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Section A illustrates the behavior of the expectHill estimator of the tail index with data
examples. Section B plots and comments on the asymptotic variance of the expectHill esti-
mator. Simulation results are discussed in Section C. Section D applies our expectile-based
method to estimate the expected shortfall of three large US investment banks. The proofs
of all theoretical results in the main paper and additional technical results are provided in
Section E.

A Examples of tail index estimation

The aim of this section is to illustrate the behavior of the expectHill estimator with data
examples and to highlight some of the theoretical findings in Section 3 of the main article.

First, the purely expectile-based estimator
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of the tail index v has exactly the same form as the quantile-based Hill estimator
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with the tail empirical quantile process ¢ replaced by its least squares analogue E Theorem 4
gives its asymptotic normality. As pointed out in Remark 1, the conditions involving the
auxiliary function A in Theorem 4 are also required to derive the asymptotic normality of
Hill’s estimator 4,, . These conditions are, however, difficult to check in practice, which makes

the choice of the intermediate sequence 7, a hard problem. A usual practice for selecting a



reasonable estimate 7, is to set 7,, = 1 — k/n for a sequence of integers k, then to plot the
graph of k — %1_j/,, and finally to pick out a value of k corresponding to the first stable
part of the plot (see Remark 2). Yet, the Hill plot may be so unstable that reasonable values
of k (which would correspond to the true value of ) may be hidden in the graph. The
least squares analogue 7,_/, affords a smoother and more stable plot which counteracts the

volatility defect of the Hill plot. This is illustrated in the following two examples.

Example 1. Figure 1(a)-(c) shows the paths k — %;_j/, in red and k — F;_z, in blue,
for three large US financial institutions. We consider the same investment banks as in the
study of Cai et al. (2015), namely Goldman Sachs, Morgan Stanley and T. Rowe Price. The
dataset consists of the loss returns (i.e. minus log-returns) on their equity prices at a daily
frequency from July 3rd, 2000, to June 30th, 2010. The chosen stable regime in Cai et al.
(2015) is k € [70,100] for the three Hill plots. To gain stability in the estimates, they took
the average of the estimates 7;_j/, over this region. The results are reported in the second
column of Table 1. As regards the asymmetric least squares estimator 7,_j/,, we applied
a very simple technique which consists in computing its standard deviations over a moving
window of 30 successive values of k [same length as the chosen interval in Cai et al. (2015)];
this corresponds to a window large enough to cover around 20% of the possible values of k
in the selected range 1 < k < 150. The value of k& where the standard deviation (and hence
the variation) of the estimates is minimal defines the desired sample fraction k. We found
k = 72 in the window [54,84] for Goldman Sachs, k = 80 € [62,92] for Morgan Stanley, and
k=288¢ [68,98] for T. Rowe Price. The final estimates ¥, j /n are reported in the third
column of Table 1. The messages yielded by the two methods are broadly similar, indicating
particularly that Morgan Stanley displays a greater variability in loss returns and a much

heavier tail of their distribution than do Goldman Sachs and T. Rowe Price.

Bank ;)\/l—k/n %—k/n
Goldman Sachs | 0.3877 | 0.3720
Morgan Stanley | 0.4645 | 0.4221
T. Rowe Price 0.3781 | 0.3653

Table 1: Tail index estimates based on daily loss returns (n = 2513).

Example 2. Figure 1(d) shows the paths k — 7i_j;, and k — 5;_y), for the Society of
Actuaries (SOA) group medical insurance large claims. We consider the same database as in
Beirlant et al. (2004) that contains 75,789 claim amounts exceeding 25,000 USD, collected
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Figure 1: Plots of J1_gn in red, Y1_m in blue, and 7,_y,(1/2) in green, for the three banks

in (a)-(c) and for the SOA group medical insurance large claims in (d).



over the year 1991 from 26 insurers. The minimal standard deviation of the estimates indi-
cates a pointwise estimate J;_/, around 0.36 achieved over the window [119,259], and an
estimate ¥;_y/, around 0.35 attained over [331,471]. Here also the standard deviations were
computed over a moving window large enough to cover 20% of the possible values of k in the

selected range 1 < k < 700.

In these examples, the purely least asymmetrically weighted squares estimator ¥,_z/,
seems to be beneficial in producing smoother and more pleasing plots, but these plots may
not be more revealing than Hill plots. Already in Figure 1(a)-(c), it may be seen that the
smooth paths of ¥,_z/, can exhibit a sample-wise monotonic evolution with k. This may
result in estimates with higher bias than the Hill estimates. One way to reduce this potential
defect is by using a linear combination of 7 and 4 for estimating . For a € R we have then

defined the more general expectHill estimator

For example, as visualized in Figure 1, the simple mean 7, (1/2) in green line would represent
a reasonable compromise between the use of large asymmetric least squares in 7, and top

order statistics in 7, .

B Asymptotic variance of the expectHill estimator

The optimal value of the weighting coefficient « in (A.1), which minimizes the asymptotic

variance v, of 7, («a), only depends on the tail index v and has the explicit expression
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Its plot against v € (0, 1/2) is given in Figure 2(a). Interestingly, the optimal « is negative for

a(y) = (

small values of v, say 7 < 0.2. By contrast, for large values of v (close to 1/2), the optimal
« tends to one, favoring thus the robustness of order statistics over the tail sensitivity of
asymmetric least squares. It can also be seen that the simple mean 7, (1/2) of 7;, and 7,,,
with o = 1/2, is optimal for v = 1/4. This is unsurprising since both 7, and 7, have
the same asymptotic variance in this case, as illustrated in Figure 2(b). This figure also
shows that the mean 7_ (1/2) of 4., and 7,, affords a middle course between 7., =7, (1)
and 7., =7, (0) in terms of asymptotic variance. In terms of smoothness, 7, (1/2) offers a
middle course as well, as shown above in Figure 1, where the plot of 7, (1/2) is superimposed

in green line with the plots of 7, and 7, .
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Figure 2: (a) — Evolution of the optimal value a(7y) against v € (0,1/2). The dotted lines
represent the values o = 0 and o = 1. (b) — Asymptotic variance v, of 4y, in red (a0 = 1),
Yr, i blue (o = 0), and 7. (1/2) in green (o = 0.5), as function of v € (0,1/2).

C Some simulation evidence

The aim of this section is to explore some features that were mentioned in Section 6 of the

main article. We will illustrate the following points:
(C.1) Estimates of .

(C.2) Estimates of XES,, .

(C.3) Estimates of QES, .

(C.4) Confidence intervals for QES,, .

In order to illustrate the behavior of the presented estimation procedures, we use the same



considerations as in Section 6 of the main paper. Namely, we consider the Student t¢-
distribution with degree of freedom 1/, the Fréchet distribution F(z) = e x>0,
and the Pareto distribution F(z) = 1 —2~%/7, x > 1. The finite-sample performance of the
different estimators is evaluated through their relative Mean-Squared Error (MSE) and bias,
computed over 200 replications. All the experiments have sample size n = 500 and true tail
index v € {0.35,0.45}. In our simulations we used the extreme levels 7/, = p, = 1 — 1 and
the intermediate level 7,, = 1 — %, where the integer k can be viewed as the effective sample

size for tail extrapolation.

C.1 Estimation of the tail index

This section provides Monte-Carlo evidence that the expectHill estimator 7,_; (), intro-
duced in (A.1) with the weight a = 1/2, is more efficient relative to the standard Hill
estimator 41_p/,, for both Student and Fréchet distributions. In the case of the real-valued
Student distribution, Figure 3(a) gives the evolution of the MSE (in top panels) and the bias
(in bottom panels) of 7, 4 ,(5)/7 and F1_g/m /7, as functions of the effective sample fraction .
It may be seen that 7, ;,(5) performs better than 31y, in terms of MSE, for all values of
k, without sacrificing too much quality in terms of bias, especially for the larger value of ~.
We arrive at the same tentative conclusion in the case of the Fréchet distribution as may be
seen from Figure 3(b). By contrast, in the special case of the Pareto distribution, the Hill
estimator J;_/, is exactly the maximum likelihood estimator of v and is unbiased, whereas
the expectHill estimator 71—k/n(%) = %(%_k/n + Y1—k/n) is biased in this case. Unsurprisingly,
the Monte Carlo results obtained in Figure 4 indicate that 7;_z, is as expected the winner

in this case.

C.2 Estimates of XES,

Before comparing the performance of X—ES;,I(oz, B), )fE\S;,l(a, B) and S(Eg;l(a) as estimators
of XES,,, we first investigated the accuracy of each estimator in terms of the associated
weights a and /.

Figures 5 and 6 give the evolution of the MSE (in log scale) and bias estimates of
}/@é;(a)/XEST;L, as functions of the sample fraction k, for a € {0,0.25,0.5,0.75,1}. In
the case of Student distribution, it may be seen that the red curve (o = 1) gives the best
estimates in terms of both MSE and Bias. In the case of Fréchet distribution, it may be
seen that the purple curve (o = 0.5) performs quite well in terms of MSE for both values
of 7, but the blue curve (o = 0) performs clearly better in terms of Bias. In the case of

Pareto distribution, it may be seen that the purple (o = 0.5) and red (o = 1) curves have,
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Figure 3: MSE estimates in log scale (top panels) and Bias estimates (bottom panels) of
Y1—k/m() /vy (solid red line) and 41 _j/n/v (dashed blue line), as functions of &, for v = 0.35
(left) and v = 0.45 (right).
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Figure 4: MSE estimates (top panels) and Bias estimates (bottom panels) of 7, (a)/y (solid
red line) and A/y (dashed blue line), as functions of k, for v = 0.35 (left) and v = 0.45
(right), in the case of a Pareto distribution.

respectively, a quite respectable accuracy in terms of MSE for v = 0.35 and v = 0.45, while
the purple curve (a = 0.5) behaves clearly better in terms of Bias for both values of ~.

For («, 8) € {(0,0),(0,0.5),(0,1),(0.5,0), (0.5,0.5),(0.5,1),(1,0),(1,0.5), (1,1)}, Figures
7 and 8 give, respectively, the MSE (in log scale) and Bias estimates of X—ES;,L(oz, B)/XES,,
against k. It may be seen that the winner is the red curve (o = 0.5, = 0) in the case of
Student distribution, the blue curve (o = 0.5, 8 = 1) in the case of Fréchet distribution, and
the black curve (a« = § = 1) in the case of Pareto distribution.

The Monte Carlo estimates for )TE\S;I(OQ B)/XES,, are displayed in Figures 9 and 10.
It may be seen that the winner is the orange curve (o = 1,8 = 0) in the case of Student
distribution, the blue curve (o = 0.5, 8 = 1) in the case of Fréchet distribution, and the black
curve (¢ = = 1) in the case of Pareto distribution.

Finally, when comparing the three estimators )f(Eg;,L (), X—ES;,L(a, f) and )@;(a, B)

with each other, we arrive at the following tentative conclusions:

e In the case of Student distribution, the best )/iig;,l(a), achieved at o = 1, is superior
to the best )TE\S;L(Q, B), achieved at & = 1 and § = 0, which in turn is superior to the
best XES;,L(a,B), achieved at & = 0.5 and 3 = 0.

e In the case of Fréchet distribution, the best )TE\S;L(Q, B), achieved at o = 0.5 and
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Figure 5: MSE estimates (in log scale) of m;(a)/XES%, against k, for Student (top),
Fréchet (middle) and Pareto (bottom) distributions, with v = 0.35 (left) and v = 0.45 (right).
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Figure 6: Bias estimates of m;% (a)/XES;, .
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£ = 1, is superior but not by much to the best XES;,L(a, B), achieved at o = 0.5 and
B = 1, which in turn is superior to the best )/(Eg;l(a) achieved at, say, a € {0,0.5}.

e In the case of Pareto distribution, the best )TE\S;L(a,B), achieved at « = 3 = 1, is
superior but not by much to the best XES:;I(Ot, B), achieved at a« = 8 = 1, which in
turn is superior to the best }r(Eé;l(a) achieved at, say, a € {0.5, 1}.

In particular, it seems that ﬁg;(a) is the winner in the case of the real-valued profit-
loss Student distribution for @ = 1, while )@\S;(a, B) is most efficient in the case of the

non-negative Fréchet and Pareto loss distributions, for « € {0.5,1} and 5 = 1.

C.3 Estimates of QES,

We have also undertaken simulation experiments to evaluate finite-sample performance of the
composite versions X—ES%,L o (@, B), }fE\S;T,L (o (@, B) and )@g;;z(pn)(a) studied in Theorem 11.
These composite expectile-based estimators estimate the same conventional expected shortfall
QES,, as the direct quantile-based estimator CTE\S;" (o) = )TE\S;;L (o (@, 1). We first examined
the accuracy of each estimator for various values of o and f.

Figures 11 and 12 give the MSE (in log scale) and Bias estimates of QE\S:% ()/QES,, .
The results suggest the choice of @ = 1 (red curve) for Student and Pareto distributions, and
a = 0.5 (purple curve) for Fréchet distribution.

Figures 13 and 14 give the Monte Carlo estimates of ﬁé;ﬂpn)(a)/QESpn. It may be seen
that the choice of & = 0 (blue curve) globally provides quite respectable behavior for the
three distributions.

The Monte Carlo estimates of X—ES%L(pn)(oz, B)/QES, are displayed in Figures 15 and
16. It may be seen that the appropriate choice of (o, 3) is, respectively, (1,0) for Student
distribution (orange curve), (0.5, 1) for Fréchet distribution (blue curve), and (1, 1) for Pareto
distribution (black curve).

The results for @;ﬂpn)(a,ﬂ)/QESpn are graphed in Figures 17 and 18. Here, it may
be seen that the appropriate choice of («, ) is, respectively, (0,0) for Student distribution
(light blue), (0.5,1) for Fréchet distribution (heavy blue), and (1,1) for Pareto distribution
(black curve).

Finally, when comparing the four estimators @;n (a), )?E?;;,l (o) (@), X—ES;;L (o (@, B) and

fE\S;,I (pw (@, B) with each other, we arrive at the following tentative conclusions:

e In the case of the real-valued profit-loss Student distribution, the best estimate seems
to be )/(T*]_g%l(pn)(a =0);

12
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Fréchet (middle) and Pareto (bottom) distributions, with v = 0.35 (left) and v = 0.45 (right).

Bias

student : y = 0.35

-2.5-
. . .
25 50 75
frechet : y = 0.35
2.5~
0.0 -
-2.5-
. . . . . .
o 100 200 300 400 500
pareto : y = 0.35
2.5-
0.0 -
. . . . . .
o 100 200 300 400 500

student : y = 0.35

~0.5-

25 50 75
frechet : y = 0.35

0.5~

0.0 -

_0.5-
' ' ' ' ' '
o 100 200 300 400 500

pareto : y = 0.35
2.0-

1.5-
1.0-
0.5-

0.0 -

~0.5-
'

o 100 200 300 400 500

Kk

k

0

0

0

0

student : y = 0.45

400

25 50
frechet : y = 0.45
. . .
100 200 300
pareto : y = 0.45
. . .
100 200 300

25

100

student : y = 0.45

50
frechet : y = 0.45

200 300

pareto : y = 0.45

200 300

400

75

400

400

Figure 12: Bias estimates of @;n ()/QES, .

13

500

|

-

500

500

=

500

variable
— a=0
a=.25
—a=.5
e a=.75

— g =1

variable
— a=0
a=.25
—a=.5
e a=.75

— g =1



student : y = 0.35 student : y = 0.45

25 50 75 25 50 75
frechet : y = 0.35 frechet : y = 0.45

variable
— =0
a=.25

0.0 -
— =5

log(MSE)

=75
2.5-
e =1

o) 100 200 300 400 500 O 100 200 300 400 500
pareto : y = 0.35 pareto : y = 0.45

—
0.0- $ =

-2.5- —

o) 100 200 300 400 500 O 100 200 300 400 500
k

Figure 13: MSE estimates (in log scale) of ﬁ;g(pn)(a)/QESpn-
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Figure 15: MSE estimates (in log scale) of XES%’L(pn)(O" 8)/QES,, .
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Figure 17: MSE estimates (in log scale) of )/(Eg;é(pn)(a, 8)/QES,, .
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e In the case of the non-negative Fréchet and Pareto loss distributions, the best estimates
seem to be XES;{I(pn)(Oé =0.5,6=1) and (SE\S;L(OJ =1) = )fE\S;/I(pn)(a =1,5=1),

respectively.

C.4 Confidence intervals for QES,

We also investigated the performance of the three asymptotic confidence intervals described
in Section 6.2.3, namely Cljg5(k), 6\10,95(/@ and @\10,95(/@. For the classical 95% confidence
level, we take the value 2975 ~ 1.960.

Figures 19 and 20 provide the average lengths and the achieved coverages of Clygs(k)
against k. In the case of Student distribution, the orange plots (o = 1,8 = 0) seem to
provide better confidence intervals in terms of both average lengths and achieved coverages.
In the case of Fréchet distribution, it may be seen that the black plots (a = 1,8 = 1) give
a quite good global impression, though they are not clearly the winners in each scenario. In
the case of Pareto distribution, it may be seen that the pink plots (o = 1,8 = 0.5) give a
quite good global impression.

Figures 21 and 22 display the results for the asymptotic confidence intervals (/3\10,95(/6)
against k. Our tentative conclusions are very similar to those obtained above for ﬁo‘%(k).

The results for the asymptotic confidence intervals CNIO_%(k:) are graphed in Figures 23
and 24 against k. Here, the red plots (a = 1) seem to provide a reasonable global compromise
between average lengths and achieved coverages.

Finally, when comparing the three 95% asymptotic confidence intervals Cly g5(k), 6\10,95(/’{:)
and CNIO_95(I<:) with each other, it seems that

° C~10.95(/{3> performs better in the case of Student distribution, for the selected weight

a=1;

° (/3\10,95(16) performs quite well in the case of Fréchet distribution, for the selected weights
a=1and g =1,

o Clgg5(k) performs quite well in the case of Pareto distribution, for the selected weights
a=1and g =0.5.
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Figure 19: Average lengths of Clygs(k) against k.
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Figure 20: Achieved coverages of Clygs(k) against k.
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Figure 21: Average lengths of Clyos(k) against k.
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Figure 22: Achieved coverages of /6’\1'0,95(k) against k.
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Figure 23: Average lengths of 6’?095(16) against k.
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D ES for financial institutions

In this section, we apply our method to estimate the ES for three large US financial insti-
tutions. We consider the same investment banks as in Example 1, namely Goldman Sachs,
Morgan Stanley and T. Rowe Price. All of these banks had a market capitalization greater
than US $5 billion at the end of June 2007. The dataset consists of the negative log-returns
(Y;) on their equity prices at a daily frequency during 10 years from July 3rd, 2000, to June
30th, 2010. The choice of the frequency of data and time horizon follows the same set-up as
in Cai et al. (2015) and Daouia et al. (2018). This results in the sample size n = 2513. We
use our composite expectile-based method to estimate the standard quantile-based expected
shortfall QES, ,

extreme relative frequency p, =1 — % that corresponds to a once-per-decade rare event.

or equivalently the expectile-based expected shortfall XES;/(, ), with an

In this situation of real-valued profit-loss distributions, our experience with simulated
data indicates that the composite estimator )?Eé;/l (pn)(a) provides the best QES,,  estimates
in terms of MSE and bias for the special weight v = 0, while it provides reasonably good
asymptotic 95% confidence intervals CNIO_%(IC) for the different weight o = 1. In the estima-
tion, we employ the intermediate sequence 7,, = 1 — k/n as before, for the selected range
of values k = 1,...,150. For our comparison purposes, we use as a benchmark the direct
quantile-based estimator Q\ES;n(a =1)= }@\S;;L(pn)(a = 1,5 = 1) of El Methni et al. (2014),
as well as the corresponding asymptotic 95% confidence interval Clgg5(k). We will denote in
the sequel the rival estimates ﬁé;é(pn)(a = 0) and C/QE\S;n(a = 1) simply as }/@g;;l(pn) and
QES, .

For each bank, we superimpose in Figure 25 the plots of the two estimates XNE)S;'L(pn) and
QES,, against k, as rainbow and dashed black curves respectively, along with the competing
confidence intervals CKJVIO.%(k) in dotted blue lines and (/]\10.95(11‘) in solid grey lines. The
effect of the expectHill estimate 7;_y (o = 0) = 1 _j/n on the efficient estimate iﬁg%@(pn)
is highlighted by a colour-scheme, ranging from dark red (low 1_x/,) to dark violet (high
Vi—k/n)-

We have already provided some Monte Carlo evidence that the composite expectile-based
estimates )/(Tigzé(pn) and confidence intervals CNIo_gg,(kf) are efficient and accurate relative to
the pure quantile-based estimates QES, and confidence intervals Clgs(k), respectively.
Their superiority in terms of plots’ stability and confidence intervals’ length can clearly be
visualized in Figure 25 for the three banks. The final ES levels based on minimizing the
standard deviations of the estimates, computed over a moving window covering 20% of the
possible values of k, are reported in Table 2, along with the asymptotic 95% confidence

intervals of the ES. Based on the reliable DF(EE;,L (o) €stimates (in the second column), the ES
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levels for Goldman Sachs and T. Rowe Price seem to be very close (around —30% to —34%),
whereas the ES level for Morgan Stanley is almost twice higher (around —60%). The C/QE\S;H
estimates (in the fourth column) point also towards similar pessimistic results. The lower
confidence bands (in third and fifth columns) are themselves quite conservative since they
are almost equal to the maximum losses (in the last column) for the three banks.

The theory for our ES estimator m;,g(pn) and for the estimator (5E\S;n of E1 Methni et
al. (2014) is derived for independent and identically distributed random variables Y;,...,Y,,.
For this application to financial returns, the potential serial dependence may then affect
the estimation results. Similarly to our extreme value analysis under mixing conditions
in Daouia et al. (2017), our convergence results may work under serial dependence with
enlarged asymptotic variances. A practical solution already employed by Cai et al. (2015)
to reduce substantially the potential serial dependence in this particular dataset is by using
weekly loss returns in the same sample period (i.e. sums of the daily loss returns during
each week). This results in a sample of size n = 522. The plots of the two estimates and the
asymptotic 95% confidence intervals, against k € [1,80], are superimposed in Figure 26 for
the three banks, along with the new sample maxima. The final pointwise results are reported
in Table 3. By comparing the obtained estimates for the daily and weekly losses, it may be
seen that the results are qualitatively robust to the change from daily to weekly data. In
particular, the }/(]\Eé;é(pn) levels for Goldman Sachs and T. Rowe Price are still almost equal,
while the estimated level for Morgan Stanley remains almost twice higher. Quantitatively,
these ES estimates are much more conservative: around —40% to —43% for Goldman Sachs

and T. Rowe Price, and around —87% for Morgan Stanley.

Bank m;’z(pn) Clo.05 (51*3\5;”, Clo 05 Yan
Goldman Sachs 0.345 (0.210, 0.506) 0.393 | (0.235, 0.544) || 0.210
Morgan Stanley || 0.598 | (0.376, 0.785) || 0.601 | (0.316, 0.984) || 0.299
T. Rowe Price 0.308 (0.171, 0.411) 0.301 (0.177, 0.437) || 0.197

Table 2: ES levels of the three investment banks, with the 95% confidence intervals and the

sample maxima. Results based on daily loss returns, with n = 2513 and p, =1 — %

*

Bank m?;b(pn) Clo.05 (jE\S;n Clo 05 Yon
Goldman Sachs 0.436 (0.194, 0.620) 0.495 | (0.226, 0.680) || 0.365
Morgan Stanley || 0.874 | (0.384, 1.305) || 0.883 | (0.366, 1.478) || 0.904

T. Rowe Price 0.401 (0.213, 0.511) 0.407 | (0.216, 0.548) || 0.305

Table 3: Results based on weekly loss returns, with n = 522 and p, = 1 —

3=
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Figure 25: Results based on daily loss returns of the three investment banks: (a) Goldman
Sachs, (b) Morgan Stanley, and (¢) T. Rowe Price, with n = 2513 and p, = 1 — 1/n. The
estimates )/(\E/S';é(pn)(a = 0) as rainbow curve and aETS';n(a = 1) as dashed black curve, along
Clo.os(k) in dotted blue lines and Clygs(k) in

with the asymptotic 95% confidence intervals

solid grey lines. The sample mazximum Y, , indicated in horizontal dashed pink line.
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Figure 26: Results based on weekly loss returns of the three investment banks, with n = 522
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E Proofs

In all proofs, the sequence 7, is replaced by the sequence k = n(1 — 7,).

Proof of Proposition 1. We start by showing (i). By Proposition 1 in Daouia et al. (2018):

P& et
G G
with £(r) —L(EX) + of1) - T2 A1 = 7)1+ o() 1.

Using this convergence together with local uniformity of condition Cs(7y, p, A), we find that
1 l U(1/F(&)) ' -1r-1
A((L=7)7) LU =7)71) p
as 7 — 1, or equivalently

CURED oy (14 =D ) + o)

Lo (vl

NCERIENGER
L=v—p P

A use of Lemma 1 at ¢t = & makes it possible to replace U(1/F(&;)) by &, asymptotically,

e e(rw] 1)

+dD>MO—ﬂ40£wW+L

thus completing the proof of (i).

To show (ii), first note that if s = 1, there is nothing to prove. Otherwise, write
gl—ks/n _ El—ks/n % q1—k/n % q1—ks/n. (EQ)
glfk/n qQ1—ks/n Slfk:/n qQ1—k/n

With alternatively 7 = 1 —k/n and 7 = 1 — ks/n in (i), we obtain

Sikin 1 vy Yoy =) o
e oty <1+—q1_k/n (E(Y) +o(1))

() )

l—v—p p

and

él—ks/n _ (771 _ 1)*’7 (1 + S’YM(E(Y) + 0(1))

q1—ks/n d1—k/n
(v'=-D7 ('-1)"-1 0 A(n
+( L0 +o<1>)s A( /k))

because of the regular variation property of t — ¢;_4—1 and |A|. Besides, it is a consequence
of condition Cy(y, p, A) that

G—ksin  U(n/ks) . ( sP—1 )
= =s 1+ A(n/k +o(A(n/k)) | .
v (/5 (A(n/k))
Combining these three expansions with (E.2) yields the desired result. n
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Proof of Theorem 2. We use Lemma 2 with 7 = 1 — ks/n, s € (0, 1], in order to write

ks/n ~ — o
(fl—ks/n - Yn) = J Fn(u)du (E3)

1 —2ks/n &t ro/m

where Y, denotes the empirical mean and F,,(u) = n~' " | 1y~ is the empirical survival

function of the sample. The idea is now to obtain a uniform (in s) “asymptotic expansion”

of the integral on the right-hand side.

Our main tool will be Lemma 3(ii): we may enlarge the underlying sample space and choose a
suitable version of the empirical process ]3" so that there is a sequence of standard Brownian

motions W, such that for any € > 0 small enough (which we shall fix later):

P —1

P

no _ 1 ([~ , _ _
7 Fn (i) =277 = (Wn@c )+ VEA(n k)N

+ =12y Op(l))

uniformly in half-lines of the form z € [xg, ), for o > 0. Note then that, as a consequence

of the monotonicity of expectiles together with convergence

f]—T —(y'=1)"7 as 71 (E.4)

(see Bellini and Di Bernardino, 2017) and Lemma 4, we have

gl—k’s/n < gl—k/n i)< 1

Vs e (0,1], > —1)77 as n — .
qQ1—k/n q1—k/n
Consequently
gl—ks/n 1 -1 —
P(Vse(0,1], > (v —1) — 1 as n — . (E.5)
q1—k/n 2

It then follows from the above approximation by a sequence of Brownian motions that, with

arbitrarily large probability:

ﬁc 7 (u)du

fl—ks/n
© o
= (qi-k/n J~ Fn(xq1—k/n)dx
gl*ks/n/QIfk/n
_ k - ~1/7y 1 W (=
= —qiim | | x T+ . W, (=) dx
n Sl—ks/n/(h—k/n \/E Sl—ks/n/(h—k/n

0 P — 1

1 0
+  A(n/k) J g~ de +op | — VD dy (E.6)
gl—ks/n/‘]l—k/n ,yp \/E gl—ks/n/‘ll—k/n
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uniformly in s € (0,1]. Note that the last term is indeed well-defined, if ¢ is taken close

enough to 0, because v € (0,1/2). We choose such an € here and in the sequel.

The next step is to use Lemma 5, primarily to remove the randomness in the lower bound of
the integral of the Brownian motion W, in (E.6). Lemma 5 only allows us to do so on the
restricted range [k~!%9, 1], and we therefore focus on this case for now; we will take care of
the case s € (0, k~1*°) separately afterwards. Use first (E.5) to get, for any sufficiently small
§ > 0 and with arbitrarily large probability irrespective of s € [k~ 1]:

Q0 —~ 0 —~
s7 ﬁ W, (™ Y7) da — J W, (z=Y7) dz
§1—ks/n/T—k/n (y~r-1)=7s7
0 ~ 0 —~
= J . Wo(su™ ) du — f W (su™ ) du
Y€1 _ks/n/T—k/n (y=i-1)=7
< 7 Sikon (o1 1)77s77] x sup \Wn(st)]
d1—k/n ost<(y~1-1)/2-1/7

Self-similarity of the Brownian motion Wn w.r.t. scaling gives

sup [ Wa(st)| £s  sup [WL(t)] = Op(v/5)

ost<(y—1-1)/2-1/v ost<(y—1-1)/2-1/7

uniformly in s, because a standard Brownian motion is almost surely bounded on any compact

interval by almost sure continuity of its sample paths. A use of Lemma 5 then entails

o0 0¢]
sup 712 ﬁ W (277 dx — f W, (7Y dx| = op(1).
E=1+9<s<1 gl—ks/n/QI—k/n (’\/71_1)7757’Y
Similarly,
0 | 0 Py 1
sup s J A o —J T gl = op(1)
k=1+9<s<1 glfks/n/qlfk/n P (y=1-1)=7s=7 P
Q0 0

and sup s l/2te f e J sEVDN gl = op(1).

k—1+9<s<1 glfks/n/QIfk/n (yr-1)=7s77
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Therefore, we have, uniformly in s € [k~1*° 1] and with arbitrarily large probability, that

fw Fo(u)du

gl*ks/n
~ 1-1/
k i gl—kzs/n 1 foo = —1/
= Qi + — W (™) dx
R v [(h—k/n Vk (y=1=1)=7s—7 ( )

© P —1

1 0
+ A(n/k f . dr + o (_J 2E=1/2)/y dzp)
( / ) (y=1-1)—7s—7 4 v \/E (y=1-1)—7s—7

()

We now rewrite each integral as follows: firstly, a change of variables and self-similarity of

the Brownian motion w.r.t. scaling yield

~

~£w Wa(a™ )y do = (7_1‘—1)_77l[ji52(07_1-—]Jt)t_V_ldt

Y =) TS

where W, (t) := (v~ = 1)"Y2W,((v~! — 1)t) defines another sequence of standard Brownian

motions. Secondly, a straightforward integration gives

F o (T ) s [w—l —Drsr 1 ]
(y=1-1)—7s—7 P P

IL=y-p 1=
Thirdly and finally, another direct integration entails
0
f x(s—l/?)/'y dr = O (S—7+1/2—s) )
(Y =17

All in all, and combining these calculations with (E.3), we obtain, uniformly in s € [k=1%2,1]:
S glfks/n . ?n
1- 2k3/n q1—k/n q1—k/n

~ 1-1/v
i gl—ks/n 1 1 1/2— s 1
+ —=( -1 Ty | Wa(t)t dt
1—7[%wm] Jﬁ ) 0 (

-1 _ 1)1l -1 _ 1)—rg—r 1 —y+1/2—¢
LA [(” )7 ] + op <f——————-> . (ES8)
p l—vy—p -~ Vi
Recall now the following equivalent characterisation of population expectiles:

727—1
C1—7

g’r - E(Y)

E((Y - &-)IL{Y>§T})- (Eg)
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We use this identity with 7 =1 — k/n to get:

1 <glk/n B E(Y))

1 - Qk/n q1—k/n q1—k/n
1 R—
= Ty J F(u)du
k ql_k/n gl—k/n

S

= —F(qirn) (ﬁ [Z:—Z:]HM + A(n/k) o _p1)1—v [q__l ;i): 1 i ’YD

o

+ o(A(n/k))

thanks to convergence (E.4), the asymptotic equivalence F(qy_) ~ k/n following from
Lemma 1(ii) and used inside the regularly varying function A, Lemma 6 and calculations
identical to those we have carried out so far. Using the condition v/kA(n/k) = O(1) and the

convergence
n—

b (P01 -0

which follows from Lemma 1(ii), we obtain

1 (flk/n E(Y) )

1- 2k/n q1—k/n a q1—k/n

_ l&_k/nr‘l” 4 Ay =D [(71 mb) R V] +o (%) (E.10)

L= [q1—/m p l—y—p 1-

Dividing (E.8) by (E.10) and using convergence (E.4) together with a Taylor expansion, we
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get

-2k E_ksjm — Y
1 —2ks/n &_pm —E(Y)

~ 1-1/v
—ks/n 1 _ _ ® ey
- |2 F”’/] G = [ W e
0

-7 d1—k/n \/E
('771 _ 1)1778177 [(’71 _ 1)7p87p 1 ] (S’erl/Zs)]
+ A(n/k — +op | ———
(n/k) p l—y—p 1=~ "\ Vk

1y ql_%]l—w( ) 7—1—1[@—1—1)—0_ ! ] (L»
Ty lfl—k/n L= Aln/k) p l=y—=p 1-9v T\ Vk

~ 1-1/y
_ks/n 1 s
S1ks/ + 9/ — 1J W, (t)t 7 dt
Vk 0

Slfk:/n

(yr=Ds' [(yt=1)rsr 1
tARRTS l L= —p _1—7]

~ 1-1/v 1

—ks/n -1_1 —1_1—p 1 —v+1/2—¢
= A || 0T L (S,

§1k/n p l=y—=p 1-v Vk

Define now a random process s — 7,(s) by the equality

57 £l—ks/n

=1+r7r,(s).
élfk:/n ( )

We know, by a combination of convergence (E.4) and Lemma 5, that 7,(s) 0 uniformly
in s € [k~1*° 1]. The above expansion then simplifies as

1— 2]{3/% % glfks/n - ?n
S
1 —2ks/n &_pm —E(Y)

~ 1-1/5
—ks/n 1 3 e
1k +—=y\/r = 1f W, (t) ™ dt
vk 0

fl—k/n

-1 _ 1)1-p - _1 —y+1/2—¢
+ Aln/k) x % x 51772 —— +or <ST> . (E.11)

We now work on the left-hand side of the above identity. Note that we can write, uniformly
in s e (0,1]:

1—2k/n 2k 1—s 2k k
e /A L e RV S R SRR LAkl
1—2ks/n n 1 —2ks/n n< S)[ +O< )]
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Moreover,

gl—ks/n - ?n _ (El—ks/n . 1) <1 . E<Y) ) + fl—k/n - ?n

Slfk/n - E(Y) glfk/n glfk/n - E(Y) Slfk/n - E(Y)
_ Eiksn ( (L — 1)E(Y) ) ( 1 )
1+ < T 1) 1+ P (I+0o(1))) +Op —q1fk/n\/ﬁ

by asymptotic proportionality of ¢/, and &_/,, and the central limit theorem. Since

v < 1/2, we have by regular variation of ¢t — ¢;_;—1 that

_i_/i_ﬁz _o(1)
q1—k/n\/ﬁ \/E n d1—k/n .

Consequently

” Esn — Y 1w (s o o (v P =1)E(®Y) . . 1
o Sk e o) (1 on() + (=) B ) o (1)),

Notice finally that, by the mean value theorem:

1< 1=s < 0
< su
OSSEl 1—357

so that, using the relationship ¢1_x/m = o(n/k), we get again that

1— 2/{:/71 ~ gl—k's/n - ?TL
1 2ks/n " & pm —E(Y)
(v ' = 1VE®Y)

. (14 op(1)) + op (\%) )

= 1+4+r,(s)(14+o0p(1)) + (1 —35")

Because, uniformly in s € [k, 1],

[ill—_k:ZI 1-1/v (1 4 (s)) Y = st <1 + [1 - %] ro(s)(1 + oﬂ»(l))>

we obtain using (E.11) that:

1+r4gu+nﬂm)+u_@wﬁﬁiiﬁQEav+oMny+w(QL)

d1—k/n \/E
1 1 -1_141 ’ -1
=1+ [1 — ;] 7 (8)(1 4 op(1)) + \/—E'y\/’y 1 Jo W, (t)t dt

(771 o 1)17/) s —1 <81/25)
+ A(n/k) x X + o0 )
(n/k) l—y—p p "\ Vi
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Rearrange and solve for r,(s) to get, uniformly in s € [k=1+9 1]:

ra(s) = (57— 1)””%_—];1%@(1/) +op(1))

1 S
+ —=*/y = 15“J W, (t)t 7 at
NG 0

_ “1_1)yr gr_ g~ 1/2—¢
+A(n/k)><(1 3)577_101) X ; 1+0]p( 7 )

This is precisely what we wanted to show, but in the restricted case s € [k~1+9 1].

We conclude the proof by focusing on the case s € (0,k7'*%). To this end, we choose
5 € (0,6/(2e + 1 + 2v)) and we note that v/k s/ — 0 uniformly in s € (0, k~'+%). It then

follows that, by a direct calculation:

VE sup s/ (L%—Ls%l
O<s<k—1+8 A1—k/n vk

It is then enough to show that

f W, (t) t ! dt‘ + yA(n/k;)|> 0.

Sygl—ks/n £l—ks/n - L 0.

-1

VE osup  sY*E
glfk/n

O<s<k—1+6

_ \/E sup gV +1/2+e

O<s<k—1+6

1-k/n

Recall that expectiles of an arbitrary distribution are monotonically increasing and exactly
cover its support, and apply this to the empirical distribution to get El_ks/n < El =Y,, for
any s € (0,1). Write then

Yn,n

1-k/n

Slfk:s/n _ s

< k_l/2+(—1+5)(’y+1/2+5)
fl—k/n

Vk sup sYH1/24e

O<s<k—1+6

+ o(1).

Using Lemma 3(i) with s = 1/(2k) and £/2 in place of what was an arbitrary 7 there, gives:

Yn,n

_ Op(k'y+s/2>
q1—k/n

and therefore, by a use of (E.4) again, we get

§1fks/n s

VEk  osup 7TVt —
fl—k/n

O<s<k—1+6

= op (k6(7+1/2+5)—5/2) + 0(1)

Recalling that § < e/(2¢ + 1 + 27v), we obtain

fl—ks/n _ s

\/% sup gV H1/2+e
glfk/n

O<s<k—1+6
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This concludes the proof of the approximation result for the tail expectile process.

To complete the proof, just note that the sequence W,, has the closed form expression

where WN/H denotes the sequence of standard Brownian motions appearing in Lemma 3(ii),
see (E.7). This sequence of Brownian motions is also the one appearing in Lemma 3(i),
which is nothing but the Gaussian approximation of the tail quantile process. We omit the

remaining straightforward technical details. [ |

Proof of Theorem 3. The idea is to use (E.8) in the proof of Theorem 2 together with
an analogue of (E.10), with & _/, replaced by & s/, and valid uniformly in s € (0,1]. To
prove such an analogue relationship, note first that

flfks/n _ glfks/n % U(n/k‘s)
qd1—k/n q1—ks/n U(Tl/k’) '

Recall that since p < 0, the function ¢ — U(t) is equivalent to a constant multiple of ¢ — ¢7
in a neighbourhood of infinity, see p.49 of de Haan and Ferreira (2006). Using (E.4), we

obtain

§1-ks/n = (v =171+ o(1)) (E.12)
q1—k/n

uniformly in s € (0,1]. Use then (E.9) with 7 = 1 — ks/n to get

s <£1_ks/n - E(Y)> _ % y ql;fo F(u)du.

1 - ka/n qlfk/n Chfk/n 71{/” flfks/n

Use now the asymptotic equivalence F(g;_y/n) ~ k/n following from Lemma 1(ii) and used

inside the regularly varying function A together with Lemma 6 to obtain, for any small x > 0,

s (gl_ks/n - IE(Y))

1—=2ks/n \ qi—km  Qi—i/n

1-1/y Pl
n— gl—ks/n] Y 1 1 [gl—ks/n] 1
" (im T Awk)- S
) | S (1_7 </>p[1_7_p e |

1-(1=p)/y+K
¥ o (A(n/k) [51"“/"] )
q1—k/n

uniformly in s € (0, 1]. According to (E.12),

p/v+E
sup lgl_ﬂ] < 2(,}/*1 _ 1)*#’*/{’7 sup STPTRY = 2(771 _ 1)*,0*/{“/ < o0
0<s<l | q1—k/n 0<s<1
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for x small enough (recall that p < 0) and n large enough. Therefore, by (E.12) again:

s (glks/n - IE(Y))

1=2ks/n \ ik Q-
1—1/~ -1 ~1 —p g
—ks/n —1 —1)7rsTr 1 —1
L= q1-/m P L=y=p 1= vk

uniformly in s € (0, 1]. Divide (E.8) by this expansion and use once again (E.12) to get:

gl—ks/n - ?n
gl—ks/n - E(Y>

~ 1-1/~
—RS/N 1 — — s —_—
1 Fl b/ ] + =yt =12 wj W, ()t dt
0

I—x d1—k/n \/E
(’771 _ 1)1778177 l(71 _ 1)7p87p 1 ] (S'y+1/25)‘|
+ A(n/k — +op | ———
(n/k) p l—y—p 1=~ "\ Vk

_ 1-1/y -1 _ 1 1\—pe—>p
N el l%—k/n] <1_A(n/k)v 1[(7 s 1 ]+O<L>)
v | &i—ks/n p I—y—p I—7 k

~ 1-1/v
—RS/N 1 — s —~—
— Fl hs/ ] +\/—E7«/7—1—137 1f W, (t)t 71 dt
0

glfks/n

—1 —1 —p o & 1=1/y —1/2—
Y —1 (7 - 1) Ps™P 1 ] Slfks/n (5 E)
+ An/k — 1-— +o0
(n/k) p l l—y—=p I—» §1—ks/n "\ VE

uniformly in s € [k71*9,1] and with arbitrarily large probability (here, as in the proof of
Theorem 2, 0 is a sufficiently small positive number to be chosen later). Define a random

process s — R, (s) by the equality

—glfks/n =1+ R,(s).
fl—ks/n

We know, by a combination of convergence (E.12) and Lemma 5, that R,,(s) — 0 uniformly
in s e [k~'*9 1]. Recalling that v/kA(n/k) = O(1), the above expansion then reads

gl—ks/n - ?n
glfks/n - ]E(Y)
g 1-1/y 1 s 871/275
i 1—ks/n - 1 _ 'y—lf —y—1 ( >
- b/ 1s W, () 7" dt + o . (E.13
[gl—ks/n] \/E’Y K 0 ( ) g \/E ( )
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We now work on the left-hand side of this identity:

gl—ks/n - ?n _ gl—ks/n _1 (1 T E(Y) ) " él—ks/n - ?n
glfks/n - E(Y) flfks/n Slfks/n - E(Y) Slfks/n - E<Y)

_ gl—ks/n o ( 1 )
b (51k/n 1) (L+o(1) + O Q—k/n\/1

by asymptotic proportionality of g/, and &_i; and the central limit theorem. Since

moreover 7 < 1, we obtain

& ko — Y B . ) ) N
Sioksm —E(Y) L+ Ru(s) (1 + 0p(1)) + op (\/E) :

Because, uniformly in s € [k~ 1],

E—j] T (1+ Ro(s))' 7 = (1 . [1 - ﬂ Ru(s)(1 + oﬂ»<1>>)

we obtain, using (E.13) and solving for R, (s), that:

1 S —1/2—¢
R,(s) = \/—EVQVV_l -1 SV_IL W, (t)t 7" dt + op (S 7 ) :

This is the desired result in the restricted case s € [k~1+° 1].

We conclude the proof by focusing on the case s € (0, k~1*°). The idea is very similar to that
of the final stages of the proof of Theorem 2. Choose ¢ € (0,e/(2¢ + 1 +27v)): it is enough to
show that

Vi osup  s'/*tE Siks/n 1] -5 0.
O<s<k—1+6 1—ks/n
Write then
E1ts/n Y,
VEk sup  s¥E Siokon _ 1|<vVk sup sY* {—n} + o(1).
O<s<k—1+6 1—ks/n O<s<k—1+9 gl—ks/n

Using (E.12) again, we obtain

1o Yo
VEk  sup  sY*E Siks/n _ 1|=0 <\/E sup gV HL/2te {—}) + o(1).
O<s<k—1+6 1—ks/n O<s<k—1+96 q1—k/n
Argue then as in the end of the proof of Theorem 2 to conclude the present proof. [ |
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Proof of Theorem 4. To show (i), the main idea is to combine Theorem 2 with a Taylor
expansion of the logarithm function. This is not quite as straightforward as one might expect,
because the error term in the approximation of the tail empirical expectile process given by
Theorem 2 does not converge to 0 uniformly in s. The trick we use here is to split the integral
defining %, in two parts, corresponding to “low” and “high” values of s respectively; we then
show directly that the first part is asymptotically negligible, and we analyse the second part
using the aforementioned Taylor expansion. A similar argument is used in e.g. page 113
of de Haan and Ferreira (2006) and El Methni and Stupfler (2017a, 2017b). Let us finally
mention that to use Theorem 2, we should work with a suitable version of the tail expectile
process that allows us to write its Gaussian approximation; we can of course do so since this
operation leaves the distribution of the estimator %, unchanged. A similar idea will be used,

without further mention, in the proofs of Theorems 5 and 8.

Set then s, = k~(175)/(1+29) for some e > 0 sufficiently small (and in particular less than 1/4),

o :J log JEE ds+J log S ds =: L1 + Ipo. (E.14)
0 51 k;/n Sn 51 k:/n

We start by controlling directly I,, ;. This is done by writing

|I1] < s, 1og 61 .
61 k/n

Recall that & =Y, » and use a combination of convergence (E.4), Lemma 3(i) and Lemma 4

to find that N
Yon
log N& =10g<,\ : ) + Op(1).
§1-k/n q1—k/n

Using further the heavy-tailed assumption on the distribution on Y, it follows from Theorem
1.1.6, Theorem 1.2.1 and Lemma 1.2.9 in de Haan and Ferreira (2006) that

and write

Yn,n

d
4,9
Un) + G,

where G., has distribution function  — exp(—(1 + yx)~7), for z > —1/v. It follows that
the limiting variable 1 4+ G, is positive and thus log(Y,,,/U(n)) = Op(1) by the continuous
mapping theorem. Besides, q1_x//U(n/k) = Qi—km/@—km F, 1, by Lemma 3(i) again.

S\ L (U0
log <glk/n) =1 g< U(n /k)) + Op(1).
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Potter bounds (see e.g. Proposition B.1.9.5 in de Haan and Ferreira, 2006) then yield

log | = & = Op(log k). (E.15)
fl—k/n
Recalling that s, = k~(179)/0+29) with ¢ < 1/4, it is now straightforward to get
\/E\IM\ =0Op <3n x vk log k:) = op(1). (E.16)

We now work on I,,5. Note that for s € [s,,1], s7/27¢/Vk < sn 7 Ik = k=2 5 0; use

then Theorem 2 and a Taylor expansion of the logarithm function to obtain

Lo = —v Li log(s) ds
+ \/i%fm Ui §17! UO W, (t) 7 dt] ds — (1 — s,) Ll W, (t) dt>
, 201 (E(Y) Jl (57— 1)ds + o]p(l))
d1—k/n Sn

O () ()

Since s,, = k~(179)/(0+428) "we find that

Vi Ll log(s) ds — J 1 log(s) ds

Sn

=0 (k(71/2+2€)/(1+25) lOg ]{7) 0.

Using again the fact that s, — 0, along with the conditions 1/¢1_4, = Op(1/vk) and
A(n/k) = Op(1/Vk), we get

Lo = v+ \/%yzm U 517! U W (t) =7 dt] ds — L 1 W (t) =7 dt)
vy - 1 (A=6T -D7 A /K)+ or (%)

Y+1  qigm (1—/))(1—7 p

By an integration by parts (with the inner integral being differentiated as a function of s),

JS“’_ U W, ()t~ V—ldt] g s —1)ds

and therefore, denoting by

Z =1 g s

where W is a standard Brownian motion, we find that

Vi(Lns — ) —2 <(11 :Z)))(g__ ;i);; A — E(Y)%AQ +Z.
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It is now enough to compute the variance of Z, which is

Var(2) = 5 (1) f SO (1 ) - (LA~ V) ds

It then follows from straightforward but lengthy computations that Var(Z) = 2v3/(1 — 2v);

we omit the details. Consequently

d (1= "' =1)" YOt =1 298
Vh(Ina =) =N ( T [ R e pa 27) - B

Combining (E.14), (E.16) and (E.17) completes the proof of (i).

To show (ii), it suffices to prove that

- ~ log(k
Vi — Fka| = Op ( gl( >> - (E.18)

l it Nl—ks/n gl—(i—l)k/(ln)
Z J log | < —log | —=————| | ds
i=1 Y@=/ S1-k/n §1—k/n

and use the sample-wise monotonicity of the random function s — gl_ks/n to get

Write then

Ve = Fral =

~ ~ 1 : g —(i— n 1 £
e = Feal < Y 10g (M) :ﬂog(ﬂ )
) §1—ik/(in) §1—k/n
Conclude then using (E.15), which shows (E.18) and completes the proof. n

Proof of Theorem 5. Since

ila) = oA + (1 — )V

it is sufficient to analyse the joint asymptotic behaviour of (Y, Vi, G1—k/n, El_k/n). Let us then

start by remarking that

' G-k Qi—k
5 = f log (ﬂ) ds — log <i)
0 q1—|k|/n q1—|k)/n
Note that, in Theorem 2, the sequence of Brownian motions is left unchanged if £ is changed
into |k| or [k]; this is indeed the fundamental argument behind the proof of Lemma 3(i).

Arguing as in the proof of Theorem 4 (i.e. splitting the domain s € (0, 1] into low and high
values of s and using a Taylor expansion), and using the asymptotic equivalences +/| k] ~ vk
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and A(n/|k]) ~ A(n/k) (the latter due to the regular variation of |A|), we get by Theorem 2
that:

VR = 2 H\/ﬁ( 01 W, ( S 1) ds — W, (V_ll_ 1)) + op(1).

Y
(E.19)

Besides, an inspection of the proof of Theorem 4 shows that

G - G e

Y - 1f0 W’;(S)<[1 )57 — 1)ds + op(1) (E.20)

where W, is the sequence of Brownian motions appearing in Theorem 2. Using Theorem 2

twice more, we can also write

Vk (gl"f/” - 1) — /-1, (7_11_ 1) + op(1) (E.21)

d1—k/n

as well as

51 k/n

\/%<§1 b —1) =2/ J W, ()t dt + op(1). (E.22)

As a consequence, the random vector

\/% (ﬁk -7 ”Nch -7 Nk - 17 glik/n - 1)

q1—k/n gl—k/n

is asymptotically four-variate Gaussian, and as such

\/% (716(0[) -, Chfk/n . 17 glfk/n i 1)

q1—k/n fl—k/n

is asymptotically trivariate Gaussian. To complete the proof, we analyse the marginal asymp-
totic behaviour of each of the three components in this vector, as well as their pairwise

asymptotic covariance structure.

Marginal asymptotic behaviour of 7,(«): This is determined by the joint convergence of
VE Ak — 7,3 — ), to what we already know to be a bivariate Gaussian distribution. We
also know from Theorem 3.2.5 in de Haan and Ferreira (2006) that

KAy — ) —5 2.
VRG34 & (252
This is of course also a corollary of (E.19). Meanwhile, Theorem 4(ii) gives

~ d (I=y)(y'=1)" YOt 298
Ve =) _)N<(1—p)(1—’y—p)Al_E(Y) 7 +1 A2’1—2v>'
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It therefore only remains to calculate the limiting covariance of VA(3, — v, — 7). This
is obtained by computing the expectation of the product of the centred Gaussian terms
appearing in the two asymptotic expansions (E.19) and (E.20). In other words, the limiting

covariance 1s

COV = COV] — COVy
- 1)
with covy = J f min(s ) >([1 — )]s = 1)dsdt
— 1!
and covy = (1 -— f min( ) )([1 —7]s77 = 1)ds.

1

Recalling that v~ — 1 > 1, straightforward computations entail

covi = (v =1 =y +1+qlog(y" —1)]

and covy Yyt =17 =1 —~vlog(y ™ - 1)]. (E.23)

l

This results in S
_ _ v —
cov =l =1 =] = 2 (=),
Wrapping up, we obtain
VE@e =75 —7) 5 N(m, V) (E.24)

where m is the 2 x 1 vector

A N e (O Yy 1)
e (1—/)’ T=p—r—p ) Az)

and V is the 2 x 2 matrix

—1_1’y 23
72((7 ) _1) v
1—7 1—2y

After some more straightforward computations, we conclude that

V.=

_ d
VE Fila) =) = N (ba, Ba(1,1))
with the notation of the statement of Theorem 5.

Marginal asymptotic behaviour of Gy, It is a straightforward byproduct of Equation (E.21)
that

vk (ql‘—k/" - 1) —, N(0,72).

q1—k/n
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Marginal asymptotic behaviour of El,k/n : It is a direct consequence of Equation (E.22) that

gl—k:/n B d < 273 )
vh (f1—k/n 1) A0 1-2v/)"

See also the discussion below Theorem 2 in the main paper.

Asymptotic covariance structure of (3, (o), g1—g/m): For this, we remark first that 7, — v and
Qi—k/n/Q—k/m — 1 are asymptotically independent: this is a consequence of the asymptotic
representation of 7, — v obtained in the proof of Theorem 3.2.5 in de Haan and Ferreira
(2006) together with Lemma 3.2.3 therein. Besides, the limiting covariance structure of
\/E(% — Y, Qi—k/n/@1—km — 1) is obtained by computing the expectation of the product of
the centred Gaussian terms appearing in the asymptotic expansions (E.20) and (E.21). By

(E.23) above, this limiting covariance is:

covz = A[(y " = 1) =1~ ylog(y~" — 1)
with the notation of (E.23). The limiting covariance of V(¥ () — 7, Gi—k/n/q1—k/m — 1) is
then
(1—a)y[(y™ = 1) = 1= ylog(y™" — 1)] = Va(1,2).
Asymptotic covariance structure of (ik(a),gl_k/n): It follows from Equations (E.19), (E.20)
and (E.22) that the limiting covariance of vk (F,(a) — 7, gl_k/n/&_k/n —1)is
COV = aCOV; + (1 — a)COV;
with

1l s -1 _ 1)-1 1
COVy = (1 —7) U f (Y = V788 g gy f min((y™' — 1)_1,t)t_7_1dt]
0 JoO 0

S

and Lo
COV,y = 42(1 — v)f f Wm s — D)t ds dt.
0 JO

Direct computations yield

and
3

. Y
COVe= a2y

Consequently




Asymptotic covariance structure of (qi—j/m, El,k/n): Combining Equations (E.21) and (E.22),
we find that the limiting covariance of \/E(@l_k/n/ql_k/n -1, El_k/n/fl_k/n —1)is

(v =1y

1
71— V)J min(t, (v~ = 1)7)t T dt = 7 (
0 1—x

- 1) — 9,(2,3)

after some straightforward calculations.

Combining these arguments on marginal convergence and asymptotic covariance structure,

we get
\/E ikz(a) ., qQ1—k/n _1, 517k/n 1 i, /\/’(mm ma) (E25>
qd1—k/n glfk/n
with m, and U, as in the statement of Theorem 5. This concludes the proof. [ |

Proof of Theorem 6. Applying Theorem 5 and arguing as in the proof of Theorem 1 in

Daouia et al. (2018), we get the joint convergence

Vi Slfk/n(a) 1, §1-k/n 1 4. ([(1 — ry)_l — log(fy_l — 1)l + 0 — A, E)
gl—k/n gl—k/n

where (', ©,Z) is the limiting vector in Theorem 5, and

e loyr—1
A::<(7 ) b )
L=vy—p P

) M+ 7(yE=1)E(Y) .

Then clearly

Vk (513—’(;5) - 1) ~5 [(1 =) = log(y! = 1)]BTa + 8O + (1 — B)Z — BA.

Set ¥, =TI, — b, and rearrange the bias component to complete the proof. ]

Proof of Theorem 7. Define p, = 1 — 7, and we note that

Ezfpn (Oé, B) = k El—k/n(aa ﬁ)
log (—&_pn ) = (Ti-w/m(@) —7)log (n—pn) +log (—&k/n )

s ([ £,
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The convergence log[k/(np,)] — oo yields

\/E Elfk/n(a@ B)
log
log[k/(npn)] E1—k/n

) — 05 (1/ log[k/(np,)]) = 0s(1) (E.26)

vk npn7 S1—p,
4 Soalk )] ([%] fl_k/n)

\F glfpn - él—k/n) ( % v d1—p, ))
1Og[lf/ npn)]< <Q1—pn) log (Q1k/n +log [ k ] Qi—k/n

" rA<1/pn>\])

Vk
<log [k/(npn)] ql_k/n *1Alm/Bl + q1—p,
( vk

1
log|k/(np,)] Q1—k/n " |A(n/k)\])
old). (E.27)

Here, convergence (E.26) is a consequence of Theorem 6. Convergence (E.27) follows from a
combination of Proposition 1, Theorem 2.3.9 in de Haan and Ferreira (2006) and the regular
variation of |A|. Combining these convergences and using the delta-method leads to the

desired result. n

Proof of Proposition 2. Statement (i) is a clear consequence of the fact that the expectile-
based ES at level 7 is an increasing linear functional of the restriction of the expectile function

on the interval [7, 1], in the sense that

1t I
gV <& veelr ] = XESW = — f ¢WMat < 1—f ¢@dt = XES®)
—TJr —TJr

To show statement (ii), note that, for 7 = 1/2, XTCE, is clearly translation invariant and
positive homogeneous (because so are expectiles above level 7 = 1/2, and conditional expec-
tations). A simple counter-example to monotonicity and subadditivity is the following: set
T = 1/2, so that

XTCEy () = B(Z| Z > 2(2)) = B(Z| Z > E(Z)).

We then actually show that XTCE;j is neither monotonic nor subadditive. For this, we

consider a uniform random variable U on [0, 1] and we set

X =21p<v<y and Y = Lyjpcu<sey + 2 Lisp<v<iy-
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Then clearly X <Y with probability 1, and X and Y are discrete variables taking values in
the set {0,1,2}, with E(X) = E(X1{x>q;) = 1/3 and E(Y) = E(Y1y~0y) = 2/3. As such

E(X|X >E(X)) =EX|X >0) =2

and E(YY>E(Y))=E(Y;Y>0):%:§.

This establishes that E(Y'|Y > E(Y)) < E(X|X > E(X)): XTCE;), is not a monotonic

risk measure. Besides,
X +Y = Tupc<spe +4 1s6<u<1)
so that E(X +Y) = E([X + Y]L{x;1y-0y) = 1 and then

EX+Y | X+Y>EX+Y))=EX+Y|X+Y>1)=4

This shows that E(X + Y |X +Y > E(X +Y)) > E(X |X > E(XX)) + E(Y |Y > E(Y)),

proving that XTCE,; is not a subadditive risk measure either. [ ]

Proof of Proposition 3. It follows from the asymptotic proportionality relationship &, /¢, ~
("' —1)7" as 7 — 1 (see Bellini and Di Bernardino, 2017) that

XES, = — f toda = (v — 1) {L f g1 + r(a))da}

1—7 1—7),;

where (o) — 0 as @ — 1. It is then clear that

1
XES, ~ (7' — 1)”{ ! f qada} = (v'=1)77QES. as 7 — 1.

1—7J,

This proves that

XES, ., .. &
QES. (v ) . = Th

by asymptotic proportionality again. Besides, the equality ¢, = U((1 — «@)™!) and a change

of variables entail

QES, 1 (Y4, _ (7 UL-7)"y)dy
¢ _1—7quda_fl V- Ty

The condition 7 < 1 and a uniform convergence theorem such as Proposition B.1.10 in de
Haan and Ferreira (2006, p.360) entail

QES’T J‘OO y—2 1
qr 1 1

as 7 — 1.

Consequently
XES, QES. 1

as 7 — 1.
gT qr 1_7
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Let us now turn to the terms XTCE,/QTCE, and XTCE,/{,. On the one hand, we have

XﬂEG:EWMY>&ﬂ:EKY—&MLfﬂ

F(&) F(&)

where y, = max(y,0). On the other hand, it follows from the proof of Theorem 11 in Bellini
et al. (2014) that

E [(Y _ ST)-F] ~ ST

= — as 17— 1.
F(€T> 7 -1
Therefore
XTCE- 1
~ as 7 — 1.
57' 1- Y
Likewise, we have
E[Y1(Y > ¢, E[(Y —q,
F(qr) F(q,)
with EHY
0 —a)] e
Fl(q,) -1
Then
QTCE, 1
~ as T — 1.
qr 1- Y
Whence
XTCE, & )
~2 as T —
QTCET q’T ’
which completes the proof. [ |

Proof of Proposition 4. The starting point to show the first expansion is Proposition 1(i),

which yields

1 1
XES, = —— J ¢, do

1—71
= Cfl—1Y”(QEST+7h71—1VEOUCP+OGD

+ {(7_1 DI Gt e W 0(1)} ! f G A((1 a)—l)da).

L—v—p p L—7J;

Use a change of variables to get

[ a0y da = (- Han [ BEETAO D0
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This entails, using a uniform convergence theorem such as Proposition B.1.10 in de Haan
and Ferreira (2006, p.360), that

oe]

1leqwﬂﬂ—aY5ﬁr~ UKP—ﬂAPHU—TYUL y 2y as T — 1
QTA((l B T)il)
l—y—p

Since QES, ~ ¢,/(1 — 7), our earlier expansion yields

e (1 P D ITED)
e U O - r>1>>. (E.28)

Furthermore, it is a consequence of a uniform inequality such as Theorem 2.3.9 in de Haan
and Ferreira (2006) applied to the function U that

QES, Jw_JNU—TY@MQ
qr 1 U(<1 _7—)71) Y

= [ (e oy )

1 -1
_ (1 AT 0(1))> . (E.29)

1=~

Finally, Proposition 1(i) reads

e - w—l—l)”(l‘w1_1>7E<Y)<1+o<1>>

- ((71 S R GOt Ve
L=vy—p P

A use of the identity
XES, XES, QES, ¢,
X _—

X
& Qs " g T
and a combination of (E.28), (E.29) and (E.30) complete the proof after some straightforward

computations. ]
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Proof of Theorem 8. By Theorem 3:
XES_/n 1 L W (Ot dt) ST g dis
SES m_ 1 — _’YQWXSO So . /
1=k/n \/E So gl—ks/n ds

1 S(l) 8_1/2_E€I—ks/n ds
+ op T X 1 .
k SO glfks/n ds

Using (E.12) and the fact that v < 1/2, we obtain:

XES; 4/n 1 3/2 f U . ) ds ( 1 )
SRR (1 — W, Ot dt ) 22 1+ op [ — ).
XESi_k/n \/E(’Y[ g o \Jo (® s O vk

Denoting by W a standard Brownian motion, we get, using an integration by parts, that:

>/<E\élfk/n d 3/2 ' —v—1
Vi [ 221k ) = Ay J W (s)s~" log(s) ds.
XESl—k/n 0

Since the rhs above is a centred Gaussian random variable, it only remains to compute its

variance, which is

1l
v=""(1- 7)3J J min(s,t)s 77 log(s) log(t) ds dt.
0o Jo
It then follows from straightforward but lengthy computations that

_ 2’1 -=7)(@B—4)
(1—29)°

as required. n

Proof of Theorem 9. The proof of this result is entirely similar to that of Theorem 7
(applying Theorem 8 instead of Theorem 6, and Proposition 4 instead of Proposition 1). We

omit the details. n

Proof of Theorem 10. We examine first the convergence of XESI_pn(a, B). Define p,, =

1 — 7/ and write

X—ESI—pn (Oé, ﬁ) o EI_ n (OZ, 6) [1 - 71—k/n<a)]_l
log ( XES: ) = log <—§l—pn ) + log ( TN )

_10( XES;_,, )
S\ -6,/

By Theorem 7 and the delta-method,

VE o (E(8)
loglk/(npa)] °\ ™ &1

) L5 N (b, va). (E.31)
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Using then Theorem 5, the delta-method and the convergence log[k/(np,)] — o0, we get

Vi ([1 —m/m)]—l) N

tog[/mp)] 5\ LA (.32)

Using finally a combination of Proposition 1(i), Proposition 4 and the regular variation of

|A| and ¢ — q;_4-1, we obtain

VE XES; p,
togk/(npn)] ([1 - ﬂlsl_pn) 0 (E.33)

Combining convergences (E.31), (E.32) and (E.33), it follows that

Vi (KBS, (0.9)
1og[F/(np)] XES,_,,

) 4, N (b, V).

Another use of the delta-method completes the proof of the convergence of XESI_pn(a, B).

We now show the convergence of }@Lpn(a, B). For this we write

o (fﬁsi_pn(a,ﬁ)) e (Zi_pn<a,ﬁ>>+log<®mm_ Qi )

XESl_pn §1—pn q1—k/n QEsl—k/n
ES, o/ XES,
+10g(Q 1k/)_10g( 1pn>
ql*k/’n gl_pn

where we set
1

%)
ZYn—i+1,n = f (/1\1_[“3/” ds.

i=1 0

__ 1
QESI—k/n = m

Remark now that, since ¢i—xjm = Yn—|k)n = Qi—k/n, We have

/E}\S — n —RK/N 1'q — S/n ES — n
log QA 1—k/n (k) ~log (J Q- lky ds) log (Q 1—k/ )
q1—k/n QEsl—k/n 0o qi—|k|/n q1—k/n

Combine then Theorem 2, the delta-method, and (E.29) together with a Taylor expansion

to obtain

\/E log QEsl—k/n ) q1—k/n
log[k/(np,)] Q-rm  QES;_4,

) = 0p(1/loglk/(np.)]) = 0p(1).  (E.34)
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Besides, a combination of Equation (E.29) and Proposition 4 with a Taylor expansion yields

i () s (2
log[k/(npa)] | 2\ 1t S\ e,

:o< vk [ AR+ — +|A<1/pn>\])

log k/ npn)] q1—k/n q1—p,
vk 1
=0 + |A(n/k
st [ o1
1) (E.35)

Finally, use together (E.31), (E.34) and (E.35) and the delta-method to complete the proof.
|

Proof of Theorem 11. We only show the result for XEST, ! (o)

convergences are entirely similar. The key point is to write
1— ?7,1 (pn)
1— Tvlz (pn)

It is, moreover, shown as part of the proof of Theorem 6 in Daouia et al. (2018) that

1—7(pn 1

w =1+ OIP’ -

1- Tn(pn) n<1 - Tn)
(combine (B.52), (B.53), (B.54) and (B.55) in the supplementary material document of
[Daouia et al., 2018], noting that the strict monotonicity of Fy is not required thanks to

y(@) as the proofs of the other

SN e (@)

Proposition 1(i) in the present paper; this also results in a corrected version of (B.51) in the

former paper). Therefore

() - e (rom[i=E])
S S S R

1
1+ Op (ﬂ) . (E.37)

Furthermore, using Proposition 5, we conclude that the conditions of Theorem 9 are satisfied

if the parameter 7;, there is set equal to 7/,(p,). By Theorem 9 then:

n(l—1,) XES. (o) (@) - . .
log[(1 — 7,)/(1 = 7/.(pn))] < XES,/ (o) 1) N (ba, V).
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I 1—7, 1—pn
log| ———— [ =log|—— [+ log | ———
Ogll—wn)] Ogll—pn]+ Ogll—rupn)]
and in the right-hand side of this identity, the first term tends to infinity, while the second

term converges to a finite constant in view of Proposition 5. As a conclusion

o 1—m, o 1—m7,
s 1_T7lz(pn) s 1_pn .

Hence the convergence

n(l—m,) XES, (@)
log[(1 —7.)/(1 —pn)] \ XES: )

- 1) L5 N (ba, va)- (E.38)

We conclude the proof by writing

XES, (5, QES, 17!
XES+ (p,) = QES,,, x {(1 ) ) )} x {(1 —y)—=+ }
fTw’l(pn) qpn

(since &7 (p,) = @, by definition). By a combination of Propositions 4 and 5 with the regular

variation of the functions |A| and ¢t — ¢;_4-1, one gets

XESun _ . <1og[<1 —7)/(1 - pnﬂ) |
A n(l—7,)

(1=7)

Similarly and by (E.29),

QES, L (log[(1=7,)/(1 = p,)
1= 4p, - ( n(l—m,) >

Therefore

QES n(l—m,)

Pn

XESnpn) _ _ <1og[<1 —7)/(1 - pnn) |

Together with (E.38), this entails

n(l—7,) iﬁg:/ () (@) d
o — 1| — N(ba, va). E.39
Tog(L — 7/ — po)] ( QES,, (e o) (139
Combining (E.36), (E.37) and (E.39) completes the proof. [
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Appendix: Preliminary results and their proofs

The first preliminary lemma, which we will use to show Proposition 1, is a technical result
on second-order regular variation that seems to be informally known in the literature. We

prove it for the sake of completeness.

Lemma 1. Assume that condition Cy(7y, p, A) holds. Then we have the following two conver-

gences:

. 1 (UWE®) N .
0t (1) =0

o ow L (1FU®)
(i) Jim A(t) ( t 1> =0

Proof of Lemma 1. The proof of this lemma is based on that of Theorem B.3.19 in de
Haan and Ferreira (2006). We only show (i), the proof of (ii) being entirely similar. Recall
that

U(t) = inf{x |1/F(z) >t}

so that U(1/F(t)) < t. Furthermore, condition Cy(7, p, A) is nothing but second-order ex-
tended regular variation in the sense of convergence (B.3.3) in de Haan and Ferreira (2006),
which is known to be locally uniform in x € (0,00) (see Remark B.3.8.1 in de Haan and Fer-
reira, 2006). Pick € € R arbitrarily close to 0: by using condition Cs(7y, p, A) with ¢ replaced
by 1/F(t) and = 1 + eA(1/F(t)), t — o0, we get

L [UlIL AGFO)F) ]
S ] v UL B

or equivalently

1 [U ([1+ cAQ/F)]/F (1))

lim — i B 1] =7e
i~ A(1/F(t)) U(1/F(t))

Assume that A is positive and take £ > 0; the proof in the other case is similar by taking
e < 0 instead. Using the definition of U again, we find that U([1 + cA(1/F(t))]/F(t)) > t,
and thus

.. 1 t ) 1 t
o<t ey (g ) < e e (o ) <0

Let € | 0 to complete the proof. [
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The second lemma is an equivalent characterisation of sample expectiles, and is the crucial

initial step for the proof of our Gaussian approximations.

Lemma 2. We have, for any T € (0,1),

Folsy ol 1Y N
. Z — X Z;(Yi — &)y

Proof of Lemma 2. The proof is straightforward; we include it for the sake of completeness.

Since 7, is strictly convex and continuously differentiable with derivative n’(y) = 2|7 —

Lgy<oy|y, the sample expectile ET is characterised by

n

Z {Y<§}|(Y;_€T>:O

In other words,

=) 2& Yl = TZ S
=1 =1
and thus . .
(L=7) 2E =Y = @r = 1) 3% = E)Lygy.
i=1 =1
Dividing on each side by n(1 — 7) and rearranging yields the result. [ |

The third lemma is a generalisation of the weighted approximation of the tail empirical
quantile process to non-integer sequences k tailored to our purpose. It also gives a represen-
tation of the Gaussian term that is of independent interest, for example when evaluating the

correlation between two quantiles or expectiles at different orders.

Lemma 3. Suppose that condition Co(7y, p, A) holds. Let k = k(n) — o be a positive sequence
such that k/n — 0 and VkA(n/k) = O(1). Then, subject to a potential enlargement of the
underlying probability space and to choosing a suitable version of the empirical process ﬁn,
there exists a sequence W,, = Wk of standard Brownian motions such that, for any ¢ > 0

sufficiently small:

(i) We have

-1

al—ks/n — 1 ( ——1 _~S
— =574+ —|7s W, (s) + VkA(n/k)s™"
" 7\ (s) (n/k)

uniformly in s € (0,1].

4+ gTVT2E op(l))
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(ii) If Fo(u) = n=' 37 Liyisuy 48 the empirical survival function of the Y;, we have

Pl — 1
(Wn(x_lm) + \/%A(n/k:)x_lm—x " + &2 Op(l))

%n (Iq1—k/n) _x—l/'y = L

Vi

uniformly on half-lines of the form [xg, ), for o > 0.

n
k

Moreover, the sequence W,, can be chosen as W,(s) = Wék)(s) = /n/kW,(ks/n), where

W, is a sequence of Brownian motions which is fized across all possible choices of k.

Proof of Lemma 3. Note that (i) is exactly Theorem 2.4.8 in de Haan and Ferreira (2006),
recalling that the function Ay therein is asymptotically equivalent to A, in the case when &
is a sequence of integers. If now the sequence k is not a sequence of integers, we write, for n

so large that q;_g/, > 0,

Qi—ks/n _ Qi—(k)s/n (QI—[kJ/n B 1) N al—[kjs/n'
q1—k/n q1—|k|/n q1—k/n q1—|k|/n

By local uniformity of condition Cy(7, p, A) (see e.g. Theorem 2.3.9 in de Haan and Ferreira,
2006), one gets

et ) = ol ) v (-l )}

= o(1).

Qks/n _ Dkls/n [1 Lo (L)] -
Gk Dkl Vk

1/2—e

Therefore

Bearing in mind that s € (0, 1] and therefore s™7 < 77~ , we may now use the approxi-

mation for the sequence of integers |k| to get

sP—1

Gi-tsjn <s 7+ L (7571Wn(s) +/[kJA(n/|k])s™

Q1—k/n %] #(1)

where the op(1) is uniform in s € (0,1]. An analogue lower bound, in terms of the ceiling

function [-|, applies. We can now use the facts that

VIk] A(n/|k])
\/E(W_ >—>O and W—»l

(the latter being due to the regular variation of A) and similarly when the floor function is

replaced by the ceiling function, to get statement (i). To prove statement (ii), we note that if
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the sequence k is made of integers, there is a sequence V[N/n of (potentially different) Brownian

motions such that, for a suitable version of the empirical process ﬁ’n:

~ 1 [/~ P/ 1

%Fn (q1—k/m) — g™V = 7 <Wn(x_1/7) + \/%A(n/k’)x_l/”x— + =YD Op(l)) :
P

This follows from Theorem 5.1.4 in de Haan and Ferreira (2006). That W, can be taken

equal to W), is hinted at in Remark 5.1.3 in de Haan and Ferreira (2006), and can be shown

as follows: work throughout with the above version of ﬁ’n, and denote by s — G_ps/n the

related tail quantile process. Our goal is to show that for any 7,0 > 0, we have, for n large

enough,

P ( sup 87+1/2+5

0<s<l1

~ N - _
Vk <q1_ks/n — 3_7) — s T W, (s) — \/EA(n/k)s_Ws L
p

q1—k/n

>n)<5.

First note that, for any a € (0, 1],

sup §7HV2HE lysT Y (s) + \/EA(n/k)s_vs ‘
O<s<a
~ -»_1
<y sup s Y2tE Wn(s)‘ + [VEkA(n/k)| sup sY/**e S—‘
O<s<a O<s<a 1%
— - _ 1
L o xy sup s M2te Wn(s)‘ + sup s'/?*e SN Op(1)
0<s<1 0<s<a P

by self-similarity of the Brownian motion VIN/n One can therefore choose a > 0 so small that

s —1

p

P ( sup 87+1/2+5

0<s<a

s T Wa(s) + VEA(n/k)s™ > ﬂ) < é (E.40)

4 4

Using statement (i) together with the triangle inequality, and repeating exactly the same

argument, we obtain that we can choose a > 0 so small that

\/% ((/J\l—ks/n . S_W)

d1—k/n

P v+1/24+¢
( sup S 1

0<s<a

> Q) < g (E.41)

Combining (E.40) and (E.41) results, for this choice of a > 0, in the inequality

P < sup S'y+1/2+5

0<s<a

|

Vk (“71‘—’”” — s”) — s T Wo(s) — @A(n/k)s’”s_p — 1' > ﬂ) <

q1—k/n p 2

It is therefore sufficient, for our purpose, to show that for any a > 0

v+1/2+e

sup s
a<s<l1

Vi (B0 ) ) VrA s < o),

d1—k/n

o4



and since 5712+ > q7+1/2+¢ > () on [a, 1], it is actually enough to show that

q —RKSsS/Nn 17 - 1
VE (ql_k/ ~ 3v> sV (s) — VEA( /)5 —| = o). (Ba2)
q1—k/n

sup
a<s<l1

By statement (i), we have

al—ks/n
q1—k/n

Vk sup

a<s<l1

— 57

— Op(1).

Set then & = x,(5) = Gi—ks/n/q1—k/m in the approximation of F, (qu,k/n) to get, uniformly
in s € [a, 1],

|ks] N
T [2(s)] i

et . (s)1P —
- = (quxn(s)]—w) #VRAG /e o)) g OPm) |

By the uniform convergence of x,(s) to s™ on [a, 1], as well as the continuity properties of

Brownian motion, this entails

sP—1

a7 =5 - (Wn<s> § VRA(m/R)s

uniformly in s € [a, 1]. By a Taylor expansion, we find

+ op(1))

sP—1

al—ks/n — 1 ( 1T _
2R p(s) =57+ — [ ~s W, (s) + VEA(n/k)s™
q1—k/n (s) Vk ! ) (n/k)

uniformly in s € [a, 1]. This is exactly (E.42). The adaptation of (ii) to an arbitrary sequence

+ op(l))

k (not necessarily of integers) then follows by a direct adaptation of the arguments used to
show (i).

That W, can be chosen as indicated in the final statement is most easily seen by inspecting
the proof of Theorem 2.4.8 in de Haan and Ferreira (2006): the centrepiece of the proof is
Lemma 2.4.10 therein, which states that there is an independent sequence (Z;);>1 of unit
Pareto random variables such that, if s +— Z,_|x» is the related tail quantile process, then
one can construct a sequence of Brownian motions W,, such that, for any v > 0 and any

e > 0 sufficiently small,

EZn—sn’y_]- =
\/E<(" o) =1 _ 2 1>_swwn<s>

sup S’y+1/2+5

k—1<s<1

. - —op(l).  (E.43)

The sequence W,, in Theorem 2.4.8 of de Haan and Ferreira (2006), and therefore in the

statement of the Lemma, is exactly the sequence W), satisfying this relationship for the
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sequence (Y; = U(Z;))i=1; this is seen by combining (2.4.23), (2.4.24) and (2.4.25) p.59 of
de Haan and Ferreira (2006). Equation (E.43), meanwhile, is shown in the following way:
Proposition 2.4.9 in de Haan and Ferreira (or equivalently, Theorem 6.2.1 in Csorgd and
Horvéath, 1993) yields that, for a suitable choice of an independent sequence (Z;);>1 of unit

Pareto random variables, there is a sequence of Brownian bridges B,, such that

\/ﬁ(l . t)v-&-l (Za‘bﬂ,n —1 . (1 - t)_,y _ 1) o Bn(t)

sup nete—l/Q(l _ t)s—l/?
v v

1/(n+1)<t<n/(n+1)

is stochastically bounded. Setting ¢t = 1 — ks/n and rearranging yields in particular that

EZn—an_l =1
STz L ((n [ks].n) _ 5 ) — \/gsa_l/an(l — ks/n)

sup k°

k—1<s<1

v g

is stochastically bounded. Since k* — oo, it follows that

Ean s|,n T—1 =1
\/%((n |ks], ) . S _\/%S—y—an(l_ks/n)
Y Y

Set now B, (t) = B,(1 —t), which makes B,, a sequence of Brownian bridges as well, and let

8’)/+1/2+s

sup = op(1).

k—1<s<1

W,, be any sequence of Brownian motions such that

B, (t) = W, (t) — tW (1)

(for instance, W, (t) = B,(t) + tV,,, where for each n, V,, is a standard Gaussian random
variable independent of the process B,,). Note that the sequence W, is constructed indepen-
dently of k. We have

n - - R 714 _ R E_
\/;s B,(1 —ks/n) \/;s W, (ks/n) \/;s X — W,(1)
and clearly
ks— k— k
\/%S_A/_l X ;SWn(l)‘ = ‘\/;Wn(l) = O[p: < E) = Op(l).

VE ((%ank%nﬁ -1 s = 1) B S_V_IWWTL(]{JS/H)

v v

sup Sw+1/2+5

k—1<s<1

It follows that

sup §YTYE = op(1).

k—1<s<l

A choice of W, giving Equation (E.43) is therefore W, (s) = W,gk)(s) = /n/kW,(ks/n), as

claimed in the statement of the result. n
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The fourth lemma is a preliminary consistency result for intermediate sample expectiles,

under a weaker moment condition than that of Theorem 1.

Lemma 4. Let k = k(n) — o0 be a positive sequence such that k/n — 0. Suppose further that
the distribution of Y is heavy-tailed with tail index v € (0,1/2), and assume that E|Y_|* < oo.

Then
51 k/n
— 1 as n— .
glfk/n
Proof of Lemma 4. The idea of the proof follows closely that of Theorem 2 in Daouia et
al. (2018), which was an asymptotic normality result formulated using the parametrisation
T, = 1 — k/n, where 7,, — 1 is such that n(1 — 7,,) — o0. To make it easier for the reader to
relate the present proof with the one of Daouia et al. (2018), we adopt this parametrisation
here. We shall therefore show that gm /& LN 1, and we will actually prove the stronger

statement

<% — 1) .0 provided v, — o and v, =0 ( n(l— Tn)> )

Note that

(éﬂ — 1) = arg min ¢, (u) (E.44)

£q—n ueR
2 n 1 -
with wn(U) = n<1vj Tn) Z; 2572_ [777-” ( an - £n> - 777”(5/;' - ng)] .

Denoting the derivative of y — 1-(y)/2 by ¢, (y) := |7 — Liy<o}|y, it is straightforward to get

(e.g. using Lemma 2 in Daouia et al., 2018):

wn(u) = _UTl,n + T2,n(u) (E45)
v noq n
with T,n = — = P }/z 57'” = Snz
' n(l_Tn);&'ﬁ ( ) ;
,UQ n u&—n/vn
dTn = - TY;'_T_t_TY;_T dt
wmd Toolw) = e D 0 0 (-6

The random variables S,,; are independent, identically distributed, and centred since

&, = argmin E(n,, (Y; — u) — 0., (Vi) = E(p., (Yi - &) =0,

ueR

by differentiating under the expectation sign. Now note that

E(lp-(Y = &)[) =0 (&1 —7)) as 711,
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by Lemma 4 in Daouia et al. (2018). Therefore
02
Var(T},,) = O <n(1—an)) — 0.
Because E(T},) = 0, Chebyshev’s inequality then yields

Ty, — 0. (E.46)

Now
02 UEry /Vn
Ton(u) = Tsp(u) — W ) [E(er, (Y =&, = 1) = E(er, (Y = &,))]dt. (E.47)

Note that the integral on the right-hand side of (E.47) is indeed well-defined because of
Fubini’s theorem and the fact that Y has a finite absolute first moment. The random term
T3, (u), meanwhile, is a sum of independent, identically distributed and centred random
variables, which we shall examine after having controlled this nonrandom integral. Note
then that, by Lemma 3 in Daouia et al. (2018),

E(QOTn (Y - ng - t)) - E(()OT" (Y - gm))
= (1=20)E((Y = &, — ) (Ly<e, +6y — Lv<e,) = tB(70 — Liy<e, ). (E.48)

Clearly
E(|7, — IL{YSST”}D = Tnﬁ(&n) + (1 =1)F (&)

It therefore follows from (E.4) that

E(I70 — Liv<e, i) =77 (1= 7)(1 + o(1)) (E.49)

as n — 0. Let further ¢(t) := E((Y —¢)1{y~y) and observe that

E(<Y & — t)<1{Y<§m+t} - 1{Y<§m}>> = E((Y — & — t)(]l{Y>£m} - 1{Y>Em+t}))
= (&) — (&, +1) —tF(&).

Integrating by parts entails

Erntt . L+t/6r, T :
o) =06+ = [ P e Fie) [ et
from which we deduce that
o 1+t/&x, F i
E((Y =&, —t)(Miy<e,, +y — Liy<eny) = F(&,) (é}nﬁ %dv - t) :
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We now control the term between brackets as follows: let I,(u) = (0, |u|&, /v,), note that
t/¢,, — 0 uniformly in ¢ such that [¢| € I,,(u), and therefore

/e, T
sup gﬁj Mdv -1
lelnw) | t 1 F(&r,)
Ltfern [T 14t/
< sup b J [_<£T”U> U_l/v] dv| + sup b f (0_1/7 — 1) dv
tetn() 1] |1 F(&,) tetn(u) [t |1
— 0

by the uniform convergence theorem for regularly varying functions (see Theorem 1.5.2 in

Bingham et al., 1987, p.22) and the convergence v,, — co0. Consequently, by (E.4):

E((Y =&, —t)(Ly<e,,+y — Liv<e,,}) = t(1 — 7)ra(t) (E.50)

with 7,(f) — 0 uniformly in ¢ such that |¢t| € I,(u). Combine (E.47), (E.48), (E.49) and
(E.50) to get

2

Tou(u) = %(1 +0(1)) + Ty (u), (E.51)
. v2 L (Y /o
with Tg’n (u) = —m ZZZI J;) [Sn,z (57'” + t) - Sn,i (ng)]dt

where the S,,;(v) := ¢, (Yi —v) —E(¢,, (Y; —v)) are independent copies of S,,(v) := ¢, (Y —
v) — E(p,, (Y —v)). Thus

vl Ury /Un
We now notice that for any v, S, (v) is centred and thus
4
Var (T (1) = ——" E([8n(&r, + 5) = Snl(&r)I[Sn(&r, + 1) — Snl&r,)])ds di

- n(l - Tn)Qgén [O,uan/’Un]Q

(here the Fubini theorem was used to switch integrals and expectation, based on the fact

that Y has a finite variance). By the Cauchy-Schwarz inequality,

4

v - 2
Var(T3,,(u)) < m (J VE(IS. (& + 1) — Sul&n)?) dt) . (E.52)

0

Applying Lemma 3 in Daouia et al. (2018), we get for any ¢
[Su&r +1) = Su(&n )| < 2H[1 = 7 + Lysg,, +minwoyy + F (&, + min(t,0))].
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Using the inequality |a + b + c|* < 3(a® + b* + ¢?) yields
E(|S, (&, +1) =Sn(&))?) < 126[(1—7,)° + F (&, +min(t, 0)) (14 F (&, +min(t,0)))]. (E.53)

The regular variation property of F' and the convergence n(1 — 7,) — o entail:

F(57n>
in view of (E.4). Finally, using (E.4) once again and combining (E.52), (E.53) and (E.54)

yields
1
:O(mrwm>*0

as n — 00. Whence the convergence T3, (u) -2, 0; combining (E.45), (E.46) and (E.51)

entails

Sup |F(€Tn + S) - F(an ) | = F(iTn) Sup
Isleln (u) Isleln (u)

1] = ofF(€,) = o(1-7) (B

2
,04

Var (T3, (u)) = O m

u&'n/vn
f ) dt

0

2
u
VueR, i, (u) —— 5y 8 n— .

We conclude by noting that (¢,) is a random sequence of continuous convex functions and

its pointwise limit defines a nonrandom continuous convex function of « which has a unique

minimum at u* = 0. Applying Theorem 5 in Knight (1999) completes the proof. |

The fifth lemma is the key to the computation of the various terms appearing in the implicit

relationship linking the tail expectile process to the tail parameters.

Lemma 5. Suppose that E|Y_| < oo. Assume further that condition Cy(vy,p, A) holds for
some 0 <y < 1/2. Let k = k(n) — o be such that k/n — 0 and VkA(n/k) = O(1). Then

we have, for any 6 > 0 sufficiently small:

Slfks/n (a1 P

sup  §” —1)77s77 — 0.

E—1+9<s<1 q1—k/n

Proof of Lemma 5. All the op and Op terms in the present proof should be understood
as uniform in s € [k~ 1]; moreover, we work throughout this proof with the version of
the tail expectile process induced by the version of the empirical process }?’n leading to (E.6).

Recall that any Brownian motion W satisfies, for any n > 0:

Ve >0, sup t YW (t)| < oo almost surely.
O<t<c

It then comes as a consequence of (E.5) that

o0 o0
J W, (z~ ) dz = Op J =YD g |
gl—ks/n/‘]l—k’/n gl—k’s/n/‘h—k:/n
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Moreover, since vkA(n/k) remains bounded:

oS Pl 1] 1 (%
A(n/k) ﬁ A dr =Op | —= | YD g |
§l—ks/n/‘h—k/n /yp \/E gl—ks/n/‘ll—k/n

All in all, combining these two bounds with (E.6) gives:

ﬁo 7o (u)du

gl—ks/n

k “ 1 (*
= —Q1—k/n ﬁ rVdr + Op | — ﬁ 221 g
n El—ks/n/‘h—k/n \/E fl—ks/n/‘h—k/n

or equivalently

~ 1-1/v ~
” A k —Rks/m 1 —ks/n
J; Fn(u)du = —q1—k/n X il 51 ko/ + O]}D — —51 ks/
§1—ks/n n 1- Y q1—k/n \/E qd1—k/n

] 1=(1/2=n)/v

Plugging this back into (E.3) entails
- o ~ 1-1/~ ~ 1—(1/2—m)/v
S €1fks/n . Yn _ Y gl*ks/n n OIP L glfks/n
1- 2]{58/71 q1—k/n q1—k/n I- Y| 91-k/n \/E q1—k/n

Note that Y,, — E(Y) < o by the law of large numbers, and é_ks/n > El_k/n L 4o by

Lemma 4. Therefore

{N —1/y ] g —=(1/2=n)/y
i 1—ks/n 1—ks/n
s(1+op(l)) = +O0p | —=

( P( )) 1- i ’ q1—k/n ] g \/E [ q1—k/n ]

Define now a random process s — R, (s) by the equality

Sike/n _ (VI =D)L+ Ra(s)).
d1—k/n

In particular, 1 4+ R, (s) > 0 for any s € (0,1], and
1
1+o0p(l) = (14 Ru(s)™" + Op (—8_1/2_77(1 + Rn(s))_(l/%")/w) .
VEk
We infer from this equality that, uniformly in s € [k~1%9 1] for 6 = 6(n) = 4n/(4n + 1) > 0,
1+ o0p(1) = (1+ Ru(s)) ™7 + 0p (1 + Ra(s))~ 2/

It directly follows from this last identity, whose left-hand side should remain bounded uni-

formly in s, that 1 + R,(s) must remain bounded away from 0, uniformly in s € [k~19 1]
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with arbitrarily large probability as n — oo. The fact that the left-hand side converges in
probability to 1 uniformly in s now entails that 1 + R, (s) should do so as well, which yields

sup  |Rn(s)] — 0 as n — oo.
k71+6<5<1

Equivalently

gl—ks/n . 7_1

sup s’ — 1) 0. (E.55)

E-1+d<s<1 q1—k/n
And since n was arbitrarily small, § = 4n/(4n + 1) was arbitrarily small as well, concluding

the proof. -

The final lemma is a technical result on second-order regular variation which will be used

several times in the proofs of Theorems 2 and 3.

Lemma 6. Assume that condition Co(7y, p, A) holds with v > 0. Then one can find a function
B, asymptotically equivalent to t — A(1/F(t)) in a neighbourhood of infinity, satisfying the
following: for any e, 6 > 0 there exists ty = to(e,0) > 0 such that fort, tx = t,

L (M — x1/7> — x’lhxph — 1’ < ex” P max (270, 2%) .

B(t) \ F(t) P
Proof of Lemma 6. Note that, according to Theorem 2.3.9 in de Haan and Ferreira (2006),
condition Cy(7, p, A) is equivalent to

ial /Y _
Yz >0, lim 1 (]i(t:c) - z_l/w) = 93_1/731j 1.
t=x A(1/F(t)) \ F(t) P

Define f(x) = 2'/7F(x); it is straightforward to show that this condition entails

Vo >0, S =SB 271
=y fOAQ/F@) el

Then, by Theorem B.2.18 in de Haan and Ferreira (2006), one can find a function ¢t — ag(t),

equivalent to t — y~2f(t)A(1/F(t)) in a neighbourhood of infinity, such that for any ¢, § > 0

there exists to = to(g,0) > 0 with
tr) — f(t Pl 1
ety [LD10 s
t) /vy
Multiplying through by v~22~"/7 and recalling that f(z) = 2'7F(z), we get

‘ < y2ex?/” max (33_5, .21:5) )

titr >t ! Flte) _ R - m_lmw < ez~ 7P max (x_‘s x‘s) :
ao(t)/f(t) (t) vp ’
Setting B(t) = ~v2ao(t)/f(t) gives precisely the desired inequality. [
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