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Section A illustrates the behavior of the expectHill estimator of the tail index with data

examples. Section B plots and comments on the asymptotic variance of the expectHill esti-

mator. Simulation results are discussed in Section C. Section D applies our expectile-based

method to estimate the expected shortfall of three large US investment banks. The proofs

of all theoretical results in the main paper and additional technical results are provided in

Section E.

A Examples of tail index estimation

The aim of this section is to illustrate the behavior of the expectHill estimator with data

examples and to highlight some of the theoretical findings in Section 3 of the main article.

First, the purely expectile-based estimator

rγτn “
1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

log

˜

rξ1´pi´1q{n
rξ1´tnp1´τnqu{n

¸

of the tail index γ has exactly the same form as the quantile-based Hill estimator

pγτn “
1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

log

ˆ

pq1´pi´1q{n
pq1´tnp1´τnqu{n

˙

with the tail empirical quantile process pq replaced by its least squares analogue rξ. Theorem 4

gives its asymptotic normality. As pointed out in Remark 1, the conditions involving the

auxiliary function A in Theorem 4 are also required to derive the asymptotic normality of

Hill’s estimator pγτn . These conditions are, however, difficult to check in practice, which makes

the choice of the intermediate sequence τn a hard problem. A usual practice for selecting a



reasonable estimate pγτn is to set τn “ 1 ´ k{n for a sequence of integers k, then to plot the

graph of k ÞÑ pγ1´k{n, and finally to pick out a value of k corresponding to the first stable

part of the plot (see Remark 2). Yet, the Hill plot may be so unstable that reasonable values

of k (which would correspond to the true value of γ) may be hidden in the graph. The

least squares analogue rγ1´k{n affords a smoother and more stable plot which counteracts the

volatility defect of the Hill plot. This is illustrated in the following two examples.

Example 1. Figure 1(a)-(c) shows the paths k ÞÑ pγ1´k{n in red and k ÞÑ rγ1´k{n in blue,

for three large US financial institutions. We consider the same investment banks as in the

study of Cai et al. (2015), namely Goldman Sachs, Morgan Stanley and T. Rowe Price. The

dataset consists of the loss returns (i.e. minus log-returns) on their equity prices at a daily

frequency from July 3rd, 2000, to June 30th, 2010. The chosen stable regime in Cai et al.

(2015) is k P r70, 100s for the three Hill plots. To gain stability in the estimates, they took

the average of the estimates pγ1´k{n over this region. The results are reported in the second

column of Table 1. As regards the asymmetric least squares estimator rγ1´k{n, we applied

a very simple technique which consists in computing its standard deviations over a moving

window of 30 successive values of k [same length as the chosen interval in Cai et al. (2015)];

this corresponds to a window large enough to cover around 20% of the possible values of k

in the selected range 1 ď k ď 150. The value of k where the standard deviation (and hence

the variation) of the estimates is minimal defines the desired sample fraction rk. We found
rk “ 72 in the window r54, 84s for Goldman Sachs, rk “ 80 P r62, 92s for Morgan Stanley, and
rk “ 88 P r68, 98s for T. Rowe Price. The final estimates rγ1´rk{n are reported in the third

column of Table 1. The messages yielded by the two methods are broadly similar, indicating

particularly that Morgan Stanley displays a greater variability in loss returns and a much

heavier tail of their distribution than do Goldman Sachs and T. Rowe Price.

Bank pγ1´k{n rγ1´k{n

Goldman Sachs 0.3877 0.3720

Morgan Stanley 0.4645 0.4221

T. Rowe Price 0.3781 0.3653

Table 1: Tail index estimates based on daily loss returns pn “ 2513q.

Example 2. Figure 1(d) shows the paths k ÞÑ pγ1´k{n and k ÞÑ rγ1´k{n for the Society of

Actuaries (SOA) group medical insurance large claims. We consider the same database as in

Beirlant et al. (2004) that contains 75, 789 claim amounts exceeding 25,000 USD, collected
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Figure 1: Plots of pγ1´k{n in red, rγ1´k{n in blue, and γ1´k{np1{2q in green, for the three banks

in (a)-(c) and for the SOA group medical insurance large claims in (d).
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over the year 1991 from 26 insurers. The minimal standard deviation of the estimates indi-

cates a pointwise estimate pγ1´k{n around 0.36 achieved over the window r119, 259s, and an

estimate rγ1´k{n around 0.35 attained over r331, 471s. Here also the standard deviations were

computed over a moving window large enough to cover 20% of the possible values of k in the

selected range 1 ď k ď 700.

In these examples, the purely least asymmetrically weighted squares estimator rγ1´k{n

seems to be beneficial in producing smoother and more pleasing plots, but these plots may

not be more revealing than Hill plots. Already in Figure 1(a)-(c), it may be seen that the

smooth paths of rγ1´k{n can exhibit a sample-wise monotonic evolution with k. This may

result in estimates with higher bias than the Hill estimates. One way to reduce this potential

defect is by using a linear combination of rγ and pγ for estimating γ. For α P R we have then

defined the more general expectHill estimator

γτnpαq “ αpγτn ` p1´ αqrγτn . (A.1)

For example, as visualized in Figure 1, the simple mean γτnp1{2q in green line would represent

a reasonable compromise between the use of large asymmetric least squares in rγτn and top

order statistics in pγτn .

B Asymptotic variance of the expectHill estimator

The optimal value of the weighting coefficient α in (A.1), which minimizes the asymptotic

variance vα of γτnpαq, only depends on the tail index γ and has the explicit expression

αpγq “
p1´ γq ´ p1´ 2γqpγ´1 ´ 1qγ

p1´ γqp3´ 4γq ´ 2p1´ 2γqpγ´1 ´ 1qγ
.

Its plot against γ P p0, 1{2q is given in Figure 2(a). Interestingly, the optimal α is negative for

small values of γ, say γ ď 0.2. By contrast, for large values of γ (close to 1{2), the optimal

α tends to one, favoring thus the robustness of order statistics over the tail sensitivity of

asymmetric least squares. It can also be seen that the simple mean γτnp1{2q of pγτn and rγτn ,

with α “ 1{2, is optimal for γ “ 1{4. This is unsurprising since both pγτn and rγτn have

the same asymptotic variance in this case, as illustrated in Figure 2(b). This figure also

shows that the mean γτnp1{2q of pγτn and rγτn affords a middle course between pγτn ” γτnp1q

and rγτn ” γτnp0q in terms of asymptotic variance. In terms of smoothness, γτnp1{2q offers a

middle course as well, as shown above in Figure 1, where the plot of γτnp1{2q is superimposed

in green line with the plots of pγτn and rγτn .
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Figure 2: (a) – Evolution of the optimal value αpγq against γ P p0, 1{2q. The dotted lines

represent the values α “ 0 and α “ 1. (b) – Asymptotic variance vα of pγτn in red pα “ 1q,

rγτn in blue pα “ 0q, and γτnp1{2q in green pα “ 0.5q, as function of γ P p0, 1{2q.

C Some simulation evidence

The aim of this section is to explore some features that were mentioned in Section 6 of the

main article. We will illustrate the following points:

(C.1) Estimates of γ.

(C.2) Estimates of XESτ 1n .

(C.3) Estimates of QESpn .

(C.4) Confidence intervals for QESpn .

In order to illustrate the behavior of the presented estimation procedures, we use the same
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considerations as in Section 6 of the main paper. Namely, we consider the Student t-

distribution with degree of freedom 1{γ, the Fréchet distribution F pxq “ e´x
´1{γ

, x ą 0,

and the Pareto distribution F pxq “ 1 ´ x´1{γ, x ą 1. The finite-sample performance of the

different estimators is evaluated through their relative Mean-Squared Error (MSE) and bias,

computed over 200 replications. All the experiments have sample size n “ 500 and true tail

index γ P t0.35, 0.45u. In our simulations we used the extreme levels τ 1n “ pn “ 1 ´ 1
n

and

the intermediate level τn “ 1´ k
n
, where the integer k can be viewed as the effective sample

size for tail extrapolation.

C.1 Estimation of the tail index

This section provides Monte-Carlo evidence that the expectHill estimator γ1´k{npαq, intro-

duced in (A.1) with the weight α “ 1{2, is more efficient relative to the standard Hill

estimator pγ1´k{n, for both Student and Fréchet distributions. In the case of the real-valued

Student distribution, Figure 3(a) gives the evolution of the MSE (in top panels) and the bias

(in bottom panels) of γ1´k{np
1
2
q{γ and pγ1´k{n{γ, as functions of the effective sample fraction k.

It may be seen that γ1´k{np
1
2
q performs better than pγ1´k{n in terms of MSE, for all values of

k, without sacrificing too much quality in terms of bias, especially for the larger value of γ.

We arrive at the same tentative conclusion in the case of the Fréchet distribution as may be

seen from Figure 3(b). By contrast, in the special case of the Pareto distribution, the Hill

estimator pγ1´k{n is exactly the maximum likelihood estimator of γ and is unbiased, whereas

the expectHill estimator γ1´k{np
1
2
q “ 1

2
ppγ1´k{n` rγ1´k{nq is biased in this case. Unsurprisingly,

the Monte Carlo results obtained in Figure 4 indicate that pγ1´k{n is as expected the winner

in this case.

C.2 Estimates of XESτ 1n

Before comparing the performance of XES
‹

τ 1n
pα, βq, zXES

‹

τ 1n
pα, βq and ĆXES

‹

τ 1n
pαq as estimators

of XESτ 1n , we first investigated the accuracy of each estimator in terms of the associated

weights α and β.

Figures 5 and 6 give the evolution of the MSE (in log scale) and bias estimates of

ĆXES
‹

τ 1n
pαq{XESτ 1n , as functions of the sample fraction k, for α P t0, 0.25, 0.5, 0.75, 1u. In

the case of Student distribution, it may be seen that the red curve pα “ 1q gives the best

estimates in terms of both MSE and Bias. In the case of Fréchet distribution, it may be

seen that the purple curve pα “ 0.5q performs quite well in terms of MSE for both values

of γ, but the blue curve pα “ 0q performs clearly better in terms of Bias. In the case of

Pareto distribution, it may be seen that the purple pα “ 0.5q and red pα “ 1q curves have,
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Figure 3: MSE estimates in log scale (top panels) and Bias estimates (bottom panels) of

γ1´k{npαq{γ (solid red line) and pγ1´k{n{γ (dashed blue line), as functions of k, for γ “ 0.35

(left) and γ “ 0.45 (right).
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Figure 4: MSE estimates (top panels) and Bias estimates (bottom panels) of γkpαq{γ (solid

red line) and pγk{γ (dashed blue line), as functions of k, for γ “ 0.35 (left) and γ “ 0.45

(right), in the case of a Pareto distribution.

respectively, a quite respectable accuracy in terms of MSE for γ “ 0.35 and γ “ 0.45, while

the purple curve pα “ 0.5q behaves clearly better in terms of Bias for both values of γ.

For pα, βq P tp0, 0q, p0, 0.5q, p0, 1q, p0.5, 0q, p0.5, 0.5q, p0.5, 1q, p1, 0q, p1, 0.5q, p1, 1qu, Figures

7 and 8 give, respectively, the MSE (in log scale) and Bias estimates of XES
‹

τ 1n
pα, βq{XESτ 1n ,

against k. It may be seen that the winner is the red curve pα “ 0.5, β “ 0q in the case of

Student distribution, the blue curve pα “ 0.5, β “ 1q in the case of Fréchet distribution, and

the black curve pα “ β “ 1q in the case of Pareto distribution.

The Monte Carlo estimates for zXES
‹

τ 1n
pα, βq{XESτ 1n are displayed in Figures 9 and 10.

It may be seen that the winner is the orange curve pα “ 1, β “ 0q in the case of Student

distribution, the blue curve pα “ 0.5, β “ 1q in the case of Fréchet distribution, and the black

curve pα “ β “ 1q in the case of Pareto distribution.

Finally, when comparing the three estimators ĆXES
‹

τ 1n
pαq, XES

‹

τ 1n
pα, βq and zXES

‹

τ 1n
pα, βq

with each other, we arrive at the following tentative conclusions:

• In the case of Student distribution, the best ĆXES
‹

τ 1n
pαq, achieved at α “ 1, is superior

to the best zXES
‹

τ 1n
pα, βq, achieved at α “ 1 and β “ 0, which in turn is superior to the

best XES
‹

τ 1n
pα, βq, achieved at α “ 0.5 and β “ 0.

• In the case of Fréchet distribution, the best zXES
‹

τ 1n
pα, βq, achieved at α “ 0.5 and
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Figure 5: MSE estimates (in log scale) of ĆXES
‹
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pαq{XESτ 1n, against k, for Student (top),

Fréchet (middle) and Pareto (bottom) distributions, with γ “ 0.35 (left) and γ “ 0.45 (right).
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Figure 6: Bias estimates of ĆXES
‹
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β “ 1, is superior but not by much to the best XES
‹

τ 1n
pα, βq, achieved at α “ 0.5 and

β “ 1, which in turn is superior to the best ĆXES
‹

τ 1n
pαq achieved at, say, α P t0, 0.5u.

• In the case of Pareto distribution, the best zXES
‹

τ 1n
pα, βq, achieved at α “ β “ 1, is

superior but not by much to the best XES
‹

τ 1n
pα, βq, achieved at α “ β “ 1, which in

turn is superior to the best ĆXES
‹

τ 1n
pαq achieved at, say, α P t0.5, 1u.

In particular, it seems that ĆXES
‹

τ 1n
pαq is the winner in the case of the real-valued profit-

loss Student distribution for α “ 1, while zXES
‹

τ 1n
pα, βq is most efficient in the case of the

non-negative Fréchet and Pareto loss distributions, for α P t0.5, 1u and β “ 1.

C.3 Estimates of QESpn

We have also undertaken simulation experiments to evaluate finite-sample performance of the

composite versions XES
‹

pτ 1nppnq
pα, βq, zXES

‹

pτ 1nppnq
pα, βq and ĆXES

‹

pτ 1nppnq
pαq studied in Theorem 11.

These composite expectile-based estimators estimate the same conventional expected shortfall

QESpn as the direct quantile-based estimator zQES
‹

pnpαq ”
zXES

‹

pτ 1nppnq
pα, 1q. We first examined

the accuracy of each estimator for various values of α and β.

Figures 11 and 12 give the MSE (in log scale) and Bias estimates of zQES
‹

pnpαq{QESpn .

The results suggest the choice of α “ 1 (red curve) for Student and Pareto distributions, and

α “ 0.5 (purple curve) for Fréchet distribution.

Figures 13 and 14 give the Monte Carlo estimates of ĆXES
‹

pτ 1nppnq
pαq{QESpn . It may be seen

that the choice of α “ 0 (blue curve) globally provides quite respectable behavior for the

three distributions.

The Monte Carlo estimates of XES
‹

pτ 1nppnq
pα, βq{QESpn are displayed in Figures 15 and

16. It may be seen that the appropriate choice of pα, βq is, respectively, p1, 0q for Student

distribution (orange curve), p0.5, 1q for Fréchet distribution (blue curve), and p1, 1q for Pareto

distribution (black curve).

The results for zXES
‹

pτ 1nppnq
pα, βq{QESpn are graphed in Figures 17 and 18. Here, it may

be seen that the appropriate choice of pα, βq is, respectively, p0, 0q for Student distribution

(light blue), p0.5, 1q for Fréchet distribution (heavy blue), and p1, 1q for Pareto distribution

(black curve).

Finally, when comparing the four estimators zQES
‹

pnpαq,
ĆXES

‹

pτ 1nppnq
pαq, XES

‹

pτ 1nppnq
pα, βq and

zXES
‹

pτ 1nppnq
pα, βq with each other, we arrive at the following tentative conclusions:

• In the case of the real-valued profit-loss Student distribution, the best estimate seems

to be ĆXES
‹

pτ 1nppnq
pα “ 0q;
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Figure 11: MSE estimates (in log scale) of zQES
‹

pnpαq{QESpn, against k, for Student (top),

Fréchet (middle) and Pareto (bottom) distributions, with γ “ 0.35 (left) and γ “ 0.45 (right).
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Figure 12: Bias estimates of zQES
‹

pnpαq{QESpn.
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Figure 13: MSE estimates (in log scale) of ĆXES
‹

pτ 1nppnq
pαq{QESpn.

pareto : γ = 0.35 pareto : γ = 0.45

frechet : γ = 0.35 frechet : γ = 0.45

student : γ = 0.35 student : γ = 0.45

0 100 200 300 400 500 0 100 200 300 400 500

0 100 200 300 400 500 0 100 200 300 400 500

25 50 75 25 50 75
-0.5

0.0

0.5

1.0

1.5

2.0

-0.5

0.0

0.5

1.0

1.5

2.0

-0.5

0.0

0.5

1.0

1.5

2.0

k

Bia
s

variable
a=0

a=.25

a=.5

a=.75

a=1

Figure 14: Bias estimates of ĆXES
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Figure 15: MSE estimates (in log scale) of XES
‹

pτ 1nppnq
pα, βq{QESpn.
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Figure 16: Bias estimates of XES
‹
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Figure 17: MSE estimates (in log scale) of zXES
‹

pτ 1nppnq
pα, βq{QESpn.
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Figure 18: Bias estimates of zXES
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• In the case of the non-negative Fréchet and Pareto loss distributions, the best estimates

seem to be XES
‹

pτ 1nppnq
pα “ 0.5, β “ 1q and zQES

‹

pnpα “ 1q ” zXES
‹

pτ 1nppnq
pα “ 1, β “ 1q,

respectively.

C.4 Confidence intervals for QESpn

We also investigated the performance of the three asymptotic confidence intervals described

in Section 6.2.3, namely CI0.95pkq, xCI0.95pkq and ĂCI0.95pkq. For the classical 95% confidence

level, we take the value z0.975 « 1.960.

Figures 19 and 20 provide the average lengths and the achieved coverages of CI0.95pkq

against k. In the case of Student distribution, the orange plots pα “ 1, β “ 0q seem to

provide better confidence intervals in terms of both average lengths and achieved coverages.

In the case of Fréchet distribution, it may be seen that the black plots pα “ 1, β “ 1q give

a quite good global impression, though they are not clearly the winners in each scenario. In

the case of Pareto distribution, it may be seen that the pink plots pα “ 1, β “ 0.5q give a

quite good global impression.

Figures 21 and 22 display the results for the asymptotic confidence intervals xCI0.95pkq

against k. Our tentative conclusions are very similar to those obtained above for CI0.95pkq.

The results for the asymptotic confidence intervals ĂCI0.95pkq are graphed in Figures 23

and 24 against k. Here, the red plots pα “ 1q seem to provide a reasonable global compromise

between average lengths and achieved coverages.

Finally, when comparing the three 95% asymptotic confidence intervals CI0.95pkq, xCI0.95pkq

and ĂCI0.95pkq with each other, it seems that

• ĂCI0.95pkq performs better in the case of Student distribution, for the selected weight

α “ 1;

• xCI0.95pkq performs quite well in the case of Fréchet distribution, for the selected weights

α “ 1 and β “ 1;

• CI0.95pkq performs quite well in the case of Pareto distribution, for the selected weights

α “ 1 and β “ 0.5.
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Figure 19: Average lengths of CI0.95pkq against k.
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Figure 20: Achieved coverages of CI0.95pkq against k.
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Figure 21: Average lengths of xCI0.95pkq against k.
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Figure 22: Achieved coverages of xCI0.95pkq against k.
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Figure 23: Average lengths of ĂCI0.95pkq against k.
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Figure 24: Achieved coverages of ĂCI0.95pkq against k.
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D ES for financial institutions

In this section, we apply our method to estimate the ES for three large US financial insti-

tutions. We consider the same investment banks as in Example 1, namely Goldman Sachs,

Morgan Stanley and T. Rowe Price. All of these banks had a market capitalization greater

than US $5 billion at the end of June 2007. The dataset consists of the negative log-returns

pYiq on their equity prices at a daily frequency during 10 years from July 3rd, 2000, to June

30th, 2010. The choice of the frequency of data and time horizon follows the same set-up as

in Cai et al. (2015) and Daouia et al. (2018). This results in the sample size n “ 2513. We

use our composite expectile-based method to estimate the standard quantile-based expected

shortfall QESpn , or equivalently the expectile-based expected shortfall XESτ 1nppnq, with an

extreme relative frequency pn “ 1´ 1
n

that corresponds to a once-per-decade rare event.

In this situation of real-valued profit-loss distributions, our experience with simulated

data indicates that the composite estimator ĆXES
‹

pτ 1nppnq
pαq provides the best QESpn estimates

in terms of MSE and bias for the special weight α “ 0, while it provides reasonably good

asymptotic 95% confidence intervals ĂCI0.95pkq for the different weight α “ 1. In the estima-

tion, we employ the intermediate sequence τn “ 1 ´ k{n as before, for the selected range

of values k “ 1, . . . , 150. For our comparison purposes, we use as a benchmark the direct

quantile-based estimator zQES
‹

pnpα “ 1q ”zXES
‹

pτ 1nppnq
pα “ 1, β “ 1q of El Methni et al. (2014),

as well as the corresponding asymptotic 95% confidence interval xCI0.95pkq. We will denote in

the sequel the rival estimates ĆXES
‹

pτ 1nppnq
pα “ 0q and zQES

‹

pnpα “ 1q simply as ĆXES
‹

pτ 1nppnq
and

zQES
‹

pn .

For each bank, we superimpose in Figure 25 the plots of the two estimates ĆXES
‹

pτ 1nppnq
and

zQES
‹

pn against k, as rainbow and dashed black curves respectively, along with the competing

confidence intervals ĂCI0.95pkq in dotted blue lines and xCI0.95pkq in solid grey lines. The

effect of the expectHill estimate γ1´k{npα “ 0q ” rγ1´k{n on the efficient estimate ĆXES
‹

pτ 1nppnq

is highlighted by a colour-scheme, ranging from dark red (low rγ1´k{n) to dark violet (high

rγ1´k{n).

We have already provided some Monte Carlo evidence that the composite expectile-based

estimates ĆXES
‹

pτ 1nppnq
and confidence intervals ĂCI0.95pkq are efficient and accurate relative to

the pure quantile-based estimates zQES
‹

pn and confidence intervals xCI0.95pkq, respectively.

Their superiority in terms of plots’ stability and confidence intervals’ length can clearly be

visualized in Figure 25 for the three banks. The final ES levels based on minimizing the

standard deviations of the estimates, computed over a moving window covering 20% of the

possible values of k, are reported in Table 2, along with the asymptotic 95% confidence

intervals of the ES. Based on the reliable ĆXES
‹

pτ 1nppnq
estimates (in the second column), the ES
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levels for Goldman Sachs and T. Rowe Price seem to be very close (around ´30% to ´34%),

whereas the ES level for Morgan Stanley is almost twice higher (around ´60%). The zQES
‹

pn

estimates (in the fourth column) point also towards similar pessimistic results. The lower

confidence bands (in third and fifth columns) are themselves quite conservative since they

are almost equal to the maximum losses (in the last column) for the three banks.

The theory for our ES estimator ĆXES
‹

pτ 1nppnq
and for the estimator zQES

‹

pn of El Methni et

al. (2014) is derived for independent and identically distributed random variables Y1, . . . , Yn.

For this application to financial returns, the potential serial dependence may then affect

the estimation results. Similarly to our extreme value analysis under mixing conditions

in Daouia et al. (2017), our convergence results may work under serial dependence with

enlarged asymptotic variances. A practical solution already employed by Cai et al. (2015)

to reduce substantially the potential serial dependence in this particular dataset is by using

weekly loss returns in the same sample period (i.e. sums of the daily loss returns during

each week). This results in a sample of size n “ 522. The plots of the two estimates and the

asymptotic 95% confidence intervals, against k P r1, 80s, are superimposed in Figure 26 for

the three banks, along with the new sample maxima. The final pointwise results are reported

in Table 3. By comparing the obtained estimates for the daily and weekly losses, it may be

seen that the results are qualitatively robust to the change from daily to weekly data. In

particular, the ĆXES
‹

pτ 1nppnq
levels for Goldman Sachs and T. Rowe Price are still almost equal,

while the estimated level for Morgan Stanley remains almost twice higher. Quantitatively,

these ES estimates are much more conservative: around ´40% to ´43% for Goldman Sachs

and T. Rowe Price, and around ´87% for Morgan Stanley.

Bank ĆXES
‹

pτ 1
nppnq

ĂCI0.95 zQES
‹

pn
xCI0.95 Yn,n

Goldman Sachs 0.345 (0.210, 0.506) 0.393 (0.235, 0.544) 0.210

Morgan Stanley 0.598 (0.376, 0.785) 0.601 (0.316, 0.984) 0.299

T. Rowe Price 0.308 (0.171, 0.411) 0.301 (0.177, 0.437) 0.197

Table 2: ES levels of the three investment banks, with the 95% confidence intervals and the

sample maxima. Results based on daily loss returns, with n “ 2513 and pn “ 1´ 1
n

.

Bank ĆXES
‹

pτ 1
nppnq

ĂCI0.95 zQES
‹

pn
xCI0.95 Yn,n

Goldman Sachs 0.436 (0.194, 0.620) 0.495 (0.226, 0.680) 0.365

Morgan Stanley 0.874 (0.384, 1.305) 0.883 (0.366, 1.478) 0.904

T. Rowe Price 0.401 (0.213, 0.511) 0.407 (0.216, 0.548) 0.305

Table 3: Results based on weekly loss returns, with n “ 522 and pn “ 1´ 1
n

.
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Figure 25: Results based on daily loss returns of the three investment banks: (a) Goldman

Sachs, (b) Morgan Stanley, and (c) T. Rowe Price, with n “ 2513 and pn “ 1 ´ 1{n. The

estimates ĆXES
‹

pτ 1nppnq
pα “ 0q as rainbow curve and zQES

‹

pnpα “ 1q as dashed black curve, along

with the asymptotic 95% confidence intervals ĂCI0.95pkq in dotted blue lines and xCI0.95pkq in

solid grey lines. The sample maximum Yn,n indicated in horizontal dashed pink line.
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Figure 26: Results based on weekly loss returns of the three investment banks, with n “ 522
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E Proofs

In all proofs, the sequence τn is replaced by the sequence k “ np1´ τnq.

Proof of Proposition 1. We start by showing (i). By Proposition 1 in Daouia et al. (2018):

F pξτ q

1´ τ
“ pγ´1 ´ 1qp1` εpτqq

with εpτq “ ´
pγ´1 ´ 1qγ

qτ
pEpY q ` op1qq ´

pγ´1 ´ 1q´ρ

γp1´ γ ´ ρq
App1´ τq´1qp1` op1qq as τ Ñ 1.

Using this convergence together with local uniformity of condition C2pγ, ρ, Aq, we find that

1

App1´ τq´1q

„

Up1{F pξτ qq

Upp1´ τq´1q
´ pγ´1 ´ 1q´γp1` εpτqq´γ



Ñ pγ´1 ´ 1q´γ
pγ´1 ´ 1q´ρ ´ 1

ρ

as τ Ñ 1, or equivalently

Up1{F pξτ qq

qτ
“ pγ´1 ´ 1q´γ

ˆ

1`
γpγ´1 ´ 1qγ

qτ
pEpY q ` op1qq

`

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

App1´ τq´1q

˙

as τ Ñ 1.

A use of Lemma 1 at t “ ξτ makes it possible to replace Up1{F pξτ qq by ξτ asymptotically,

thus completing the proof of (i).

To show (ii), first note that if s “ 1, there is nothing to prove. Otherwise, write

ξ1´ks{n
ξ1´k{n

“
ξ1´ks{n
q1´ks{n

ˆ
q1´k{n
ξ1´k{n

ˆ
q1´ks{n
q1´k{n

. (E.2)

With alternatively τ “ 1´ k{n and τ “ 1´ ks{n in (i), we obtain

ξ1´k{n
q1´k{n

“ pγ´1 ´ 1q´γ
ˆ

1`
γpγ´1 ´ 1qγ

q1´k{n
pEpY q ` op1qq

`

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

Apn{kq

˙

and

ξ1´ks{n
q1´ks{n

“ pγ´1 ´ 1q´γ
ˆ

1` sγ
γpγ´1 ´ 1qγ

q1´k{n
pEpY q ` op1qq

`

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

s´ρApn{kq

˙

because of the regular variation property of t ÞÑ q1´t´1 and |A|. Besides, it is a consequence

of condition C2pγ, ρ, Aq that

q1´ks{n
q1´k{n

“
Upn{ksq

Upn{kq
“ s´γ

ˆ

1` Apn{kq
s´ρ ´ 1

ρ
` opApn{kqq

˙

.

Combining these three expansions with (E.2) yields the desired result.
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Proof of Theorem 2. We use Lemma 2 with τ “ 1´ ks{n, s P p0, 1s, in order to write

ks{n

1´ 2ks{n
prξ1´ks{n ´ Y nq “

ż 8

rξ1´ks{n

pF npuqdu (E.3)

where Y n denotes the empirical mean and pF npuq “ n´1
řn
i“1 1tYiąuu is the empirical survival

function of the sample. The idea is now to obtain a uniform (in s) “asymptotic expansion”

of the integral on the right-hand side.

Our main tool will be Lemma 3(ii): we may enlarge the underlying sample space and choose a

suitable version of the empirical process pFn so that there is a sequence of standard Brownian

motions ĂWn such that for any ε ą 0 small enough (which we shall fix later):

n

k
pF n

`

xq1´k{n
˘

´ x´1{γ “
1
?
k

ˆ

ĂWnpx
´1{γ

q `
?
kApn{kqx´1{γ

xρ{γ ´ 1

γρ
` xpε´1{2q{γ oPp1q

˙

uniformly in half-lines of the form x P rx0,8q, for x0 ą 0. Note then that, as a consequence

of the monotonicity of expectiles together with convergence

ξτ
qτ
Ñ

`

γ´1 ´ 1
˘´γ

as τ Ñ 1 (E.4)

(see Bellini and Di Bernardino, 2017) and Lemma 4, we have

@s P p0, 1s,
rξ1´ks{n
q1´k{n

ě
rξ1´k{n
q1´k{n

P
ÝÑ pγ´1 ´ 1q´γ as nÑ 8.

Consequently

P

˜

@s P p0, 1s,
rξ1´ks{n
q1´k{n

ą
1

2
pγ´1 ´ 1q´γ

¸

Ñ 1 as nÑ 8. (E.5)

It then follows from the above approximation by a sequence of Brownian motions that, with

arbitrarily large probability:

ż 8

rξ1´ks{n

pF npuqdu

“ q1´k{n

ż 8

rξ1´ks{n{q1´k{n

pF npxq1´k{nqdx

“
k

n
q1´k{n

˜

ż 8

rξ1´ks{n{q1´k{n

x´1{γ dx`
1
?
k

ż 8

rξ1´ks{n{q1´k{n

ĂWnpx
´1{γ

q dx

` Apn{kq

ż 8

rξ1´ks{n{q1´k{n

x´1{γ
xρ{γ ´ 1

γρ
dx` oP

˜

1
?
k

ż 8

rξ1´ks{n{q1´k{n

xpε´1{2q{γ dx

¸¸

(E.6)
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uniformly in s P p0, 1s. Note that the last term is indeed well-defined, if ε is taken close

enough to 0, because γ P p0, 1{2q. We choose such an ε here and in the sequel.

The next step is to use Lemma 5, primarily to remove the randomness in the lower bound of

the integral of the Brownian motion ĂWn in (E.6). Lemma 5 only allows us to do so on the

restricted range rk´1`δ, 1s, and we therefore focus on this case for now; we will take care of

the case s P p0, k´1`δq separately afterwards. Use first (E.5) to get, for any sufficiently small

δ ą 0 and with arbitrarily large probability irrespective of s P rk´1`δ, 1s:

sγ

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

rξ1´ks{n{q1´k{n

ĂWnpx
´1{γ

q dx´

ż 8

pγ´1´1q´γs´γ

ĂWnpx
´1{γ

q dx

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

sγ rξ1´ks{n{q1´k{n

ĂWnps u
´1{γ

q du´

ż 8

pγ´1´1q´γ

ĂWnps u
´1{γ

q du

ˇ

ˇ

ˇ

ˇ

ˇ

ď sγ

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
q1´k{n

´ pγ´1 ´ 1q´γs´γ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ sup
0ďtďpγ´1´1q{2´1{γ

|ĂWnpstq|.

Self-similarity of the Brownian motion ĂWn w.r.t. scaling gives

sup
0ďtďpγ´1´1q{2´1{γ

|ĂWnpstq|
d
“
?
s sup
0ďtďpγ´1´1q{2´1{γ

|ĂWnptq| “ OPp
?
sq

uniformly in s, because a standard Brownian motion is almost surely bounded on any compact

interval by almost sure continuity of its sample paths. A use of Lemma 5 then entails

sup
k´1`δďsď1

sγ´1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

rξ1´ks{n{q1´k{n

ĂWnpx
´1{γ

q dx´

ż 8

pγ´1´1q´γs´γ

ĂWnpx
´1{γ

q dx

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q.

Similarly,

sup
k´1`δďsď1

sγ´1

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

rξ1´ks{n{q1´k{n

x´1{γ
xρ{γ ´ 1

γρ
dx´

ż 8

pγ´1´1q´γs´γ
x´1{γ

xρ{γ ´ 1

γρ
dx

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q

and sup
k´1`δďsď1

sγ´1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

rξ1´ks{n{q1´k{n

xpε´1{2q{γ dx´

ż 8

pγ´1´1q´γs´γ
xpε´1{2q{γ dx

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q.
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Therefore, we have, uniformly in s P rk´1`δ, 1s and with arbitrarily large probability, that

ż 8

rξ1´ks{n

pF npuqdu

“
k

n
q1´k{n

¨

˝

γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`
1
?
k

ż 8

pγ´1´1q´γs´γ

ĂWnpx
´1{γ

q dx

` Apn{kq

ż 8

pγ´1´1q´γs´γ
x´1{γ

xρ{γ ´ 1

γρ
dx` oP

ˆ

1
?
k

ż 8

pγ´1´1q´γs´γ
xpε´1{2q{γ dx

˙

` oP

ˆ

s´γ`1{2´ε
?
k

˙˙

.

We now rewrite each integral as follows: firstly, a change of variables and self-similarity of

the Brownian motion w.r.t. scaling yield
ż 8

pγ´1´1q´γs´γ

ĂWnpx
´1{γ

q dx “ pγ´1 ´ 1q´γγ

ż s

0

ĂWnppγ
´1
´ 1qtq t´γ´1 dt

“ pγ´1 ´ 1q1{2´γγ

ż s

0

Wnptq t
´γ´1 dt (E.7)

where Wnptq :“ pγ´1 ´ 1q´1{2ĂWnppγ
´1 ´ 1qtq defines another sequence of standard Brownian

motions. Secondly, a straightforward integration gives

ż 8

pγ´1´1q´γs´γ
x´1{γ

xρ{γ ´ 1

γρ
dx “

pγ´1 ´ 1q1´γs1´γ

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



.

Thirdly and finally, another direct integration entails
ż 8

pγ´1´1q´γs´γ
xpε´1{2q{γ dx “ O

`

s´γ`1{2´ε
˘

.

All in all, and combining these calculations with (E.3), we obtain, uniformly in s P rk´1`δ, 1s:

s

1´ 2ks{n

˜

rξ1´ks{n
q1´k{n

´
Y n

q1´k{n

¸

“
γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`
1
?
k
pγ´1 ´ 1q1{2´γγ

ż s

0

Wnptq t
´γ´1 dt

` Apn{kq
pγ´1 ´ 1q1´γs1´γ

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



` oP

ˆ

s´γ`1{2´ε
?
k

˙

. (E.8)

Recall now the following equivalent characterisation of population expectiles:

ξτ ´ EpY q “
2τ ´ 1

1´ τ
EppY ´ ξτ q1tYąξτ uq. (E.9)
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We use this identity with τ “ 1´ k{n to get:

1

1´ 2k{n

ˆ

ξ1´k{n
q1´k{n

´
EpY q
q1´k{n

˙

“
n

k
ˆ

1

q1´k{n

ż 8

ξ1´k{n

F puqdu

“
n

k
F pq1´k{nq

˜

γ

1´ γ

„

ξ1´k{n
q1´k{n

1´1{γ

` Apn{kq
pγ´1 ´ 1q1´γ

ρ

„

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´

1

1´ γ

˙

` opApn{kqq

thanks to convergence (E.4), the asymptotic equivalence F pq1´k{nq „ k{n following from

Lemma 1(ii) and used inside the regularly varying function A, Lemma 6 and calculations

identical to those we have carried out so far. Using the condition
?
kApn{kq “ Op1q and the

convergence

lim
nÑ8

1

Apn{kq

´n

k
F pq1´k{nq ´ 1

¯

“ 0

which follows from Lemma 1(ii), we obtain

1

1´ 2k{n

ˆ

ξ1´k{n
q1´k{n

´
EpY q
q1´k{n

˙

“
γ

1´ γ

„

ξ1´k{n
q1´k{n

1´1{γ

` Apn{kq
pγ´1 ´ 1q1´γ

ρ

„

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´

1

1´ γ



` o

ˆ

1
?
k

˙

.(E.10)

Dividing (E.8) by (E.10) and using convergence (E.4) together with a Taylor expansion, we
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get

s
1´ 2k{n

1´ 2ks{n
ˆ

rξ1´ks{n ´ Y n

ξ1´k{n ´ EpY q

“

»

–

γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`
1
?
k
pγ´1 ´ 1q1{2´γγ

ż s

0

Wnptq t
´γ´1 dt

` Apn{kq
pγ´1 ´ 1q1´γs1´γ

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



` oP

ˆ

s´γ`1{2´ε
?
k

˙

ˆ
1´ γ

γ

„

q1´k{n
ξ1´k{n

1´1{γ ˆ

1´ Apn{kq
γ´1 ´ 1

ρ

„

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´

1

1´ γ



` o

ˆ

1
?
k

˙˙

“

«

rξ1´ks{n
ξ1´k{n

ff1´1{γ

`
1
?
k
γ
a

γ´1 ´ 1

ż s

0

Wnptq t
´γ´1 dt

` Apn{kq
pγ´1 ´ 1qs1´γ

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



´ Apn{kq

«

rξ1´ks{n
ξ1´k{n

ff1´1{γ
γ´1 ´ 1

ρ

„

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´

1

1´ γ



` oP

ˆ

s´γ`1{2´ε
?
k

˙

.

Define now a random process s ÞÑ rnpsq by the equality

sγ
rξ1´ks{n
ξ1´k{n

“ 1` rnpsq.

We know, by a combination of convergence (E.4) and Lemma 5, that rnpsq
P
ÝÑ 0 uniformly

in s P rk´1`δ, 1s. The above expansion then simplifies as

s
1´ 2k{n

1´ 2ks{n
ˆ

rξ1´ks{n ´ Y n

ξ1´k{n ´ EpY q

“

«

rξ1´ks{n
ξ1´k{n

ff1´1{γ

`
1
?
k
γ
a

γ´1 ´ 1

ż s

0

Wnptq t
´γ´1 dt

` Apn{kq ˆ
pγ´1 ´ 1q1´ρ

1´ γ ´ ρ
ˆ s1´γ

s´ρ ´ 1

ρ
` oP

ˆ

s´γ`1{2´ε
?
k

˙

. (E.11)

We now work on the left-hand side of the above identity. Note that we can write, uniformly

in s P p0, 1s:

1´ 2k{n

1´ 2ks{n
“ 1´

2k

n
ˆ

1´ s

1´ 2ks{n
“ 1´

2k

n
p1´ sq

„

1`O

ˆ

k

n

˙

.
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Moreover,

rξ1´ks{n ´ Y n

ξ1´k{n ´ EpY q
“

˜

rξ1´ks{n
ξ1´k{n

´ 1

¸

ˆ

1`
EpY q

ξ1´k{n ´ EpY q

˙

`
ξ1´k{n ´ Y n

ξ1´k{n ´ EpY q

“ 1`

˜

rξ1´ks{n
ξ1´k{n

´ 1

¸

ˆ

1`
pγ´1 ´ 1qγEpY q

q1´k{n
p1` op1qq

˙

`OP

ˆ

1

q1´k{n
?
n

˙

by asymptotic proportionality of q1´k{n and ξ1´k{n, and the central limit theorem. Since

γ ă 1{2, we have by regular variation of t ÞÑ q1´t´1 that

1

q1´k{n
?
n

N

1
?
k
“

c

k

n
q1´k{n “ op1q.

Consequently

sγ
rξ1´ks{n ´ Y n

ξ1´k{n ´ EpY q
“ 1` rnpsq p1` oPp1qq ` p1´ s

γ
q
pγ´1 ´ 1qγEpY q

q1´k{n
p1` oPp1qq ` oP

ˆ

1
?
k

˙

.

Notice finally that, by the mean value theorem:

1 ď sup
0ďsă1

"

1´ s

1´ sγ

*

ă 8

so that, using the relationship q1´k{n “ opn{kq, we get again that

1´ 2k{n

1´ 2ks{n
ˆ sγ

rξ1´ks{n ´ Y n

ξ1´k{n ´ EpY q

“ 1` rnpsq p1` oPp1qq ` p1´ s
γ
q
pγ´1 ´ 1qγEpY q

q1´k{n
p1` oPp1qq ` oP

ˆ

1
?
k

˙

.

Because, uniformly in s P rk´1`δ, 1s,

«

rξ1´ks{n
ξ1´k{n

ff1´1{γ

“ s1´γp1` rnpsqq
1´1{γ

“ s1´γ
ˆ

1`

„

1´
1

γ



rnpsqp1` oPp1qq

˙

we obtain using (E.11) that:

1` rnpsq p1` oPp1qq ` p1´ s
γ
q
pγ´1 ´ 1qγ

q1´k{n
pEpY q ` oPp1qq ` oP

ˆ

1
?
k

˙

“ 1`

„

1´
1

γ



rnpsqp1` oPp1qq `
1
?
k
γ
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt

` Apn{kq ˆ
pγ´1 ´ 1q1´ρ

1´ γ ´ ρ
ˆ
s´ρ ´ 1

ρ
` oP

ˆ

s´1{2´ε
?
k

˙

.
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Rearrange and solve for rnpsq to get, uniformly in s P rk´1`δ, 1s:

rnpsq “ psγ ´ 1q
γpγ´1 ´ 1qγ

q1´k{n
pEpY q ` oPp1qq

`
1
?
k
γ2
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt

` Apn{kq ˆ
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ
ˆ
s´ρ ´ 1

ρ
` oP

ˆ

s´1{2´ε
?
k

˙

.

This is precisely what we wanted to show, but in the restricted case s P rk´1`δ, 1s.

We conclude the proof by focusing on the case s P p0, k´1`δq. To this end, we choose

δ P p0, ε{p2ε ` 1 ` 2γqq and we note that
?
k s1{2`ε Ñ 0 uniformly in s P p0, k´1`δq. It then

follows that, by a direct calculation:

?
k sup

0ăsăk´1`δ

s1{2`ε
ˆ

1

q1´k{n
`

1
?
k
sγ´1

ˇ

ˇ

ˇ

ˇ

ż s

0

Wnptq t
´γ´1 dt

ˇ

ˇ

ˇ

ˇ

` |Apn{kq|

˙

P
ÝÑ 0.

It is then enough to show that

?
k sup

0ăsăk´1`δ

s1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

sγ
rξ1´ks{n
ξ1´k{n

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

“
?
k sup

0ăsăk´1`δ

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´k{n

´ s´γ

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0.

Recall that expectiles of an arbitrary distribution are monotonically increasing and exactly

cover its support, and apply this to the empirical distribution to get rξ1´ks{n ď rξ1 “ Yn,n for

any s P p0, 1q. Write then

?
k sup

0ăsăk´1`δ

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´k{n

´ s´γ

ˇ

ˇ

ˇ

ˇ

ˇ

ď k1{2`p´1`δqpγ`1{2`εq
Yn,n
ξ1´k{n

` op1q.

Using Lemma 3(i) with s “ 1{p2kq and ε{2 in place of what was an arbitrary η there, gives:

Yn,n
q1´k{n

“ oPpk
γ`ε{2

q

and therefore, by a use of (E.4) again, we get

?
k sup

0ăsăk´1`δ

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´k{n

´ s´γ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP
`

kδpγ`1{2`εq´ε{2
˘

` op1q.

Recalling that δ ă ε{p2ε` 1` 2γq, we obtain

?
k sup

0ăsăk´1`δ

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´k{n

´ s´γ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q.
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This concludes the proof of the approximation result for the tail expectile process.

To complete the proof, just note that the sequence Wn has the closed form expression

Wnptq “
1

a

γ´1 ´ 1
ĂWn

`

pγ´1 ´ 1qt
˘

,

where ĂWn denotes the sequence of standard Brownian motions appearing in Lemma 3(ii),

see (E.7). This sequence of Brownian motions is also the one appearing in Lemma 3(i),

which is nothing but the Gaussian approximation of the tail quantile process. We omit the

remaining straightforward technical details.

Proof of Theorem 3. The idea is to use (E.8) in the proof of Theorem 2 together with

an analogue of (E.10), with ξ1´k{n replaced by ξ1´ks{n and valid uniformly in s P p0, 1s. To

prove such an analogue relationship, note first that

ξ1´ks{n
q1´k{n

“
ξ1´ks{n
q1´ks{n

ˆ
Upn{ksq

Upn{kq
.

Recall that since ρ ă 0, the function t ÞÑ Uptq is equivalent to a constant multiple of t ÞÑ tγ

in a neighbourhood of infinity, see p.49 of de Haan and Ferreira (2006). Using (E.4), we

obtain
ξ1´ks{n
q1´k{n

“ pγ´1 ´ 1q´γs´γp1` op1qq (E.12)

uniformly in s P p0, 1s. Use then (E.9) with τ “ 1´ ks{n to get

s

1´ 2ks{n

ˆ

ξ1´ks{n
q1´k{n

´
EpY q
q1´k{n

˙

“
n

k
ˆ

1

q1´k{n

ż 8

ξ1´ks{n

F puqdu.

Use now the asymptotic equivalence F pq1´k{nq „ k{n following from Lemma 1(ii) and used

inside the regularly varying function A together with Lemma 6 to obtain, for any small κ ą 0,

s

1´ 2ks{n

ˆ

ξ1´ks{n
q1´k{n

´
EpY q
q1´k{n

˙

“
n

k
F pq1´k{nq

„

ξ1´ks{n
q1´k{n

1´1{γ
˜

γ

1´ γ
` Apn{kq

1

ρ

«

1

1´ γ ´ ρ

„

ξ1´ks{n
q1´k{n

ρ{γ

´
1

1´ γ

ff¸

` o

˜

Apn{kq

„

ξ1´ks{n
q1´k{n

1´p1´ρq{γ`κ
¸

uniformly in s P p0, 1s. According to (E.12),

sup
0ăsď1

„

ξ1´ks{n
q1´k{n

ρ{γ`κ

ď 2pγ´1 ´ 1q´ρ´κγ sup
0ăsď1

s´ρ´κγ “ 2pγ´1 ´ 1q´ρ´κγ ă 8
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for κ small enough (recall that ρ ă 0) and n large enough. Therefore, by (E.12) again:

s

1´ 2ks{n

ˆ

ξ1´ks{n
q1´k{n

´
EpY q
q1´k{n

˙

“
γ

1´ γ

„

ξ1´ks{n
q1´k{n

1´1{γ ˆ

1` Apn{kq
γ´1 ´ 1

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



` o

ˆ

1
?
k

˙˙

uniformly in s P p0, 1s. Divide (E.8) by this expansion and use once again (E.12) to get:

rξ1´ks{n ´ Y n

ξ1´ks{n ´ EpY q

“

»

–

γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`
1
?
k
pγ´1 ´ 1q1{2´γγ

ż s

0

Wnptq t
´γ´1 dt

` Apn{kq
pγ´1 ´ 1q1´γs1´γ

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



` oP

ˆ

s´γ`1{2´ε
?
k

˙

ˆ
1´ γ

γ

„

q1´k{n
ξ1´ks{n

1´1{γ ˆ

1´ Apn{kq
γ´1 ´ 1

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



` o

ˆ

1
?
k

˙˙

“

«

rξ1´ks{n
ξ1´ks{n

ff1´1{γ

`
1
?
k
γ
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt

` Apn{kq
γ´1 ´ 1

ρ

„

pγ´1 ´ 1q´ρs´ρ

1´ γ ´ ρ
´

1

1´ γ



¨

˝1´

«

rξ1´ks{n
ξ1´ks{n

ff1´1{γ
˛

‚` oP

ˆ

s´1{2´ε
?
k

˙

uniformly in s P rk´1`δ, 1s and with arbitrarily large probability (here, as in the proof of

Theorem 2, δ is a sufficiently small positive number to be chosen later). Define a random

process s ÞÑ Rnpsq by the equality

rξ1´ks{n
ξ1´ks{n

“ 1`Rnpsq.

We know, by a combination of convergence (E.12) and Lemma 5, that Rnpsq
P
ÝÑ 0 uniformly

in s P rk´1`δ, 1s. Recalling that
?
kApn{kq “ Op1q, the above expansion then reads

rξ1´ks{n ´ Y n

ξ1´ks{n ´ EpY q

“

«

rξ1´ks{n
ξ1´ks{n

ff1´1{γ

`
1
?
k
γ
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt` oP

ˆ

s´1{2´ε
?
k

˙

. (E.13)
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We now work on the left-hand side of this identity:

rξ1´ks{n ´ Y n

ξ1´ks{n ´ EpY q
“

˜

rξ1´ks{n
ξ1´ks{n

´ 1

¸

ˆ

1`
EpY q

ξ1´ks{n ´ EpY q

˙

`
ξ1´ks{n ´ Y n

ξ1´ks{n ´ EpY q

“ 1`

˜

rξ1´ks{n
ξ1´k{n

´ 1

¸

p1` op1qq `OP

ˆ

1

q1´k{n
?
n

˙

by asymptotic proportionality of q1´k{n and ξ1´k{n and the central limit theorem. Since

moreover γ ă 1, we obtain

rξ1´ks{n ´ Y n

ξ1´ks{n ´ EpY q
“ 1`Rnpsq p1` oPp1qq ` oP

ˆ

1
?
k

˙

.

Because, uniformly in s P rk´1`δ, 1s,

«

rξ1´ks{n
ξ1´ks{n

ff1´1{γ

“ p1`Rnpsqq
1´1{γ

“

ˆ

1`

„

1´
1

γ



Rnpsqp1` oPp1qq

˙

we obtain, using (E.13) and solving for Rnpsq, that:

Rnpsq “
1
?
k
γ2
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt` oP

ˆ

s´1{2´ε
?
k

˙

.

This is the desired result in the restricted case s P rk´1`δ, 1s.

We conclude the proof by focusing on the case s P p0, k´1`δq. The idea is very similar to that

of the final stages of the proof of Theorem 2. Choose δ P p0, ε{p2ε` 1` 2γqq: it is enough to

show that
?
k sup

0ăsăk´1`δ

s1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´ks{n

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0.

Write then

?
k sup

0ăsăk´1`δ

s1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´ks{n

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
?
k sup

0ăsăk´1`δ

s1{2`ε
"

Yn,n
ξ1´ks{n

*

` op1q.

Using (E.12) again, we obtain

?
k sup

0ăsăk´1`δ

s1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
ξ1´ks{n

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

?
k sup

0ăsăk´1`δ

sγ`1{2`ε
"

Yn,n
q1´k{n

*˙

` op1q.

Argue then as in the end of the proof of Theorem 2 to conclude the present proof.
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Proof of Theorem 4. To show (i), the main idea is to combine Theorem 2 with a Taylor

expansion of the logarithm function. This is not quite as straightforward as one might expect,

because the error term in the approximation of the tail empirical expectile process given by

Theorem 2 does not converge to 0 uniformly in s. The trick we use here is to split the integral

defining qγk in two parts, corresponding to “low” and “high” values of s respectively; we then

show directly that the first part is asymptotically negligible, and we analyse the second part

using the aforementioned Taylor expansion. A similar argument is used in e.g. page 113

of de Haan and Ferreira (2006) and El Methni and Stupfler (2017a, 2017b). Let us finally

mention that to use Theorem 2, we should work with a suitable version of the tail expectile

process that allows us to write its Gaussian approximation; we can of course do so since this

operation leaves the distribution of the estimator qγk unchanged. A similar idea will be used,

without further mention, in the proofs of Theorems 5 and 8.

Set then sn “ k´p1´εq{p1`2εq for some ε ą 0 sufficiently small (and in particular less than 1{4),

and write

qγk “

ż sn

0

log

˜

rξ1´ks{n
rξ1´k{n

¸

ds`

ż 1

sn

log

˜

rξ1´ks{n
rξ1´k{n

¸

ds “: In,1 ` In,2. (E.14)

We start by controlling directly In,1. This is done by writing

|In,1| ď sn log

˜

rξ1
rξ1´k{n

¸

.

Recall that rξ1 “ Yn,n and use a combination of convergence (E.4), Lemma 3(i) and Lemma 4

to find that

log

˜

rξ1
rξ1´k{n

¸

“ log

ˆ

Yn,n
pq1´k{n

˙

`OPp1q.

Using further the heavy-tailed assumption on the distribution on Y , it follows from Theorem

1.1.6, Theorem 1.2.1 and Lemma 1.2.9 in de Haan and Ferreira (2006) that

Yn,n
Upnq

d
ÝÑ 1` γGγ

where Gγ has distribution function x ÞÑ expp´p1 ` γxq´1{γq, for x ą ´1{γ. It follows that

the limiting variable 1` γGγ is positive and thus logpYn,n{Upnqq “ OPp1q by the continuous

mapping theorem. Besides, pq1´k{n{Upn{kq “ pq1´k{n{q1´k{n
P
ÝÑ 1, by Lemma 3(i) again.

Therefore

log

˜

rξ1
rξ1´k{n

¸

“ log

ˆ

Upnq

Upn{kq

˙

`OPp1q.
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Potter bounds (see e.g. Proposition B.1.9.5 in de Haan and Ferreira, 2006) then yield

log

˜

rξ1
rξ1´k{n

¸

“ OPplog kq. (E.15)

Recalling that sn “ k´p1´εq{p1`2εq with ε ă 1{4, it is now straightforward to get

?
k|In,1| “ OP

´

sn ˆ
?
k log k

¯

“ oPp1q. (E.16)

We now work on In,2. Note that for s P rsn, 1s, s
´1{2´ε{

?
k ď s

´1{2´ε
n {

?
k “ k´ε{2 Ñ 0; use

then Theorem 2 and a Taylor expansion of the logarithm function to obtain

In,2 “ ´γ

ż 1

sn

logpsq ds

`
1
?
k
γ2
a

γ´1 ´ 1

ˆ
ż 1

sn

sγ´1
„
ż s

0

Wnptq t
´γ´1 dt



ds´ p1´ snq

ż 1

0

Wnptq t
´γ´1 dt

˙

`
γpγ´1 ´ 1qγ

q1´k{n

ˆ

EpY q
ż 1

sn

psγ ´ 1q ds` oPp1q

˙

`
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ

ˆ
ż 1

sn

s´ρ ´ 1

ρ
ds

˙

Apn{kq ` oP

ˆ

1
?
k

˙

.

Since sn “ k´p1´εq{p1`2εq, we find that

?
k

ˇ

ˇ

ˇ

ˇ

ż 1

0

logpsq ds´

ż 1

sn

logpsq ds

ˇ

ˇ

ˇ

ˇ

“ O
`

kp´1{2`2εq{p1`2εq log k
˘

Ñ 0.

Using again the fact that sn Ñ 0, along with the conditions 1{q1´k{n “ OPp1{
?
kq and

Apn{kq “ OPp1{
?
kq, we get

In,2 “ γ `
1
?
k
γ2
a

γ´1 ´ 1

ˆ
ż 1

0

sγ´1
„
ż s

0

Wnptq t
´γ´1 dt



ds´

ż 1

0

Wnptq t
´γ´1 dt

˙

´ EpY q
γ2pγ´1 ´ 1qγ

γ ` 1

1

q1´k{n
`
p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
Apn{kq ` oP

ˆ

1
?
k

˙

.

By an integration by parts (with the inner integral being differentiated as a function of s),

we obtain
ż 1

0

sγ´1
„
ż s

0

Wnptq t
´γ´1 dt



ds “
1

γ

ż 1

0

Wnpsq

s
ps´γ ´ 1qds

and therefore, denoting by

Z “ γ
a

γ´1 ´ 1

ż 1

0

W psq

s
pr1´ γss´γ ´ 1qds

where W is a standard Brownian motion, we find that

?
kpIn,2 ´ γq

d
ÝÑ

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2 ` Z.
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It is now enough to compute the variance of Z, which is

VarpZq “ γp1´ γq

ż 1

0

ż 1

0

minps, tq

st
pr1´ γss´γ ´ 1qpr1´ γst´γ ´ 1q ds dt.

It then follows from straightforward but lengthy computations that VarpZq “ 2γ3{p1 ´ 2γq;

we omit the details. Consequently

?
kpIn,2 ´ γq

d
ÝÑ N

ˆ

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2,

2γ3

1´ 2γ

˙

. (E.17)

Combining (E.14), (E.16) and (E.17) completes the proof of (i).

To show (ii), it suffices to prove that

|qγk ´ rγk,l| “ OP

ˆ

logpkq

l

˙

. (E.18)

Write then

|qγk ´ rγk,l| “

ˇ

ˇ

ˇ

ˇ

ˇ

l
ÿ

i“1

ż i{l

pi´1q{l

«

log

˜

rξ1´ks{n
rξ1´k{n

¸

´ log

˜

rξ1´pi´1qk{plnq
rξ1´k{n

¸ff

ds

ˇ

ˇ

ˇ

ˇ

ˇ

and use the sample-wise monotonicity of the random function s ÞÑ rξ1´ks{n to get

|qγk ´ rγk,l| ď
1

l

l
ÿ

i“1

log

˜

rξ1´pi´1qk{plnq
rξ1´ik{plnq

¸

“
1

l
log

˜

rξ1
rξ1´k{n

¸

.

Conclude then using (E.15), which shows (E.18) and completes the proof.

Proof of Theorem 5. Since

γkpαq “ αpγk ` p1´ αqrγk

it is sufficient to analyse the joint asymptotic behaviour of ppγk, rγk, pq1´k{n, rξ1´k{nq. Let us then

start by remarking that

pγk “

ż 1

0

log

ˆ

pq1´tkus{n

q1´tku{n

˙

ds´ log

ˆ

pq1´tku{n

q1´tku{n

˙

.

Note that, in Theorem 2, the sequence of Brownian motions is left unchanged if k is changed

into tku or rks; this is indeed the fundamental argument behind the proof of Lemma 3(i).

Arguing as in the proof of Theorem 4 (i.e. splitting the domain s P p0, 1s into low and high

values of s and using a Taylor expansion), and using the asymptotic equivalences
a

tku „
?
k
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and Apn{tkuq „ Apn{kq (the latter due to the regular variation of |A|), we get by Theorem 2

that:

?
kppγk ´ γq “

λ1
1´ ρ

` γ
a

γ´1 ´ 1

ˆ
ż 1

0

1

s
Wn

ˆ

s

γ´1 ´ 1

˙

ds´Wn

ˆ

1

γ´1 ´ 1

˙˙

` oPp1q.

(E.19)

Besides, an inspection of the proof of Theorem 4 shows that

?
kprγk ´ γq “

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2

` γ
a

γ´1 ´ 1

ż 1

0

Wnpsq

s
pr1´ γss´γ ´ 1qds` oPp1q (E.20)

where Wn is the sequence of Brownian motions appearing in Theorem 2. Using Theorem 2

twice more, we can also write

?
k

ˆ

pq1´k{n
q1´k{n

´ 1

˙

“ γ
a

γ´1 ´ 1Wn

ˆ

1

γ´1 ´ 1

˙

` oPp1q (E.21)

as well as
?
k

˜

rξ1´k{n
ξ1´k{n

´ 1

¸

“ γ2
a

γ´1 ´ 1

ż 1

0

Wnptqt
´γ´1dt` oPp1q. (E.22)

As a consequence, the random vector

?
k

˜

pγk ´ γ, rγk ´ γ,
pq1´k{n
q1´k{n

´ 1,
rξ1´k{n
ξ1´k{n

´ 1

¸

is asymptotically four-variate Gaussian, and as such

?
k

˜

γkpαq ´ γ,
pq1´k{n
q1´k{n

´ 1,
rξ1´k{n
ξ1´k{n

´ 1

¸

is asymptotically trivariate Gaussian. To complete the proof, we analyse the marginal asymp-

totic behaviour of each of the three components in this vector, as well as their pairwise

asymptotic covariance structure.

Marginal asymptotic behaviour of γkpαq: This is determined by the joint convergence of
?
k ppγk ´ γ, rγk ´ γq, to what we already know to be a bivariate Gaussian distribution. We

also know from Theorem 3.2.5 in de Haan and Ferreira (2006) that

?
kppγk ´ γq

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

This is of course also a corollary of (E.19). Meanwhile, Theorem 4(ii) gives

?
kprγk ´ γq

d
ÝÑ N

ˆ

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2,

2γ3

1´ 2γ

˙

.
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It therefore only remains to calculate the limiting covariance of
?
kppγk ´ γ, rγk ´ γq. This

is obtained by computing the expectation of the product of the centred Gaussian terms

appearing in the two asymptotic expansions (E.19) and (E.20). In other words, the limiting

covariance is

cov “ cov1 ´ cov2

with cov1 :“ γp1´ γq

ż 1

0

ż 1

0

minps, pγ´1 ´ 1q´1tq

st
pr1´ γss´γ ´ 1qds dt

and cov2 :“ γp1´ γq

ż 1

0

minps, pγ´1 ´ 1q´1q

s
pr1´ γss´γ ´ 1qds.

Recalling that γ´1 ´ 1 ą 1, straightforward computations entail

cov1 “ pγ´1 ´ 1qγ´1 ´ γrγ ` 1` γ logpγ´1 ´ 1qs

and cov2 “ γrpγ´1 ´ 1qγ ´ 1´ γ logpγ´1 ´ 1qs. (E.23)

This results in

cov “ γrpγ´1 ´ 1qγ´1 ´ γs “ γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

.

Wrapping up, we obtain
?
k ppγk ´ γ, rγk ´ γq

d
ÝÑ N pm,V q (E.24)

where m is the 2ˆ 1 vector

m :“

ˆ

λ1
1´ ρ

,
p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2

˙

and V is the 2ˆ 2 matrix

V :“

¨

˚

˚

˝

γ2 γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

2γ3

1´ 2γ

˛

‹

‹

‚

.

After some more straightforward computations, we conclude that

?
k pγkpαq ´ γq

d
ÝÑ N pbα,Vαp1, 1qq

with the notation of the statement of Theorem 5.

Marginal asymptotic behaviour of pq1´k{n: It is a straightforward byproduct of Equation (E.21)

that
?
k

ˆ

pq1´k{n
q1´k{n

´ 1

˙

d
ÝÑ N p0, γ2q.
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Marginal asymptotic behaviour of rξ1´k{n: It is a direct consequence of Equation (E.22) that

?
k

˜

rξ1´k{n
ξ1´k{n

´ 1

¸

d
ÝÑ N

ˆ

0,
2γ3

1´ 2γ

˙

.

See also the discussion below Theorem 2 in the main paper.

Asymptotic covariance structure of pγkpαq, pq1´k{nq: For this, we remark first that pγk ´ γ and

pq1´k{n{q1´k{n ´ 1 are asymptotically independent: this is a consequence of the asymptotic

representation of pγk ´ γ obtained in the proof of Theorem 3.2.5 in de Haan and Ferreira

(2006) together with Lemma 3.2.3 therein. Besides, the limiting covariance structure of
?
kprγk ´ γ, pq1´k{n{q1´k{n ´ 1q is obtained by computing the expectation of the product of

the centred Gaussian terms appearing in the asymptotic expansions (E.20) and (E.21). By

(E.23) above, this limiting covariance is:

cov2 “ γrpγ´1 ´ 1qγ ´ 1´ γ logpγ´1 ´ 1qs

with the notation of (E.23). The limiting covariance of
?
kpγkpαq ´ γ, pq1´k{n{q1´k{n ´ 1q is

then

p1´ αqγrpγ´1 ´ 1qγ ´ 1´ γ logpγ´1 ´ 1qs “ Vαp1, 2q.

Asymptotic covariance structure of pγkpαq, rξ1´k{nq: It follows from Equations (E.19), (E.20)

and (E.22) that the limiting covariance of
?
kpγkpαq ´ γ,

rξ1´k{n{ξ1´k{n ´ 1q is

COV “ αCOV1 ` p1´ αqCOV2

with

COV1 “ γ2p1´ γq

„
ż 1

0

ż 1

0

minppγ´1 ´ 1q´1s, tq

s
t´γ´1ds dt´

ż 1

0

minppγ´1 ´ 1q´1, tqt´γ´1dt



and

COV2 “ γ2p1´ γq

ż 1

0

ż 1

0

minps, tq

s
pr1´ γss´γ ´ 1qt´γ´1ds dt.

Direct computations yield

COV1 “ γ2
ˆ

pγ´1 ´ 1qγ

p1´ γq2
´ 1

˙

´ γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

“
γ3pγ´1 ´ 1qγ

p1´ γq2

and

COV2 “
γ3

p1´ γqp1´ 2γq
.

Consequently

COV “ γ3

p1´ γq2

„

αpγ´1 ´ 1qγ ` p1´ αq
1´ γ

1´ 2γ



“ Vαp1, 3q.
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Asymptotic covariance structure of ppq1´k{n, rξ1´k{nq: Combining Equations (E.21) and (E.22),

we find that the limiting covariance of
?
kppq1´k{n{q1´k{n ´ 1, rξ1´k{n{ξ1´k{n ´ 1q is

γ2p1´ γq

ż 1

0

minpt, pγ´1 ´ 1q´1qt´γ´1dt “ γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

“ Vαp2, 3q

after some straightforward calculations.

Combining these arguments on marginal convergence and asymptotic covariance structure,

we get
?
k

˜

γkpαq ´ γ,
pq1´k{n
q1´k{n

´ 1,
rξ1´k{n
ξ1´k{n

´ 1

¸

d
ÝÑ N pmα,Vαq (E.25)

with mα and Vα as in the statement of Theorem 5. This concludes the proof.

Proof of Theorem 6. Applying Theorem 5 and arguing as in the proof of Theorem 1 in

Daouia et al. (2018), we get the joint convergence

?
k

˜

pξ1´k{npαq

ξ1´k{n
´ 1,

rξ1´k{n
ξ1´k{n

´ 1

¸

d
ÝÑ

`

rp1´ γq´1 ´ logpγ´1 ´ 1qsΓα `Θ´ λ, Ξ
˘

where pΓα,Θ,Ξq is the limiting vector in Theorem 5, and

λ :“

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ

˙

λ1 ` γpγ
´1
´ 1qγEpY qλ2.

Then clearly

?
k

˜

ξ1´k{npα, βq

ξ1´k{n
´ 1

¸

d
ÝÑ rp1´ γq´1 ´ logpγ´1 ´ 1qsβΓα ` βΘ` p1´ βqΞ´ βλ.

Set Ψα “ Γα ´ bα and rearrange the bias component to complete the proof.

Proof of Theorem 7. Define pn “ 1´ τ 1n and we note that

log

˜

ξ
‹

1´pnpα, βq

ξ1´pn

¸

“ pγ1´k{npαq ´ γq log

ˆ

k

npn

˙

` log

˜

ξ1´k{npα, βq

ξ1´k{n

¸

´ log

ˆ

”npn
k

ıγ ξ1´pn
ξ1´k{n

˙

.
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The convergence logrk{pnpnqs Ñ 8 yields

?
k

logrk{pnpnqs
log

˜

ξ1´k{npα, βq

ξ1´k{n

¸

“ OP p1{ logrk{pnpnqsq “ oPp1q (E.26)

and

?
k

logrk{pnpnqs
log

ˆ

”npn
k

ıγ ξ1´pn
ξ1´k{n

˙

“

?
k

logrk{pnpnqs

ˆ

log

ˆ

ξ1´pn
q1´pn

˙

´ log

ˆ

ξ1´k{n
q1´k{n

˙

` log

ˆ

”npn
k

ıγ q1´pn
q1´k{n

˙˙

“ O

˜ ?
k

logrk{pnpnqs

„

1

q1´k{n
` |Apn{kq| `

1

q1´pn
` |Ap1{pnq|



¸

“ O

˜ ?
k

logrk{pnpnqs

„

1

q1´k{n
` |Apn{kq|



¸

“ op1q. (E.27)

Here, convergence (E.26) is a consequence of Theorem 6. Convergence (E.27) follows from a

combination of Proposition 1, Theorem 2.3.9 in de Haan and Ferreira (2006) and the regular

variation of |A|. Combining these convergences and using the delta-method leads to the

desired result.

Proof of Proposition 2. Statement (i) is a clear consequence of the fact that the expectile-

based ES at level τ is an increasing linear functional of the restriction of the expectile function

on the interval rτ, 1s, in the sense that

ξ
p1q
t ď ξ

p2q
t @t P rτ, 1s ñ XESp1qτ :“

1

1´ τ

ż 1

τ

ξ
p1q
t dt ď

1

1´ τ

ż 1

τ

ξ
p2q
t dt “: XESp2qτ .

To show statement (ii), note that, for τ ě 1{2, XTCEτ is clearly translation invariant and

positive homogeneous (because so are expectiles above level τ ě 1{2, and conditional expec-

tations). A simple counter-example to monotonicity and subadditivity is the following: set

τ “ 1{2, so that

XTCE1{2pZq “ EpZ |Z ą ξ1{2pZqq “ EpZ |Z ą EpZqq.

We then actually show that XTCE1{2 is neither monotonic nor subadditive. For this, we

consider a uniform random variable U on r0, 1s and we set

X “ 21t5{6ďUă1u and Y “ 1t1{2ďUă5{6u ` 21t5{6ďUă1u.
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Then clearly X ď Y with probability 1, and X and Y are discrete variables taking values in

the set t0, 1, 2u, with EpXq “ EpX1tXą0uq “ 1{3 and EpY q “ EpY 1tYą0uq “ 2{3. As such

EpX |X ą EpXqq “ EpX |X ą 0q “ 2

and EpY |Y ą EpY qq “ EpY |Y ą 0q “
2{3

1{2
“

4

3
.

This establishes that EpY |Y ą EpY qq ă EpX |X ą EpXqq: XTCE1{2 is not a monotonic

risk measure. Besides,

X ` Y “ 1t1{2ďUă5{6u ` 41t5{6ďUă1u

so that EpX ` Y q “ EprX ` Y s1tX`Yą0uq “ 1 and then

EpX ` Y |X ` Y ą EpX ` Y qq “ EpX ` Y |X ` Y ą 1q “ 4.

This shows that EpX ` Y |X ` Y ą EpX ` Y qq ą EpX |X ą EpXqq ` EpY |Y ą EpY qq,
proving that XTCE1{2 is not a subadditive risk measure either.

Proof of Proposition 3. It follows from the asymptotic proportionality relationship ξτ{qτ „

pγ´1 ´ 1q´γ as τ Ñ 1 (see Bellini and Di Bernardino, 2017) that

XESτ “
1

1´ τ

ż 1

τ

ξαdα “ pγ
´1
´ 1q´γ

"

1

1´ τ

ż 1

τ

qαp1` rpαqqdα

*

where rpαq Ñ 0 as αÑ 1. It is then clear that

XESτ „ pγ
´1
´ 1q´γ

"

1

1´ τ

ż 1

τ

qαdα

*

“ pγ´1 ´ 1q´γQESτ as τ Ñ 1.

This proves that
XESτ
QESτ

„ pγ´1 ´ 1q´γ „
ξτ
qτ

as τ Ñ 1,

by asymptotic proportionality again. Besides, the equality qα “ Upp1 ´ αq´1q and a change

of variables entail

QESτ
qτ

“
1

1´ τ

ż 1

τ

qα
qτ
dα “

ż 8

1

y´1
Upp1´ τq´1yq

Upp1´ τq´1q

dy

y
.

The condition γ ă 1 and a uniform convergence theorem such as Proposition B.1.10 in de

Haan and Ferreira (2006, p.360) entail

QESτ
qτ

Ñ

ż 8

1

yγ´2dy “
1

1´ γ
as τ Ñ 1.

Consequently
XESτ
ξτ

„
QESτ
qτ

Ñ
1

1´ γ
as τ Ñ 1.
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Let us now turn to the terms XTCEτ{QTCEτ and XTCEτ{ξτ . On the one hand, we have

XTCEτ “
E rY 1pY ą ξτ qs

F pξτ q
“

E rpY ´ ξτ q`s
F pξτ q

` ξτ ,

where y` “ maxpy, 0q. On the other hand, it follows from the proof of Theorem 11 in Bellini

et al. (2014) that
E rpY ´ ξτ q`s

F pξτ q
„

ξτ
γ´1 ´ 1

as τ Ñ 1.

Therefore
XTCEτ

ξτ
„

1

1´ γ
as τ Ñ 1.

Likewise, we have

QTCEτ “
E rY 1pY ą qτ qs

F pqτ q
“

E rpY ´ qτ q`s
F pqτ q

` qτ ,

with
E rpY ´ qτ q`s

F pqτ q
„

qτ
γ´1 ´ 1

as τ Ñ 1.

Then
QTCEτ

qτ
„

1

1´ γ
as τ Ñ 1.

Whence
XTCEτ

QTCEτ

„
ξτ
qτ

as τ Ñ 1,

which completes the proof.

Proof of Proposition 4. The starting point to show the first expansion is Proposition 1(i),

which yields

XESτ “
1

1´ τ

ż 1

τ

ξαdα

“ pγ´1 ´ 1q´γ

˜

QESτ ` γpγ
´1
´ 1qγEpY qp1` op1qq

`

"

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

*

1

1´ τ

ż 1

τ

qαApp1´ αq
´1
qdα

¸

.

Use a change of variables to get

1

1´ τ

ż 1

τ

qαApp1´αq
´1
qdα “ Upp1´τq´1qApp1´τq´1q

ż 8

1

y´1
Upp1´ τq´1yqApp1´ τq´1yq

Upp1´ τq´1qApp1´ τq´1q

dy

y
.
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This entails, using a uniform convergence theorem such as Proposition B.1.10 in de Haan

and Ferreira (2006, p.360), that

1

1´ τ

ż 1

τ

qαApp1´ αq
´1
qdα „ Upp1´ τq´1qApp1´ τq´1q

ż 8

1

yγ`ρ´2dy as τ Ñ 1

“
qτApp1´ τq

´1q

1´ γ ´ ρ
.

Since QESτ „ qτ{p1´ γq, our earlier expansion yields

XESτ
QESτ

“ pγ´1 ´ 1q´γ

˜

1`
γp1´ γqpγ´1 ´ 1qγEpY q

qτ
p1` op1qq

`

"

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

*

1´ γ

1´ γ ´ ρ
App1´ τq´1q

¸

. (E.28)

Furthermore, it is a consequence of a uniform inequality such as Theorem 2.3.9 in de Haan

and Ferreira (2006) applied to the function U that

QESτ
qτ

“

ż 8

1

y´1
Upp1´ τq´1yq

Upp1´ τq´1q

dy

y

“

ż 8

1

y´1
ˆ

yγ ` App1´ τq´1qyγ
yρ ´ 1

ρ
p1` op1qq

˙

dy

y

“

ż 8

1

yγ´2dy `
App1´ τq´1q

ρ

ż 8

1

`

yγ`ρ´2 ´ yγ´2
˘

dyp1` op1qq

“
1

1´ γ

ˆ

1`
1

1´ γ ´ ρ
App1´ τq´1qp1` op1qq

˙

. (E.29)

Finally, Proposition 1(i) reads

qτ
ξτ

“ pγ´1 ´ 1qγ

˜

1´
γpγ´1 ´ 1qγEpY q

qτ
p1` op1qq

´

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

App1´ τq´1q

¸

. (E.30)

A use of the identity
XESτ
ξτ

“
XESτ
QESτ

ˆ
QESτ
qτ

ˆ
qτ
ξτ

and a combination of (E.28), (E.29) and (E.30) complete the proof after some straightforward

computations.
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Proof of Theorem 8. By Theorem 3:

ĆXES1´k{n

XES1´k{n

´ 1 “
1
?
k
γ2
a

γ´1 ´ 1ˆ

ş1

0
p
şs

0
Wnptqt

´γ´1 dtqsγ´1ξ1´ks{n ds
ş1

0
ξ1´ks{n ds

` oP

˜

1
?
k
ˆ

ş1

0
s´1{2´εξ1´ks{n ds
ş1

0
ξ1´ks{n ds

¸

.

Using (E.12) and the fact that γ ă 1{2, we obtain:

ĆXES1´k{n

XES1´k{n

´ 1 “
1
?
k
pγr1´ γsq3{2

ż 1

0

ˆ
ż s

0

Wnptqt
´γ´1 dt

˙

ds

s
` oP

ˆ

1
?
k

˙

.

Denoting by W a standard Brownian motion, we get, using an integration by parts, that:

?
k

˜

ĆXES1´k{n

XES1´k{n

´ 1

¸

d
ÝÑ pγr1´ γsq3{2

ż 1

0

W psqs´γ´1 logpsq ds.

Since the rhs above is a centred Gaussian random variable, it only remains to compute its

variance, which is

v “ γ3p1´ γq3
ż 1

0

ż 1

0

minps, tqs´γ´1t´γ´1 logpsq logptq ds dt.

It then follows from straightforward but lengthy computations that

v “
2γ3p1´ γqp3´ 4γq

p1´ 2γq3

as required.

Proof of Theorem 9. The proof of this result is entirely similar to that of Theorem 7

(applying Theorem 8 instead of Theorem 6, and Proposition 4 instead of Proposition 1). We

omit the details.

Proof of Theorem 10. We examine first the convergence of XES
‹

1´pnpα, βq. Define pn “

1´ τ 1n and write

log

˜

XES
‹

1´pnpα, βq

XES1´pn

¸

“ log

˜

ξ
‹

1´pnpα, βq

ξ1´pn

¸

` log

˜

r1´ γ1´k{npαqs
´1

r1´ γs´1

¸

´ log

ˆ

XES1´pn

r1´ γs´1ξ1´pn

˙

.

By Theorem 7 and the delta-method,
?
k

logrk{pnpnqs
log

˜

ξ
‹

1´pnpα, βq

ξ1´pn

¸

d
ÝÑ N pbα, vαq. (E.31)
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Using then Theorem 5, the delta-method and the convergence logrk{pnpnqs Ñ 8, we get

?
k

logrk{pnpnqs
log

˜

r1´ γ1´k{npαqs
´1

r1´ γs´1

¸

P
ÝÑ 0. (E.32)

Using finally a combination of Proposition 1(i), Proposition 4 and the regular variation of

|A| and t ÞÑ q1´t´1 , we obtain

?
k

logrk{pnpnqs
log

ˆ

XES1´pn

r1´ γs´1ξ1´pn

˙

Ñ 0. (E.33)

Combining convergences (E.31), (E.32) and (E.33), it follows that

?
k

logrk{pnpnqs
log

˜

XES
‹

1´pnpα, βq

XES1´pn

¸

d
ÝÑ N pbα, vαq.

Another use of the delta-method completes the proof of the convergence of XES
‹

1´pnpα, βq.

We now show the convergence of zXES
‹

1´pnpα, βq. For this we write

log

˜

zXES
‹

1´pnpα, βq

XES1´pn

¸

“ log

˜

ξ
‹

1´pnpα, βq

ξ1´pn

¸

` log

˜

zQES1´k{n

pq1´k{n
¨

q1´k{n
QES1´k{n

¸

` log

ˆ

QES1´k{n

q1´k{n

˙

´ log

ˆ

XES1´pn

ξ1´pn

˙

where we set

zQES1´k{n :“
1

tku

tku
ÿ

i“1

Yn´i`1,n “

ż 1

0

pq1´tkus{n ds.

Remark now that, since pq1´tku{n “ Yn´tku,n “ pq1´k{n, we have

log

˜

zQES1´k{n

pq1´k{n
¨

q1´k{n
QES1´k{n

¸

“ log

ˆ
ż 1

0

pq1´tkus{n

pq1´tku{n

ds

˙

´ log

ˆ

QES1´k{n

q1´k{n

˙

.

Combine then Theorem 2, the delta-method, and (E.29) together with a Taylor expansion

to obtain

?
k

logrk{pnpnqs
log

˜

zQES1´k{n

pq1´k{n
¨

q1´k{n
QES1´k{n

¸

“ OPp1{ logrk{pnpnqsq “ oPp1q. (E.34)
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Besides, a combination of Equation (E.29) and Proposition 4 with a Taylor expansion yields
?
k

logrk{pnpnqs

„

log

ˆ

QES1´k{n

q1´k{n

˙

´ log

ˆ

XES1´pn

ξ1´pn

˙

“ O

˜ ?
k

logrk{pnpnqs

„

1

q1´k{n
` |Apn{kq| `

1

q1´pn
` |Ap1{pnq|



¸

“ O

˜ ?
k

logrk{pnpnqs

„

1

q1´k{n
` |Apn{kq|



¸

“ op1q. (E.35)

Finally, use together (E.31), (E.34) and (E.35) and the delta-method to complete the proof.

Proof of Theorem 11. We only show the result for ĆXES
‹

pτ 1nppnq
pαq as the proofs of the other

convergences are entirely similar. The key point is to write

ĆXES
‹

pτ 1nppnq
pαq “

ˆ

1´ pτ 1nppnq

1´ τ 1nppnq

˙´γτn pαq

ĆXES
‹

τ 1nppnq
pαq. (E.36)

It is, moreover, shown as part of the proof of Theorem 6 in Daouia et al. (2018) that

1´ pτ 1nppnq

1´ τ 1nppnq
“ 1`OP

˜

1
a

np1´ τnq

¸

(combine (B.52), (B.53), (B.54) and (B.55) in the supplementary material document of

[Daouia et al., 2018], noting that the strict monotonicity of FY is not required thanks to

Proposition 1(i) in the present paper; this also results in a corrected version of (B.51) in the

former paper). Therefore
ˆ

1´ pτ 1nppnq

1´ τ 1nppnq

˙´γτn pαq

“ exp

ˆ

´γτnpαq log

„

1´ pτ 1nppnq

1´ τ 1nppnq

˙

“ exp

˜

´

«

γ `OP

˜

1
a

np1´ τnq

¸ff

ˆOP

˜

1
a

np1´ τnq

¸¸

“ 1`OP

˜

1
a

np1´ τnq

¸

. (E.37)

Furthermore, using Proposition 5, we conclude that the conditions of Theorem 9 are satisfied

if the parameter τ 1n there is set equal to τ 1nppnq. By Theorem 9 then:
a

np1´ τnq

logrp1´ τnq{p1´ τ 1nppnqqs

˜

ĆXES
‹

τ 1nppnq
pαq

XESτ 1nppnq
´ 1

¸

d
ÝÑ N pbα, vαq.
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Now

log

„

1´ τn
1´ τ 1nppnq



“ log

„

1´ τn
1´ pn



` log

„

1´ pn
1´ τ 1nppnq



and in the right-hand side of this identity, the first term tends to infinity, while the second

term converges to a finite constant in view of Proposition 5. As a conclusion

log

„

1´ τn
1´ τ 1nppnq



„ log

„

1´ τn
1´ pn



.

Hence the convergence

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

ĆXES
‹

τ 1nppnq
pαq

XESτ 1nppnq
´ 1

¸

d
ÝÑ N pbα, vαq. (E.38)

We conclude the proof by writing

XESτ 1nppnq “ QESpn ˆ

"

p1´ γq
XESτ 1nppnq
ξτ 1nppnq

*

ˆ

"

p1´ γq
QESpn
qpn

*´1

(since ξτ 1nppnq ” qpn by definition). By a combination of Propositions 4 and 5 with the regular

variation of the functions |A| and t ÞÑ q1´t´1 , one gets

p1´ γq
XESτ 1nppnq
ξτ 1nppnq

“ 1` o

˜

logrp1´ τnq{p1´ pnqs
a

np1´ τnq

¸

.

Similarly and by (E.29),

p1´ γq
QESpn
qpn

“ 1` o

˜

logrp1´ τnq{p1´ pnqs
a

np1´ τnq

¸

.

Therefore
XESτ 1nppnq

QESpn
´ 1 “ o

˜

logrp1´ τnq{p1´ pnqs
a

np1´ τnq

¸

.

Together with (E.38), this entails

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

ĆXES
‹

τ 1nppnq
pαq

QESpn
´ 1

¸

d
ÝÑ N pbα, vαq. (E.39)

Combining (E.36), (E.37) and (E.39) completes the proof.
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Appendix: Preliminary results and their proofs

The first preliminary lemma, which we will use to show Proposition 1, is a technical result

on second-order regular variation that seems to be informally known in the literature. We

prove it for the sake of completeness.

Lemma 1. Assume that condition C2pγ, ρ, Aq holds. Then we have the following two conver-

gences:

(i) lim
tÑ8

1

Ap1{F ptqq

ˆ

Up1{F ptqq

t
´ 1

˙

“ 0;

(ii) lim
tÑ8

1

Aptq

ˆ

1{F pUptqq

t
´ 1

˙

“ 0.

Proof of Lemma 1. The proof of this lemma is based on that of Theorem B.3.19 in de

Haan and Ferreira (2006). We only show (i), the proof of (ii) being entirely similar. Recall

that

Uptq “ inftx | 1{F pxq ě tu

so that Up1{F ptqq ď t. Furthermore, condition C2pγ, ρ, Aq is nothing but second-order ex-

tended regular variation in the sense of convergence (B.3.3) in de Haan and Ferreira (2006),

which is known to be locally uniform in x P p0,8q (see Remark B.3.8.1 in de Haan and Fer-

reira, 2006). Pick ε P R arbitrarily close to 0: by using condition C2pγ, ρ, Aq with t replaced

by 1{F ptq and x “ 1` εAp1{F ptqq, tÑ 8, we get

lim
tÑ8

1

Ap1{F ptqq

„

Upr1` εAp1{F ptqqs{F ptqq

Up1{F ptqq
´ p1` εAp1{F ptqqqγ



“ 0

or equivalently

lim
tÑ8

1

Ap1{F ptqq

„

Upr1` εAp1{F ptqqs{F ptqq

Up1{F ptqq
´ 1



“ γε.

Assume that A is positive and take ε ą 0; the proof in the other case is similar by taking

ε ă 0 instead. Using the definition of U again, we find that Upr1 ` εAp1{F ptqqs{F ptqq ě t,

and thus

0 ď lim inf
tÑ8

1

Ap1{F ptqq

ˆ

t

Up1{F ptqq
´ 1

˙

ď lim sup
tÑ8

1

Ap1{F ptqq

ˆ

t

Up1{F ptqq
´ 1

˙

ď γε.

Let ε Ó 0 to complete the proof.
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The second lemma is an equivalent characterisation of sample expectiles, and is the crucial

initial step for the proof of our Gaussian approximations.

Lemma 2. We have, for any τ P p0, 1q,

rξτ ´
1

n

n
ÿ

i“1

Yi “
2τ ´ 1

1´ τ
ˆ

1

n

n
ÿ

i“1

pYi ´ rξτ q1tYiąrξτ u
.

Proof of Lemma 2. The proof is straightforward; we include it for the sake of completeness.

Since ητ is strictly convex and continuously differentiable with derivative η1τ pyq “ 2|τ ´

1tyď0u|y, the sample expectile rξτ is characterised by

n
ÿ

i“1

|τ ´ 1
tYiďrξτ u

|pYi ´ rξτ q “ 0.

In other words,

p1´ τq
n
ÿ

i“1

prξτ ´ Yiq1tYiďrξτ u
“ τ

n
ÿ

i“1

pYi ´ rξτ q1tYiąrξτ u

and thus

p1´ τq
n
ÿ

i“1

prξτ ´ Yiq “ p2τ ´ 1q
n
ÿ

i“1

pYi ´ rξτ q1tYiąrξτ u
.

Dividing on each side by np1´ τq and rearranging yields the result.

The third lemma is a generalisation of the weighted approximation of the tail empirical

quantile process to non-integer sequences k tailored to our purpose. It also gives a represen-

tation of the Gaussian term that is of independent interest, for example when evaluating the

correlation between two quantiles or expectiles at different orders.

Lemma 3. Suppose that condition C2pγ, ρ, Aq holds. Let k “ kpnq Ñ 8 be a positive sequence

such that k{n Ñ 0 and
?
kApn{kq “ Op1q. Then, subject to a potential enlargement of the

underlying probability space and to choosing a suitable version of the empirical process pFn,

there exists a sequence Wn “ W
pkq
n of standard Brownian motions such that, for any ε ą 0

sufficiently small:

(i) We have

pq1´ks{n
q1´k{n

“ s´γ `
1
?
k

ˆ

γs´γ´1Wnpsq `
?
kApn{kqs´γ

s´ρ ´ 1

ρ
` s´γ´1{2´ε oPp1q

˙

uniformly in s P p0, 1s.
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(ii) If pF npuq “ n´1
řn
i“1 1tYiąuu is the empirical survival function of the Yi, we have

n

k
pF n

`

xq1´k{n
˘

´x´1{γ “
1
?
k

ˆ

Wnpx
´1{γ

q `
?
kApn{kqx´1{γ

xρ{γ ´ 1

γρ
` xpε´1{2q{γ oPp1q

˙

uniformly on half-lines of the form rx0,8q, for x0 ą 0.

Moreover, the sequence Wn can be chosen as Wnpsq “ W
pkq
n psq “

a

n{kW npks{nq, where

W n is a sequence of Brownian motions which is fixed across all possible choices of k.

Proof of Lemma 3. Note that (i) is exactly Theorem 2.4.8 in de Haan and Ferreira (2006),

recalling that the function A0 therein is asymptotically equivalent to A, in the case when k

is a sequence of integers. If now the sequence k is not a sequence of integers, we write, for n

so large that q1´k{n ą 0,

pq1´ks{n
q1´k{n

ď
pq1´tkus{n

q1´tku{n

ˆ

q1´tku{n

q1´k{n
´ 1

˙

`
pq1´tkus{n

q1´tku{n

.

By local uniformity of condition C2pγ, ρ, Aq (see e.g. Theorem 2.3.9 in de Haan and Ferreira,

2006), one gets

?
k

ˆ

q1´tku{n

q1´k{n
´ 1

˙

“
?
k

ˆ„

k

tku

γ

´ 1

˙

`
?
kApn{kq ˆ

"

1

Apn{kq

ˆ

Upn{tkuq

Upn{kq
´

„

k

tku

γ˙*

“ op1q.

Therefore
pq1´ks{n
q1´k{n

ď
pq1´tkus{n

q1´tku{n

„

1` o

ˆ

1
?
k

˙

.

Bearing in mind that s P p0, 1s and therefore s´γ ď s´γ´1{2´ε, we may now use the approxi-

mation for the sequence of integers tku to get

pq1´ks{n
q1´k{n

ď s´γ `
1

a

tku

ˆ

γs´γ´1Wnpsq `
a

tkuApn{tkuqs´γ
s´ρ ´ 1

ρ
` s´γ´1{2´ε oPp1q

˙

where the oPp1q is uniform in s P p0, 1s. An analogue lower bound, in terms of the ceiling

function r¨s, applies. We can now use the facts that

?
k

˜

a

tku
?
k
´ 1

¸

Ñ 0 and
Apn{tkuq

Apn{kq
Ñ 1

(the latter being due to the regular variation of A) and similarly when the floor function is

replaced by the ceiling function, to get statement (i). To prove statement (ii), we note that if
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the sequence k is made of integers, there is a sequence ĂWn of (potentially different) Brownian

motions such that, for a suitable version of the empirical process pFn:

n

k
pF n

`

xq1´k{n
˘

´ x´1{γ “
1
?
k

ˆ

ĂWnpx
´1{γ

q `
?
kApn{kqx´1{γ

xρ{γ ´ 1

γρ
` xpε´1{2q{γ oPp1q

˙

.

This follows from Theorem 5.1.4 in de Haan and Ferreira (2006). That ĂWn can be taken

equal to Wn is hinted at in Remark 5.1.3 in de Haan and Ferreira (2006), and can be shown

as follows: work throughout with the above version of pFn, and denote by s ÞÑ pq1´ks{n the

related tail quantile process. Our goal is to show that for any η, δ ą 0, we have, for n large

enough,

P
ˆ

sup
0ăsď1

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n
q1´k{n

´ s´γ
˙

´ γs´γ´1ĂWnpsq ´
?
kApn{kqs´γ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ą η

˙

ă δ.

First note that, for any a P p0, 1s,

sup
0ăsďa

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

γs´γ´1ĂWnpsq `
?
kApn{kqs´γ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ď γ sup
0ăsďa

s´1{2`ε
ˇ

ˇ

ˇ

ĂWnpsq
ˇ

ˇ

ˇ
` |
?
kApn{kq| sup

0ăsďa
s1{2`ε

ˇ

ˇ

ˇ

ˇ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

d
“ aε ˆ γ sup

0ăsď1
s´1{2`ε

ˇ

ˇ

ˇ

ĂWnpsq
ˇ

ˇ

ˇ
` sup

0ăsďa
s1{2`ε

ˇ

ˇ

ˇ

ˇ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ˆOPp1q

by self-similarity of the Brownian motion ĂWn. One can therefore choose a ą 0 so small that

P
ˆ

sup
0ăsďa

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

γs´γ´1ĂWnpsq `
?
kApn{kqs´γ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ą
η

4

˙

ă
δ

4
. (E.40)

Using statement (i) together with the triangle inequality, and repeating exactly the same

argument, we obtain that we can choose a ą 0 so small that

P
ˆ

sup
0ăsďa

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n
q1´k{n

´ s´γ
˙ˇ

ˇ

ˇ

ˇ

ą
η

4

˙

ă
δ

4
. (E.41)

Combining (E.40) and (E.41) results, for this choice of a ą 0, in the inequality

P
ˆ

sup
0ăsďa

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n
q1´k{n

´ s´γ
˙

´ γs´γ´1ĂWnpsq ´
?
kApn{kqs´γ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ą
η

2

˙

ă
δ

2
.

It is therefore sufficient, for our purpose, to show that for any a ą 0

sup
aăsď1

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n
q1´k{n

´ s´γ
˙

´ γs´γ´1ĂWnpsq ´
?
kApn{kqs´γ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

“ oPp1q,
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and since sγ`1{2`ε ě aγ`1{2`ε ą 0 on ra, 1s, it is actually enough to show that

sup
aďsď1

ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n
q1´k{n

´ s´γ
˙

´ γs´γ´1ĂWnpsq ´
?
kApn{kqs´γ

s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

“ oPp1q. (E.42)

By statement (i), we have

?
k sup
aďsď1

ˇ

ˇ

ˇ

ˇ

pq1´ks{n
q1´k{n

´ s´γ
ˇ

ˇ

ˇ

ˇ

“ OPp1q.

Set then x “ xnpsq “ pq1´ks{n{q1´k{n in the approximation of pF n

`

xq1´k{n
˘

to get, uniformly

in s P ra, 1s,

tksu

k
´ rxnpsqs

´1{γ

“
1
?
k

ˆ

ĂWnprxnpsqs
´1{γ

q `
?
kApn{kqrxnpsqs

´1{γ rxnpsqs
ρ{γ ´ 1

γρ
` rxnpsqs

pε´1{2q{γ oPp1q

˙

.

By the uniform convergence of xnpsq to s´γ on ra, 1s, as well as the continuity properties of

Brownian motion, this entails

rxnpsqs
´1{γ

“ s´
1
?
k

ˆ

ĂWnpsq `
?
kApn{kqs

s´ρ ´ 1

γρ
` oPp1q

˙

uniformly in s P ra, 1s. By a Taylor expansion, we find

pq1´ks{n
q1´k{n

“ xnpsq “ s´γ `
1
?
k

ˆ

γs´γ´1ĂWnpsq `
?
kApn{kqs´γ

s´ρ ´ 1

ρ
` oPp1q

˙

uniformly in s P ra, 1s. This is exactly (E.42). The adaptation of (ii) to an arbitrary sequence

k (not necessarily of integers) then follows by a direct adaptation of the arguments used to

show (i).

That Wn can be chosen as indicated in the final statement is most easily seen by inspecting

the proof of Theorem 2.4.8 in de Haan and Ferreira (2006): the centrepiece of the proof is

Lemma 2.4.10 therein, which states that there is an independent sequence pZiqiě1 of unit

Pareto random variables such that, if s ÞÑ Zn´tksu,n is the related tail quantile process, then

one can construct a sequence of Brownian motions Wn such that, for any γ ą 0 and any

ε ą 0 sufficiently small,

sup
k´1ďsď1

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

?
k

˜

p k
n
Zn´tksu,nq

γ ´ 1

γ
´
s´γ ´ 1

γ

¸

´ s´γ´1Wnpsq

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q. (E.43)

The sequence Wn in Theorem 2.4.8 of de Haan and Ferreira (2006), and therefore in the

statement of the Lemma, is exactly the sequence Wn satisfying this relationship for the
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sequence pYi “ UpZiqqiě1; this is seen by combining (2.4.23), (2.4.24) and (2.4.25) p.59 of

de Haan and Ferreira (2006). Equation (E.43), meanwhile, is shown in the following way:

Proposition 2.4.9 in de Haan and Ferreira (or equivalently, Theorem 6.2.1 in Csörgő and

Horváth, 1993) yields that, for a suitable choice of an independent sequence pZiqiě1 of unit

Pareto random variables, there is a sequence of Brownian bridges Bn such that

sup
1{pn`1qďtďn{pn`1q

nεtε´1{2p1´ tqε´1{2

ˇ

ˇ

ˇ

ˇ

ˇ

?
np1´ tqγ`1

˜

Zγ
rnts,n ´ 1

γ
´
p1´ tq´γ ´ 1

γ

¸

´Bnptq

ˇ

ˇ

ˇ

ˇ

ˇ

is stochastically bounded. Setting t “ 1´ ks{n and rearranging yields in particular that

sup
k´1ďsď1

kε

ˇ

ˇ

ˇ

ˇ

ˇ

sγ`1{2`ε
?
k

˜

p k
n
Zn´tksu,nq

γ ´ 1

γ
´
s´γ ´ 1

γ

¸

´

c

n

k
sε´1{2Bnp1´ ks{nq

ˇ

ˇ

ˇ

ˇ

ˇ

is stochastically bounded. Since kε Ñ 8, it follows that

sup
k´1ďsď1

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

?
k

˜

p k
n
Zn´tksu,nq

γ ´ 1

γ
´
s´γ ´ 1

γ

¸

´

c

n

k
s´γ´1Bnp1´ ks{nq

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q.

Set now Bnptq “ Bnp1´ tq, which makes Bn a sequence of Brownian bridges as well, and let

W n be any sequence of Brownian motions such that

Bnptq “ W nptq ´ tW np1q

(for instance, W nptq “ Bnptq ` tVn, where for each n, Vn is a standard Gaussian random

variable independent of the process Bn). Note that the sequence W n is constructed indepen-

dently of k. We have

c

n

k
s´γ´1Bnp1´ ks{nq “

c

n

k
s´γ´1W npks{nq ´

c

n

k
s´γ´1 ˆ

ks

n
W np1q

and clearly

sup
k´1ďsď1

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

c

n

k
s´γ´1 ˆ

ks

n
W np1q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

c

k

n
W np1q

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP

˜

c

k

n

¸

“ oPp1q.

It follows that

sup
k´1ďsď1

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

?
k

˜

p k
n
Zn´tksu,nq

γ ´ 1

γ
´
s´γ ´ 1

γ

¸

´ s´γ´1
a

n{kW npks{nq

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q.

A choice of Wn giving Equation (E.43) is therefore Wnpsq “ W
pkq
n psq “

a

n{kW npks{nq, as

claimed in the statement of the result.
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The fourth lemma is a preliminary consistency result for intermediate sample expectiles,

under a weaker moment condition than that of Theorem 1.

Lemma 4. Let k “ kpnq Ñ 8 be a positive sequence such that k{nÑ 0. Suppose further that

the distribution of Y is heavy-tailed with tail index γ P p0, 1{2q, and assume that E|Y´|2 ă 8.

Then
rξ1´k{n
ξ1´k{n

P
ÝÑ 1 as nÑ 8.

Proof of Lemma 4. The idea of the proof follows closely that of Theorem 2 in Daouia et

al. (2018), which was an asymptotic normality result formulated using the parametrisation

τn “ 1´ k{n, where τn Ñ 1 is such that np1´ τnq Ñ 8. To make it easier for the reader to

relate the present proof with the one of Daouia et al. (2018), we adopt this parametrisation

here. We shall therefore show that rξτn{ξτn
P
ÝÑ 1, and we will actually prove the stronger

statement

vn

˜

rξτn
ξτn

´ 1

¸

P
ÝÑ 0 provided vn Ñ 8 and vn “ o

´

a

np1´ τnq
¯

.

Note that

vn

˜

rξτn
ξτn

´ 1

¸

“ arg min
uPR

ψnpuq (E.44)

with ψnpuq :“
v2n

np1´ τnq

n
ÿ

i“1

1

2ξ2τn

„

ητn

ˆ

Yi ´ ξτn ´
uξτn
vn

˙

´ ητnpYi ´ ξτnq



.

Denoting the derivative of y ÞÑ ητ pyq{2 by ϕτ pyq :“ |τ ´ 1tyď0u|y, it is straightforward to get

(e.g. using Lemma 2 in Daouia et al., 2018):

ψnpuq “ ´uT1,n ` T2,npuq (E.45)

with T1,n :“
vn

np1´ τnq

n
ÿ

i“1

1

ξτn
ϕτnpYi ´ ξτnq “:

n
ÿ

i“1

Sn,i

and T2,npuq :“ ´
v2n

np1´ τnqξ2τn

n
ÿ

i“1

ż uξτn{vn

0

pϕτnpYi ´ ξτn ´ tq ´ ϕτnpYi ´ ξτnqqdt.

The random variables Sn,i are independent, identically distributed, and centred since

ξτn “ arg min
uPR

EpητnpYi ´ uq ´ ητnpYiqq ñ EpϕτnpYi ´ ξτnqq “ 0,

by differentiating under the expectation sign. Now note that

Ep|ϕτ pY ´ ξτ q|2q “ O
`

ξ2τ p1´ τq
˘

as τ Ò 1,
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by Lemma 4 in Daouia et al. (2018). Therefore

VarpT1,nq “ O

ˆ

v2n
np1´ τnq

˙

Ñ 0.

Because EpT1,nq “ 0, Chebyshev’s inequality then yields

T1,n
P
ÝÑ 0. (E.46)

Now

T2,npuq “ T3,npuq ´
v2n

p1´ τnqξ2τn

ż uξτn{vn

0

rEpϕτnpY ´ ξτn ´ tqq ´ EpϕτnpY ´ ξτnqqsdt. (E.47)

Note that the integral on the right-hand side of (E.47) is indeed well-defined because of

Fubini’s theorem and the fact that Y has a finite absolute first moment. The random term

T3,npuq, meanwhile, is a sum of independent, identically distributed and centred random

variables, which we shall examine after having controlled this nonrandom integral. Note

then that, by Lemma 3 in Daouia et al. (2018),

EpϕτnpY ´ ξτn ´ tqq ´ EpϕτnpY ´ ξτnqq

“ p1´ 2τnqEppY ´ ξτn ´ tqp1tYďξτn`tu ´ 1tYďξτnuqq ´ tEp|τn ´ 1tYďξτnu|q. (E.48)

Clearly

Ep|τn ´ 1tYďξτnu|q “ τnF pξτnq ` p1´ τnqF pξτnq.

It therefore follows from (E.4) that

Ep|τn ´ 1tYďξτnu|q “ γ´1p1´ τnqp1` op1qq (E.49)

as nÑ 8. Let further ψptq :“ EppY ´ tq1tYątuq and observe that

EppY ´ ξτn ´ tqp1tYďξτn`tu ´ 1tYďξτnuqq “ EppY ´ ξτn ´ tqp1tYąξτnu ´ 1tYąξτn`tuqq

“ ψpξτnq ´ ψpξτn ` tq ´ tF pξτnq.

Integrating by parts entails

ψpξτnq ´ ψpξτn ` tq “

ż ξτn`t

ξτn

F pxqdx “ ξτnF pξτnq

ż 1`t{ξτn

1

F pξτnvq

F pξτnq
dv

from which we deduce that

EppY ´ ξτn ´ tqp1tYďξτn`tu ´ 1tYďξτnuqq “ F pξτnq

˜

ξτn

ż 1`t{ξτn

1

F pξτnvq

F pξτnq
dv ´ t

¸

.
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We now control the term between brackets as follows: let Inpuq “ p0, |u|ξτn{vnq, note that

t{ξτn Ñ 0 uniformly in t such that |t| P Inpuq, and therefore

sup
|t|PInpuq

ˇ

ˇ

ˇ

ˇ

ˇ

ξτn
t

ż 1`t{ξτn

1

F pξτnvq

F pξτnq
dv ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
|t|PInpuq

ξτn
|t|

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1`t{ξτn

1

„

F pξτnvq

F pξτnq
´ v´1{γ



dv

ˇ

ˇ

ˇ

ˇ

ˇ

` sup
|t|PInpuq

ξτn
|t|

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1`t{ξτn

1

`

v´1{γ ´ 1
˘

dv

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0

by the uniform convergence theorem for regularly varying functions (see Theorem 1.5.2 in

Bingham et al., 1987, p.22) and the convergence vn Ñ 8. Consequently, by (E.4):

EppY ´ ξτn ´ tqp1tYďξτn`tu ´ 1tYďξτnuqq “ tp1´ τnqrnptq (E.50)

with rnptq Ñ 0 uniformly in t such that |t| P Inpuq. Combine (E.47), (E.48), (E.49) and

(E.50) to get

T2,npuq “
u2

2γ
p1` op1qq ` T3,npuq, (E.51)

with T3,npuq :“ ´
v2n

np1´ τnqξ2τn

n
ÿ

i“1

ż uξτn{vn

0

rSn,ipξτn ` tq ´ Sn,ipξτnqsdt

where the Sn,ipvq :“ ϕτnpYi´ vq´EpϕτnpYi´ vqq are independent copies of Snpvq :“ ϕτnpY ´

vq ´ EpϕτnpY ´ vqq. Thus

VarpT3,npuqq “
v4n

np1´ τnq2ξ4τn
Var

˜

ż uξτn{vn

0

rSnpξτn ` tq ´ Snpξτnqsdt

¸

.

We now notice that for any v, Snpvq is centred and thus

VarpT3,npuqq“
v4n

np1´ τnq2ξ4τn

ż

r0, uξτn{vns
2

EprSnpξτn ` sq ´ SnpξτnqsrSnpξτn ` tq ´ Snpξτnqsqds dt

(here the Fubini theorem was used to switch integrals and expectation, based on the fact

that Y has a finite variance). By the Cauchy-Schwarz inequality,

VarpT3,npuqq ď
v4n

np1´ τnq2ξ4τn

˜

ż uξτn{vn

0

a

Ep|Snpξτn ` tq ´ Snpξτnq|2q dt

¸2

. (E.52)

Applying Lemma 3 in Daouia et al. (2018), we get for any t

|Snpξτn ` tq ´ Snpξτnq| ď 2|t|r1´ τn ` 1tYąξτn`minpt,0qu ` F pξτn `minpt, 0qqs.
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Using the inequality |a` b` c|2 ď 3pa2 ` b2 ` c2q yields

Ep|Snpξτn`tq´Snpξτnq|2q ď 12t2rp1´τnq
2
`F pξτn`minpt, 0qqp1`F pξτn`minpt, 0qqqs. (E.53)

The regular variation property of F and the convergence np1´ τnq Ñ 8 entail:

sup
|s|PInpuq

|F pξτn`sq´F pξτnq| “ F pξτnq sup
|s|PInpuq

ˇ

ˇ

ˇ

ˇ

F pξτn ` sq

F pξτnq
´ 1

ˇ

ˇ

ˇ

ˇ

“ opF pξτnqq “ op1´τnq (E.54)

in view of (E.4). Finally, using (E.4) once again and combining (E.52), (E.53) and (E.54)

yields

VarpT3,npuqq “ O

¨

˝

v4n
np1´ τnqξ4τn

ˇ

ˇ

ˇ

ˇ

ˇ

ż uξτn{vn

0

|t| dt

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚“ O

ˆ

1

np1´ τnq

˙

Ñ 0

as n Ñ 8. Whence the convergence T3,npuq
P
ÝÑ 0; combining (E.45), (E.46) and (E.51)

entails

@u P R, ψnpuq
P
ÝÑ

u2

2γ
as nÑ 8.

We conclude by noting that pψnq is a random sequence of continuous convex functions and

its pointwise limit defines a nonrandom continuous convex function of u which has a unique

minimum at u‹ “ 0. Applying Theorem 5 in Knight (1999) completes the proof.

The fifth lemma is the key to the computation of the various terms appearing in the implicit

relationship linking the tail expectile process to the tail parameters.

Lemma 5. Suppose that E|Y´| ă 8. Assume further that condition C2pγ, ρ, Aq holds for

some 0 ă γ ă 1{2. Let k “ kpnq Ñ 8 be such that k{n Ñ 0 and
?
kApn{kq “ Op1q. Then

we have, for any δ ą 0 sufficiently small:

sup
k´1`δďsď1

sγ

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
q1´k{n

´ pγ´1 ´ 1q´γs´γ

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0.

Proof of Lemma 5. All the oP and OP terms in the present proof should be understood

as uniform in s P rk´1`δ, 1s; moreover, we work throughout this proof with the version of

the tail expectile process induced by the version of the empirical process pFn leading to (E.6).

Recall that any Brownian motion W satisfies, for any η ą 0:

@c ą 0, sup
0ătďc

t´1{2`η|W ptq| ă 8 almost surely.

It then comes as a consequence of (E.5) that

ż 8

rξ1´ks{n{q1´k{n

Wnpx
´1{γ

q dx “ OP

˜

ż 8

rξ1´ks{n{q1´k{n

xpη´1{2q{γ dx

¸

.
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Moreover, since
?
kApn{kq remains bounded:

Apn{kq

ż 8

rξ1´ks{n{q1´k{n

x´1{γ
xρ{γ ´ 1

γρ
dx “ OP

˜

1
?
k

ż 8

rξ1´ks{n{q1´k{n

xpη´1{2q{γ dx

¸

.

All in all, combining these two bounds with (E.6) gives:

ż 8

rξ1´ks{n

pF npuqdu

“
k

n
q1´k{n

˜

ż 8

rξ1´ks{n{q1´k{n

x´1{γ dx`OP

˜

1
?
k

ż 8

rξ1´ks{n{q1´k{n

xpη´1{2q{γ dx

¸¸

or equivalently

ż 8

rξ1´ks{n

pF npuqdu “
k

n
q1´k{n ˆ

γ

1´ γ

¨

˝

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`OP

¨

˝

1
?
k

«

rξ1´ks{n
q1´k{n

ff1´p1{2´ηq{γ
˛

‚

˛

‚.

Plugging this back into (E.3) entails

s

1´ 2ks{n

˜

rξ1´ks{n
q1´k{n

´
Y n

q1´k{n

¸

“
γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff1´1{γ

`OP

¨

˝

1
?
k

«

rξ1´ks{n
q1´k{n

ff1´p1{2´ηq{γ
˛

‚.

Note that Y n
P
ÝÑ EpY q ă 8 by the law of large numbers, and rξ1´ks{n ě rξ1´k{n

P
ÝÑ `8 by

Lemma 4. Therefore

s p1` oPp1qq “
γ

1´ γ

«

rξ1´ks{n
q1´k{n

ff´1{γ

`OP

¨

˝

1
?
k

«

rξ1´ks{n
q1´k{n

ff´p1{2´ηq{γ
˛

‚.

Define now a random process s ÞÑ Rnpsq by the equality

rξ1´ks{n
q1´k{n

“ pγ´1 ´ 1q´γs´γp1`Rnpsqq.

In particular, 1`Rnpsq ą 0 for any s P p0, 1s, and

1` oPp1q “ p1`Rnpsqq
´1{γ

`OP

ˆ

1
?
k
s´1{2´ηp1`Rnpsqq

´p1{2´ηq{γ

˙

.

We infer from this equality that, uniformly in s P rk´1`δ, 1s for δ “ δpηq “ 4η{p4η ` 1q ą 0,

1` oPp1q “ p1`Rnpsqq
´1{γ

` oP
`

p1`Rnpsqq
´p1{2´ηq{γ

˘

.

It directly follows from this last identity, whose left-hand side should remain bounded uni-

formly in s, that 1 ` Rnpsq must remain bounded away from 0, uniformly in s P rk´1`δ, 1s
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with arbitrarily large probability as n Ñ 8. The fact that the left-hand side converges in

probability to 1 uniformly in s now entails that 1`Rnpsq should do so as well, which yields

sup
k´1`δďsď1

|Rnpsq|
P
ÝÑ 0 as nÑ 8.

Equivalently

sup
k´1`δďsď1

sγ

ˇ

ˇ

ˇ

ˇ

ˇ

rξ1´ks{n
q1´k{n

´ pγ´1 ´ 1q´γs´γ

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0. (E.55)

And since η was arbitrarily small, δ “ 4η{p4η ` 1q was arbitrarily small as well, concluding

the proof.

The final lemma is a technical result on second-order regular variation which will be used

several times in the proofs of Theorems 2 and 3.

Lemma 6. Assume that condition C2pγ, ρ, Aq holds with γ ą 0. Then one can find a function

B, asymptotically equivalent to t ÞÑ Ap1{F ptqq in a neighbourhood of infinity, satisfying the

following: for any ε, δ ą 0 there exists t0 “ t0pε, δq ą 0 such that for t, tx ě t0,
ˇ

ˇ

ˇ

ˇ

1

Bptq

ˆ

F ptxq

F ptq
´ x´1{γ

˙

´ x´1{γ
xρ{γ ´ 1

γρ

ˇ

ˇ

ˇ

ˇ

ď εx´p1´ρq{γ max
`

x´δ, xδ
˘

.

Proof of Lemma 6. Note that, according to Theorem 2.3.9 in de Haan and Ferreira (2006),

condition C2pγ, ρ, Aq is equivalent to

@x ą 0, lim
tÑ8

1

Ap1{F ptqq

ˆ

F ptxq

F ptq
´ x´1{γ

˙

“ x´1{γ
xρ{γ ´ 1

γρ
.

Define fpxq “ x1{γF pxq; it is straightforward to show that this condition entails

@x ą 0, lim
tÑ8

fptxq ´ fptq

γ´2fptqAp1{F ptqq
“
xρ{γ ´ 1

ρ{γ
.

Then, by Theorem B.2.18 in de Haan and Ferreira (2006), one can find a function t ÞÑ a0ptq,

equivalent to t ÞÑ γ´2fptqAp1{F ptqq in a neighbourhood of infinity, such that for any ε, δ ą 0

there exists t0 “ t0pε, δq ą 0 with

t, tx ě t0 ñ

ˇ

ˇ

ˇ

ˇ

fptxq ´ fptq

a0ptq
´
xρ{γ ´ 1

ρ{γ

ˇ

ˇ

ˇ

ˇ

ď γ2εxρ{γ max
`

x´δ, xδ
˘

.

Multiplying through by γ´2x´1{γ and recalling that fpxq “ x1{γF pxq, we get

t, tx ě t0 ñ

ˇ

ˇ

ˇ

ˇ

1

γ2a0ptq{fptq

ˆ

F ptxq

F ptq
´ x´1{γ

˙

´ x´1{γ
xρ{γ ´ 1

γρ

ˇ

ˇ

ˇ

ˇ

ď εx´p1´ρq{γ max
`

x´δ, xδ
˘

.

Setting Bptq “ γ2a0ptq{fptq gives precisely the desired inequality.
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