ 1nppnq
ξτ 1nppnq

“ 1` o

˜

logrp1´ τnq{p1´ pnqs
a

np1´ τnq

¸

.
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Similarly and by (B.20),

p1´ γq
QESpn
qpn

“ 1` o

˜

logrp1´ τnq{p1´ pnqs
a

np1´ τnq

¸

.

Therefore
XESτ 1nppnq

QESpn
´ 1 “ o

˜

logrp1´ τnq{p1´ pnqs
a

np1´ τnq

¸

.

Together with (B.29), this entails

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

ĆXES
‹

τ 1nppnq

QESpn
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

. (B.30)

Combining (B.27), (B.28) and (B.30) completes the proof.

Appendix: Preliminary results and their proofs

The first preliminary lemma, which we will use to show Proposition 1, is a technical result on

second-order regular variation that seems to be informally known in the literature. We prove it

for the sake of completeness.

Lemma 1. Assume that condition C2pγ, ρ, Aq holds. Then we have the following two convergences:

(i) lim
tÑ8

1

Ap1{F ptqq

ˆ

Up1{F ptqq

t
´ 1

˙

“ 0;

(ii) lim
tÑ8

1

Aptq

ˆ

1{F pUptqq

t
´ 1

˙

“ 0.

Proof of Lemma 1. The proof of this lemma is based on that of Theorem B.3.19 in de Haan

and Ferreira (2006). We only show (i), the proof of (ii) being entirely similar. Recall that

Uptq “ inftx | 1{F pxq ě tu

so that Up1{F ptqq ď t. Furthermore, condition C2pγ, ρ, Aq is nothing but second-order extended

regular variation in the sense of convergence (B.3.3) in de Haan and Ferreira (2006), which is

known to be locally uniform in x P p0,8q (see Remark B.3.8.1 in de Haan and Ferreira, 2006).

Pick ε P R arbitrarily close to 0: by using condition C2pγ, ρ, Aq with t replaced by 1{F ptq and

x “ 1` εAp1{F ptqq, tÑ 8, we get

lim
tÑ8

1

Ap1{F ptqq

„

Upr1` εAp1{F ptqqs{F ptqq

Up1{F ptqq
´ p1` εAp1{F ptqqqγ



“ 0

or equivalently

lim
tÑ8

1

Ap1{F ptqq

„

Upr1` εAp1{F ptqqs{F ptqq

Up1{F ptqq
´ 1



“ γε.
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Assume that A is positive and take ε ą 0; the proof in the other case is similar by taking ε ă 0

instead. Using the definition of U again, we find that Upr1` εAp1{F ptqqs{F ptqq ě t, and thus

0 ď lim inf
tÑ8

1

Ap1{F ptqq

ˆ

t

Up1{F ptqq
´ 1

˙

ď lim sup
tÑ8

1

Ap1{F ptqq

ˆ

t

Up1{F ptqq
´ 1

˙

ď γε.

Let ε Ó 0 to complete the proof.

The second lemma is a generalisation of the weighted approximation of the tail empirical quantile

process tailored to our purpose. Its main contribution is to give a precise representation of the

Gaussian term that is of independent interest, for example when evaluating the correlation between

two quantiles or expectiles at different orders.

Lemma 2. Suppose that condition C2pγ, ρ, Aq holds. Let k “ kpnq Ñ 8 be a positive sequence such

that k{n Ñ 0 and
?
kApn{kq “ Op1q. Then, subject to a potential enlargement of the underlying

probability space and to choosing a suitable version of the empirical process pFn, there exists a

sequence Wn “ W
pkq
n of standard Brownian motions such that, for any ε ą 0 sufficiently small:

(i) We have

pq1´ks{n
q1´k{n

“ s´γ `
1
?
k

ˆ

γs´γ´1Wnpsq `
?
kApn{kqs´γ

s´ρ ´ 1

ρ
` s´γ´1{2´ε oPp1q

˙

uniformly in s P p0, 1s.

(ii) If pF npuq “ n´1
řn
i“1 1tYiąuu is the empirical survival function of the Yi, we have

n

k
pF n

`

xq1´k{n
˘

´ x´1{γ “
1
?
k

ˆ

Wnpx
´1{γ

q `
?
kApn{kqx´1{γ

xρ{γ ´ 1

γρ
` xpε´1{2q{γ oPp1q

˙

uniformly on half-lines of the form rx0,8q, for x0 ą 0.

Moreover, the sequence Wn can be chosen as Wnpsq “ W
pkq
n psq “

a

n{kW npks{nq, where W n is a

sequence of Brownian motions which is fixed across all possible choices of k.

Proof of Lemma 2. Note that (i) is exactly Theorem 2.4.8 in de Haan and Ferreira (2006),

recalling that the function A0 therein is asymptotically equivalent to A, in the case when k is a

sequence of integers. If the sequence k is not a sequence of integers, the result can easily be proven

by noting that
pq1´ks{n
q1´k{n

ď
pq1´tkus{n

q1´tku{n

ˆ

q1´tku{n

q1´k{n
´ 1

˙

`
pq1´tkus{n

q1´tku{n

for n sufficiently large and by using local uniformity of condition C2pγ, ρ, Aq (see e.g. Theorem 2.3.9

in de Haan and Ferreira, 2006) as well as the regular variation property of |A|. We omit the details.
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Besides, if the sequence k is made of integers, there is a sequence ĂWn of (potentially different)

Brownian motions such that, for a suitable version of the empirical process pFn:

n

k
pF n

`

xq1´k{n
˘

´ x´1{γ “
1
?
k

ˆ

ĂWnpx
´1{γ

q `
?
kApn{kqx´1{γ

xρ{γ ´ 1

γρ
` xpε´1{2q{γ oPp1q

˙

uniformly on half-lines of the form rx0,8q. This follows from Theorem 5.1.4 in de Haan and Ferreira

(2006). The adaptation of this expansion to an arbitrary sequence k is then also straightforward.

To prove the Lemma, it remains to show that ĂWn can be taken equal to Wn, and that the latter

can be chosen as indicated in the final statement. Work throughout with the above version of

pFn, and denote by s ÞÑ pq1´ks{n the related tail quantile process. Our goal is to show that for any

η, δ ą 0, we have, for n large enough,

P
ˆ

sup
0ăsď1

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n
q1´k{n

´ s´γ
˙

´ γs´γ´1ĂWnpsq ´
?
kApn{kqs´γ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ą η

˙

ă δ.

First note that, by the triangle inequality and self-similarity of the Brownian motion ĂWn, one can

choose a ą 0 so small that

P
ˆ

sup
0ăsďa

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

γs´γ´1ĂWnpsq `
?
kApn{kqs´γ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ą
η

4

˙

ă
δ

4
. (B.31)

Using statement (i) together with the triangle inequality, and repeating exactly the same argument,

we obtain that we can choose a ą 0 so small that

P
ˆ

sup
0ăsďa

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n
q1´k{n

´ s´γ
˙ˇ

ˇ

ˇ

ˇ

ą
η

4

˙

ă
δ

4
. (B.32)

Combining (B.31) and (B.32) results, for such a choice of a ą 0, in the inequality

P
ˆ

sup
0ăsďa

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n
q1´k{n

´ s´γ
˙

´ γs´γ´1ĂWnpsq ´
?
kApn{kqs´γ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ą
η

2

˙

ă
δ

2
.

Noting that sγ`1{2`ε ě aγ`1{2`ε on p0, as, it is therefore sufficient to show that for any a ą 0

sup
aďsď1

ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n
q1´k{n

´ s´γ
˙

´ γs´γ´1ĂWnpsq ´
?
kApn{kqs´γ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

“ oPp1q. (B.33)

By statement (i), we have
?
k sup
aďsď1

ˇ

ˇ

ˇ

ˇ

pq1´ks{n
q1´k{n

´ s´γ
ˇ

ˇ

ˇ

ˇ

“ OPp1q.

Set then x “ xnpsq “ pq1´ks{n{q1´k{n in the approximation of pF n

`

xq1´k{n
˘

to get, uniformly in

s P ra, 1s,

tksu

k
´ rxnpsqs

´1{γ

“
1
?
k

ˆ

ĂWnprxnpsqs
´1{γ

q `
?
kApn{kqrxnpsqs

´1{γ rxnpsqs
ρ{γ ´ 1

γρ
` rxnpsqs

pε´1{2q{γ oPp1q

˙

.
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By the uniform convergence of xnpsq to s´γ on ra, 1s, as well as the continuity properties of

Brownian motion, this entails

ˆ

pq1´ks{n
q1´k{n

˙´1{γ

“ rxnpsqs
´1{γ

“ s´
1
?
k

ˆ

ĂWnpsq `
?
kApn{kqs

s´ρ ´ 1

γρ
` oPp1q

˙

uniformly in s P ra, 1s. A Taylor expansion then shows (B.33).

That Wn can be chosen as indicated in the final statement can be shown as follows. Proposition

2.4.9 in de Haan and Ferreira (or equivalently, Theorem 6.2.1 in Csörgő and Horváth, 1993) yields

that, for a suitable choice of an independent sequence pZiqiě1 of unit Pareto random variables,

there is a sequence of Brownian bridges Bn such that

sup
1{pn`1qďtďn{pn`1q

nεtε´1{2p1´ tqε´1{2

ˇ

ˇ

ˇ

ˇ

ˇ

?
np1´ tqγ`1

˜

Zγ
rnts,n ´ 1

γ
´
p1´ tq´γ ´ 1

γ

¸

´Bnptq

ˇ

ˇ

ˇ

ˇ

ˇ

is stochastically bounded. Setting t “ 1´ ks{n and rearranging yields in particular that

sup
k´1ďsď1

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

?
k

˜

p k
n
Zn´tksu,nq

γ ´ 1

γ
´
s´γ ´ 1

γ

¸

´

c

n

k
s´γ´1Bnp1´ ks{nq

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q.

Set now Bnptq “ Bnp1 ´ tq, which makes Bn a sequence of Brownian bridges as well, and let

W n be any sequence of Brownian motions such that Bnptq “ W nptq ´ tW np1q (for instance,

W nptq “ Bnptq ` tVn, where for each n, Vn is a standard Gaussian random variable independent

of the process Bn). Note that the sequence W n is constructed independently of k. We have

c

n

k
s´γ´1Bnp1´ ks{nq “

c

n

k
s´γ´1W npks{nq ´

c

n

k
s´γ´1 ˆ

ks

n
W np1q

and clearly

sup
k´1ďsď1

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

c

n

k
s´γ´1 ˆ

ks

n
W np1q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

c

k

n
W np1q

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP

˜

c

k

n

¸

“ oPp1q.

It follows that

sup
k´1ďsď1

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

?
k

˜

p k
n
Zn´tksu,nq

γ ´ 1

γ
´
s´γ ´ 1

γ

¸

´ s´γ´1
a

n{kW npks{nq

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q.

The sequence of Brownian motions W
pkq
n psq “

a

n{kW npks{nq can then be shown to be the

sequence Wn in the statement of our Lemma, by noting that pYiqiě1
d
“ pUpZiqqiě1 and combining

(2.4.23), (2.4.24) and (2.4.25) on p.59 of de Haan and Ferreira (2006).

The third lemma is a preliminary consistency result for intermediate sample expectiles, under a

weaker moment condition than that of Theorem 2 in Daouia et al. (2018).
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Lemma 3. Let k “ kpnq Ñ 8 be a positive sequence such that k{nÑ 0. Suppose further that the

distribution of Y is heavy-tailed with tail index γ P p0, 1{2q, and assume that E|Y´|2 ă 8. Then

rξ1´k{n
ξ1´k{n

P
ÝÑ 1 as nÑ 8.

Proof of Lemma 3. We adapt the proof of Theorem 2 in Daouia et al. (2018), which was an

asymptotic normality result formulated using the parametrisation τn “ 1 ´ k{n, where τn Ñ 1 is

such that np1 ´ τnq Ñ 8. To make it easier for the reader to relate the present proof with the

one of Daouia et al. (2018), we adopt this parametrisation here. We shall therefore show that
rξτn{ξτn

P
ÝÑ 1, and we will actually prove the stronger statement

vn

˜

rξτn
ξτn

´ 1

¸

P
ÝÑ 0 provided vn Ñ 8 and vn “ o

´

a

np1´ τnq
¯

.

Note that

vn

˜

rξτn
ξτn

´ 1

¸

“ arg min
uPR

ψnpuq

with ψnpuq :“
v2n

np1´ τnq

n
ÿ

i“1

1

2ξ2τn

„

ητn

ˆ

Yi ´ ξτn ´
uξτn
vn

˙

´ ητnpYi ´ ξτnq



.

Denoting the derivative of y ÞÑ ητ pyq{2 by ϕτ pyq :“ |τ ´ 1tyď0u|y, it is straightforward to get (e.g.

using Lemma 2 in Daouia et al., 2018):

ψnpuq “ ´uT1,n ` T2,npuq (B.34)

with T1,n :“
vn

np1´ τnq

n
ÿ

i“1

1

ξτn
ϕτnpYi ´ ξτnq “:

n
ÿ

i“1

Sn,i

and T2,npuq :“ ´
v2n

np1´ τnqξ2τn

n
ÿ

i“1

ż uξτn{vn

0

pϕτnpYi ´ ξτn ´ tq ´ ϕτnpYi ´ ξτnqqdt.

The random variables Sn,i are independent, identically distributed, and also centred, by differen-

tiating the expectile minimisation criterion under the expectation sign. Now note that

VarpT1,nq “ O

ˆ

v2n
np1´ τnq

˙

Ñ 0

by Lemma 4 in Daouia et al. (2018). Because EpT1,nq “ 0, Chebyshev’s inequality then yields

T1,n
P
ÝÑ 0. (B.35)

It is, meanwhile, readily shown by following the proof of Theorem 2 in Daouia et al. (2018) that

@u P R, T2,npuq
P
ÝÑ

u2

2γ
(B.36)
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(the only change to make is, with their notation, to re-define Inpuq “ p0, |u|ξτn{vnq and note that

t{ξτn Ñ 0 uniformly in t such that |t| P Inpuq). Combining (B.34), (B.35) and (B.36) entails

@u P R, ψnpuq
P
ÝÑ

u2

2γ
as nÑ 8.

We conclude by noting that pψnq is a random sequence of continuous convex functions and its

pointwise limit defines a nonrandom continuous convex function of u which has a unique minimum

at u‹ “ 0. Applying Theorem 5 in Knight (1999) completes the proof.

The fourth lemma is the key to the computation of the various terms appearing in the implicit

relationship linking the tail expectile process to the tail parameters.

Lemma 4. Suppose that E|Y´| ă 8. Assume further that condition C2pγ, ρ, Aq holds for some

0 ă γ ă 1{2. Let k “ kpnq Ñ 8 be such that k{nÑ 0 and
?
kApn{kq “ Op1q. Then we have, for

any δ ą 0 sufficiently small:

sup
k´1`δďsď1

sγ

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
q1´k{n

´ pγ´1 ´ 1q´γs´γ

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0.

Proof of Lemma 4. All the oP and OP terms in the present proof should be understood as

uniform in s P rk´1`δ, 1s; moreover, we work throughout this proof with the version of the tail

expectile process induced by the version of the empirical process pFn leading to (B.5). Recall that

any Brownian motion W satisfies, for any η ą 0:

@c ą 0, sup
0ătďc

t´1{2`η|W ptq| ă 8 almost surely.

It then comes as a consequence of (B.4) that

ż 8

rξ1´ks{n{q1´k{n

Wnpx
´1{γ

q dx “ OP

˜

ż 8

rξ1´ks{n{q1´k{n

xpη´1{2q{γ dx

¸

.

Moreover, since
?
kApn{kq remains bounded:

Apn{kq

ż 8

rξ1´ks{n{q1´k{n

x´1{γ
xρ{γ ´ 1

γρ
dx “ OP

˜

1
?
k

ż 8

rξ1´ks{n{q1´k{n

xpη´1{2q{γ dx

¸

.

All in all, combining these two bounds with (B.5) gives:

ż 8

rξ1´ks{n

pF npuqdu “
k

n
q1´k{n

˜

ż 8

rξ1´ks{n{q1´k{n

x´1{γ dx`OP

˜

1
?
k

ż 8

rξ1´ks{n{q1´k{n

xpη´1{2q{γ dx

¸¸

or equivalently

ż 8

rξ1´ks{n

pF npuqdu “
k

n
q1´k{n ˆ

γ

1´ γ

¨

˝

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`OP

¨

˝

1
?
k

«

rξ1´ks{n
q1´k{n

ff1´p1{2´ηq{γ
˛

‚

˛

‚.
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Plugging this back into (B.2) entails

s

1´ 2ks{n

˜

rξ1´ks{n
q1´k{n

´
Y n

q1´k{n

¸

“
γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`OP

¨

˝

1
?
k

«

rξ1´ks{n
q1´k{n

ff1´p1{2´ηq{γ
˛

‚.

Note that Y n
P
ÝÑ EpY q ă 8 by the law of large numbers, and rξ1´ks{n ě rξ1´k{n

P
ÝÑ `8 by

Lemma 3. Therefore

s p1` oPp1qq “
γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff´1{γ

`OP

¨

˝

1
?
k

«

rξ1´ks{n
q1´k{n

ff´p1{2´ηq{γ
˛

‚.

Define now a random process s ÞÑ Rnpsq by the equality

rξ1´ks{n
q1´k{n

“ pγ´1 ´ 1q´γs´γp1`Rnpsqq.

In particular, 1`Rnpsq ą 0 for any s P p0, 1s, and

1` oPp1q “ p1`Rnpsqq
´1{γ

`OP

ˆ

1
?
k
s´1{2´ηp1`Rnpsqq

´p1{2´ηq{γ

˙

.

We infer from this equality that, uniformly in s P rk´1`δ, 1s for δ “ δpηq “ 4η{p4η ` 1q ą 0,

1` oPp1q “ p1`Rnpsqq
´1{γ

` oP
`

p1`Rnpsqq
´p1{2´ηq{γ

˘

.

It directly follows from this last identity, whose left-hand side should remain bounded uniformly

in s, that 1`Rnpsq must remain bounded away from 0, uniformly in s P rk´1`δ, 1s with arbitrarily

large probability as nÑ 8. The fact that the left-hand side converges in probability to 1 uniformly

in s now entails that 1`Rnpsq should do so as well, which yields

sup
k´1`δďsď1

|Rnpsq|
P
ÝÑ 0 as nÑ 8.

Equivalently

sup
k´1`δďsď1

sγ

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
q1´k{n

´ pγ´1 ´ 1q´γs´γ

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0. (B.37)

And since η was arbitrarily small, δ “ 4η{p4η ` 1q was arbitrarily small as well, concluding the

proof.

The final lemma is a technical result on second-order regular variation which will be used several

times in the proofs of Theorems 1 and 2.

Lemma 5. Assume that condition C2pγ, ρ, Aq holds with γ ą 0. Then one can find a function B,

asymptotically equivalent to t ÞÑ Ap1{F ptqq in a neighbourhood of infinity, satisfying the following:

for any ε, δ ą 0 there exists t0 “ t0pε, δq ą 0 such that for t, tx ě t0,
ˇ

ˇ

ˇ

ˇ

1

Bptq

ˆ

F ptxq

F ptq
´ x´1{γ

˙

´ x´1{γ
xρ{γ ´ 1

γρ

ˇ

ˇ

ˇ

ˇ

ď εx´p1´ρq{γ max
`

x´δ, xδ
˘

.
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Proof of Lemma 5. Note that, according to Theorem 2.3.9 in de Haan and Ferreira (2006),

condition C2pγ, ρ, Aq is equivalent to

@x ą 0, lim
tÑ8

1

Ap1{F ptqq

ˆ

F ptxq

F ptq
´ x´1{γ

˙

“ x´1{γ
xρ{γ ´ 1

γρ
.

Define fpxq “ x1{γF pxq; it is straightforward to show that this condition entails

@x ą 0, lim
tÑ8

fptxq ´ fptq

γ´2fptqAp1{F ptqq
“
xρ{γ ´ 1

ρ{γ
.

The conclusion then follows by applying Theorem B.2.18 in de Haan and Ferreira (2006).
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