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Expectiles define a least squares analogue of quantiles. They are
determined by tail expectations rather than tail probabilities. For
this reason and many other theoretical and practical merits, expec-
tiles have recently received a lot of attention, especially in actuarial
and financial risk management. Their estimation, however, typically
requires to consider non-explicit asymmetric least squares estimates
rather than the traditional order statistics used for quantile estima-
tion. This makes the study of the tail expectile process a lot harder
than that of the standard tail quantile process. Under the challenging
model of heavy-tailed distributions, we derive joint weighted Gaus-
sian approximations of the tail empirical expectile and quantile pro-
cesses. We then use this powerful result to introduce and study new
estimators of the tail index and extreme expectiles, as well as a novel
expectile-based form of expected shortfall. Our estimators are built
on general weighted combinations of both top order statistics and
asymmetric least squares estimates. Some numerical simulations and
an application to real data are provided.

1. Introduction. Least asymmetrically weighted squares estimation,
borrowed from the econometrics literature, is one of the basic tools in sta-
tistical applications. This method often involves Newey and Powell’s [32]
concept of expectiles, a least squares analogue of traditional quantiles. Given
an order τ P p0, 1q, Koenker and Bassett [27] elaborated an absolute error
loss minimization to define the τth quantile of the distribution of a random
variable Y as the minimizer

qτ P arg min
θPR

E tρτ pY ´ θq ´ ρτ pY qu ,

with equality if the distribution function of Y is increasing, where ρτ pyq “
|τ´1Ipy ď 0q| |y| and 1Ip¨q is the indicator function. This successfully extends
the conventional definition of quantiles as left continuous inverse functions.
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2 A. DAOUIA, S. GIRARD AND G. STUPFLER

Newey and Powell [32] substituted the absolute deviations in the asymmetric
loss function ρτ by squared deviations to obtain the τth expectile of the
distribution of Y as

(1) ξτ “ arg min
θPR

E tητ pY ´ θq ´ ητ pY qu ,

with ητ pyq “ |τ ´ 1Ipy ď 0q| y2. The presence of the term ητ pY q ensures the
existence of a unique solution ξτ for distributions with finite absolute first
moments. Both quantiles and expectiles are M-quantiles as the minimiz-
ers of asymmetric convex loss functions (Breckling and Chambers [8]), but
expectiles are determined by tail expectations rather than tail probabilities.

Accordingly, expectiles have been receiving a lot of attention in statistical
finance and actuarial science since the pioneering papers of Taylor [38] and
Kuan et al. [29]. They are excellent alternatives to quantiles in different
aspects relevant to this kind of applications. First, expectiles depend on
both the tail realizations and their probability, while quantiles only depend
on the frequency of tail realizations and not on their values (Kuan et al. [29]).
Expectiles, contrary to quantiles, thus allow to measure extreme risk based
on the frequency of tail losses and their values. Second, more generally,
altering the shape of the upper or lower tail of Y does not change the
quantiles of the other tail, but it does impact all the expectiles (Taylor [38]).
This high sensitivity of expectiles to tail behavior allows for more prudent
and reactive risk management. Third, expectiles make more efficient use of
the available data since they rely on the distance to observations, whereas
quantiles only use the information on whether an observation is below or
above the predictor (Sobotka and Kneib [37]). Fourth, inference on expectiles
is much easier than inference on quantiles (Abdous and Remillard [1]). Using
expectiles has the appeal of avoiding distributional assumptions (Taylor [38])
without recourse to regularity assumptions as can be seen by comparing,
e.g., Holzmann and Klar [25] with Zwingmann and Holzmann [42]. Most
importantly, expectiles are the only M-quantiles that define a coherent risk
measure in the sense of Artzner et al. [4] (see Bellini et al. [6]), and the only
coherent risk measure that is elicitable (Ziegel [41]). Many other theoretical
and numerical results motivate the adoption of expectiles in actuarial and
financial risk management, including those of Ehm et al. [18] and Bellini
and Di Bernardino [7].

Yet, tail expectile theory is, in comparison to tail quantile theory, rela-
tively unexplored and still in full development. At the population level, only
Bellini et al. [6], Mao et al. [30], Mao and Yang [31] and Bellini and Di
Bernardino [7] have initiated the study of the connection between ξτ and
qτ , as τ Ñ 1, when Y belongs to the domain of attraction of a Generalized
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APPROXIMATIONS OF THE TAIL EXPECTILE PROCESS 3

Extreme Value distribution. Also, for heavy-tailed distributions, Daouia et
al. [11] have obtained an asymptotic expansion of ξτ {qτ with a precise quan-
tification of the bias term. At the sample level, attention has been mainly
restricted to ordinary expectiles of fixed asymmetry level τ staying away
from the distribution tails; see, e.g., Holzmann and Klar [25] and Krätschmer
and Zähle [28] for recent advanced theoretical developments. The extreme
value analysis of asymmetric least squares estimators is a lot harder than for
order statistics, mainly due to the absence of a closed form expression for
expectiles. In an earlier paper, we partially solved this difficulty by proving
the pointwise asymptotic normality of sample expectiles for ‘intermediate’
levels τ “ τn Ñ 1 such that np1 ´ τnq Ñ 8 as the sample size n Ñ 8;
see Theorem 2 of Daouia et al. [11]. Such a result does not, however, allow
for simultaneous consideration of several intermediate sample expectiles. By
contrast, Gaussian approximations of the tail empirical quantile process have
been known for at least two decades; see among others, Drees [15] and The-
orem 2.4.8 in de Haan and Ferreira [12]. These powerful asymptotic results,
and their later generalizations, have been successfully used in the analysis
of a number of complex statistical functionals, such as test statistics aimed
at checking extreme value conditions (Dietrich et al. [14], Drees et al. [16],
Hüsler and Li [26]), bias-corrected extreme value index estimators (de Haan
et al. [13]) and estimators of extreme Wang distortion risk measures (El
Methni and Stupfler [20, 21]).

The present paper fills this important gap in the current understand-
ing of sample intermediate expectiles, under Pareto-type models that better
describe the tail structure of most actuarial and financial data [see, e.g.,
Embrechts et al. ([22], p.9) and Resnick ([33], p.1)]. In Section 2, we show
that the aforementioned convergence result on single intermediate sample
expectiles can vastly be generalized to the tail empirical expectile process.
We first prove in Theorem 2 that the tail expectile process can be approx-
imated by a sequence of Gaussian processes with drift and we derive its
joint asymptotic behavior with the tail quantile process. Then, we analyze
in Theorem 3 the difference between the tail empirical expectile process and
its population counterpart. These two results constitute the major contri-
bution of the paper; they open the door to the theoretical analysis of a wide
range of functionals of the tail expectile process. Even more strongly, our
joint weighted approximations of the tail empirical expectile and quantile
processes make it possible to consider complex functionals of both processes.

We shall discuss below a number of applications of our main results. Sec-
tion 3 applies the analysis of the tail expectile process in Theorem 2 to tail
index estimation. We first construct purely expectile-based estimators of the
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4 A. DAOUIA, S. GIRARD AND G. STUPFLER

tail index and derive their asymptotic normality in Theorem 4. We then con-
struct a more general class of estimators by computing a linear combination
of these expectile-based estimators and of the Hill estimator (Hill [24]). This
inspired the name expectHill estimators for this class. Thanks to the joint
convergence result on the tail expectile and quantile processes in Theorem 2,
we get the asymptotic normality of the expectHill estimators and derive their
joint convergence with both intermediate quantile and expectile estimators
in Theorem 5. Built on the expectHill estimators themselves, we propose in
Section 4 general weighted estimators for intermediate expectiles ξτn whose
asymptotic normality, obtained in Theorem 6, follows as a corollary of The-
orem 5. Based on the ideas of Daouia et al. [11], the weighted intermediate
expectile estimators are then extrapolated to the very extreme expectile
levels that may approach one at an arbitrarily fast rate. The asymptotic
properties of the extrapolated estimators are established in Theorem 7.

Theorem 3 is particularly important in tail risk estimation using Expected
Shortfall (ES) measures. In Section 5, we show first that the expectile-based
form XTCEτ of ES introduced by Taylor [38] is not a coherent risk measure.
Instead, we define a coherent alternative form that we call XESτ . It is simply
an average of tail expectiles, which is in addition asymptotically equivalent to
the XTCEτ . Asymptotic connections of XESτ to other tail quantities, such as
high quantiles qτ and expectiles ξτ , are also provided before moving on to the
extreme value estimation problem. XESτ being an average of tail expectiles,
it is readily estimated at an intermediate level τ “ τn by an average of the
empirical tail expectile process, whose discrepancy with the true XESτn can
be unraveled thanks to Theorem 3. This intermediate estimator, like our
generalized expectile estimators, can then be extrapolated to the very far
tails of the distribution of Y where few or no data lie. Financial institutions
and insurance companies are typically interested in the extreme region τ “
τ 1n Ò 1 such that np1 ´ τ 1nq Ñ c ă 8, as n Ñ 8 (see, for example, Cai
et al. [9] and Daouia et al. [11]). In Theorems 9 and 10 we provide the
asymptotic properties of the resulting extrapolated estimator, along with
those of alternative plug-in estimators built on the asymptotic properties of
XESτ in Proposition 3. We conclude this section by using XES estimators as
the basis for estimating the more traditional quantile-based ES (QES) itself.
We derive three composite expectile-based estimators for QES at extreme
levels whose asymptotic properties are established in Theorem 11.

Section 6 contains a simulation study of the estimators introduced here-
after. Applications to medical insurance data and financial returns data are
presented, respectively, in Section 7 and the Supplementary Material docu-
ment. The supplement also contains all proofs and auxiliary results.
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APPROXIMATIONS OF THE TAIL EXPECTILE PROCESS 5

2. Tail empirical expectile process. Suppose we observe indepen-
dent copies tY1, . . . , Ynu of a random variable Y and denote by Y1,n ď Y2,n ď

¨ ¨ ¨ ď Yn,n their nth order statistics. A high expectile ξτn of order τn Ñ 1,
as nÑ8, can be estimated by its empirical counterpart

(2) rξτn “ arg min
uPR

1

n

n
ÿ

i“1

rητnpYi ´ uq ´ ητnpYiqs “ arg min
uPR

n
ÿ

i“1

ητnpYi ´ uq.

Here the expectile level τn approaches one at an ‘intermediate’ rate in the
sense that np1 ´ τnq Ñ 8 as n Ñ 8. By analogy to the well-known tail
empirical quantile process (see Definition 2.4.3 in de Haan and Ferreira [12])

p0, 1s Ñ R, s ÞÑ pq1´ks{n :“ Yn´tksu,n,

where t¨u stands for the floor function and k “ kpnq Ñ 8 is a sequence of
integers with k{n Ñ 0, we define the tail empirical expectile process to be
the stochastic process

p0, 1s Ñ R, s ÞÑ rξ1´p1´τnqs.

Note that the tail quantile process is nothing but tpq1´p1´τnqsu0ăsď1 with
τn “ 1 ´ k{n. Our main objective in this section is to provide general
asymptotic approximations of the tail expectile process by Gaussian pro-
cesses, under the model assumption of heavy-tailed distributions. To this
end, some preparatory remarks and work are necessary.

2.1. Statistical model and preliminary results. We focus on the maximum
domain of attraction of Pareto-type distributions with tail index 0 ă γ ă 1.
The survival function of these heavy-tailed distributions can be expressed
as

(3) F pyq :“ 1´ F pyq “ y´1{γLpyq,

for y ą 0 large enough, where L is a slowly varying function at infinity,
i.e., a positive function on the positive half-line satisfying Lptyq{Lptq Ñ 1
as t Ñ 8 for any y ą 0. Equivalently, by Corollary 1.2.10 in de Haan and
Ferreira [12], the tail quantile function of Y , defined as Uptq :“ q1´t´1 ”

infty P R | 1{F pyq ě tu, satisfies

(4) lim
tÑ8

Uptxq

Uptq
“ xγ for all x ą 0.

The index γ tunes the tail heaviness of F : the larger the index, the heavier
the right tail. Let Y´ “ minpY, 0q denote the negative part of Y . Then,
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6 A. DAOUIA, S. GIRARD AND G. STUPFLER

together with condition E|Y´| ă 8, the assumption γ ă 1 ensures that the
first moment of Y exists, and hence expectiles of Y are well-defined. It has
also been found under (3) or equivalently (4) that

(5)
ξτ
qτ
„ pγ´1 ´ 1q´γ as τ Ñ 1

(Bellini and Di Bernardino [7]). An asymptotic expansion of ξτ {qτ with a
precise quantification of the bias term is obtained in Corollary 1 of Daouia et
al. [11] under the following standard second-order extreme value condition:

C2pγ, ρ,Aq For all x ą 0,

lim
tÑ8

1

Aptq

„

Uptxq

Uptq
´ xγ



“ xγ
xρ ´ 1

ρ

where ρ ď 0 is a constant parameter and A is a function converging to 0
at infinity and having ultimately constant sign. Hereafter, pxρ ´ 1q{ρ is to
be read as log x when ρ “ 0. The meaning and the rationale behind this
second-order extension of the regular variation condition (4) are extensively
discussed in Beirlant et al. [5] and de Haan and Ferreira [12], along with
abundant examples of commonly used continuous distributions satisfying
C2pγ, ρ,Aq. The asymptotic expansion in Daouia et al. [11] can actually be
further strengthened to match our purposes, as follows.

Proposition 1. Assume that E|Y´| ă 8 and condition C2pγ, ρ,Aq holds,
with 0 ă γ ă 1.

(i) We have, as τ Ñ 1,

ξτ
qτ

“ pγ´1 ´ 1q´γ
ˆ

1`
γpγ´1 ´ 1qγ

qτ
pEpY q ` op1qq

`

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

App1´ τq´1q

˙

.

(ii) Let τn Ñ 1 be such that np1´ τnq Ñ 8, and pick s P p0, 1s. Then

ξ1´p1´τnqs

ξτn
“ s´γ

ˆ

1` psγ ´ 1q
γpγ´1 ´ 1qγ

qτn
pEpY q ` op1qq

`
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ
ˆ
s´ρ ´ 1

ρ
App1´ τnq

´1qp1` op1qq

˙

.
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APPROXIMATIONS OF THE TAIL EXPECTILE PROCESS 7

Part (i) of this proposition relaxes the conditions in Corollary 1 of Daouia
et al. [11] by removing their unnecessary assumption of strict monotonicity
of F . Part (ii) gives the asymptotic expansion of intermediate expectiles akin
to condition C2pγ, ρ,Aq for intermediate quantiles, which also reads as

q1´p1´τnqs

qτn
“ s´γ

ˆ

1`
s´ρ ´ 1

ρ
App1´ τnq

´1qp1` op1qq

˙

.

2.2. Main results. It is well-known that, under condition C2pγ, ρ,Aq, the
tail quantile process can be approximated by a sequence of scaled Brownian
motions with drift. Namely, one can construct a sequence Wn of standard
Brownian motions and a suitable measurable function A0 such that

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n

q1´k{n
´ s´γ

˙

´ γs´γ´1Wnpsq ´
?
kA0pn{kqs

´γ s
´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

converges in probability to 0 uniformly in s P p0, 1s for any sufficiently small
ε ą 0 (see Theorem 2.4.8 in de Haan and Ferreira [12]). In addition to sat-
isfying k Ñ 8 and k{n Ñ 0, the sequence of integers k “ kpnq should also
satisfy

?
kA0pn{kq “ Op1q. The proof of this approximation result reveals

that it is subject to a potential enlargement of the underlying probability
space and is valid for a suitable version of the tail quantile process, equal to
the original one in distribution. This result being a convergence in probabil-
ity, we will not explicitly make this distinction in the sequel; full details can
be found in the Supplementary Material document. Besides, the function A0

is actually asymptotically equivalent to A. We may therefore write:

pq1´p1´τnqs

qτn
“ s´γ

˜

1`
1

a

np1´ τnq
γs´1Wnpsq `

s´ρ ´ 1

ρ
App1´ τnq

´1q

` oP

˜

s´1{2´ε

a

np1´ τnq

¸¸

uniformly in s P p0, 1s,(6)

where we set k “ np1 ´ τnq, with τn Ñ 1 and np1 ´ τnq Ñ 8. As regards
the tail expectile process, it is instructive to start by highlighting a simpler
result of pointwise asymptotic normality of sample intermediate expectiles,
already proved in Theorem 2 of Daouia et al. [11].

Theorem 1 (Daouia et al., 2018). Let τn Ñ 1 such that np1´ τnq Ñ 8.
Assume the first-order condition (4) holds with γ P p0, 1{2q. Suppose further
that E|Y´|2`δ ă 8 for some δ ą 0. Then

a

np1´ τnq

˜

rξτn
ξτn

´ 1

¸

d
ÝÑ N

ˆ

0,
2γ3

1´ 2γ

˙

as nÑ8.
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8 A. DAOUIA, S. GIRARD AND G. STUPFLER

Similarly to the uniform approximation (6) of the tail quantile process,
Theorem 1 can be vastly generalized to a uniform approximation of the tail
expectile process s ÞÑ rξ1´p1´τnqs. Already a heuristic combination of Propo-
sition 1, Equation (6) and Theorem 1 suggests that a similar approximation
to (6) might be derived for the tail expectile process under the same as-
sumptions that γ P p0, 1{2q and E|Y´|2`δ ă 8. These conditions essentially
guarantee that the loss variable has a finite variance. This is not likely to
be restrictive in practice, since in most studies on actuarial and financial
data, the realized values of γ have been found to lie well below 1{2; see,
e.g., the R package ‘CASdatasets’, Cai et al. [9], Daouia et al. [11] and the
references therein. It should also be clear that, for any s P p0, 1s, rξ1´p1´τnqs is
an asymptotically normal estimator of ξ1´p1´τnqs whose behavior is heavily
influenced by the highest values in the sample pY1, . . . , Ynq. In other words,
the randomness present in the tail quantile process has a direct impact on
the randomness featured in the tail expectile process. As such, one should
expect the existence of some relationship between Gaussian approximations
for these two processes. Our first main result formalizes these intuitions.

Theorem 2. Suppose that E|Y´|2 ă 8. Assume further that condition
C2pγ, ρ,Aq holds, with 0 ă γ ă 1{2. Let τn Ñ 1 be such that np1´ τnq Ñ 8

and
a

np1´ τnqApp1 ´ τnq
´1q “ Op1q. Then there exists a sequence Wn of

standard Brownian motions such that, for any ε ą 0 sufficiently small,

pq1´p1´τnqs

qτn
“ s´γ

˜

1`
1

a

np1´ τnq
γ
a

γ´1 ´ 1 s´1Wn

ˆ

s

γ´1 ´ 1

˙

`
s´ρ ´ 1

ρ
App1´ τnq

´1q ` oP

˜

s´1{2´ε

a

np1´ τnq

¸¸

and
rξ1´p1´τnqs

ξτn
“ s´γ

ˆ

1` psγ ´ 1q
γpγ´1 ´ 1qγ

qτn
pEpY q ` oPp1qq

`
1

a

np1´ τnq
γ2
a

γ´1 ´ 1 sγ´1

ż s

0
Wnptq t

´γ´1 dt

`
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ
ˆ
s´ρ ´ 1

ρ
App1´ τnq

´1q

` oP

˜

s´1{2´ε

a

np1´ τnq

¸¸

uniformly in s P p0, 1s.
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APPROXIMATIONS OF THE TAIL EXPECTILE PROCESS 9

In the particular case s “ 1, Theorem 2 entails

a

np1´ τnq

˜

rξτn
ξτn

´ 1

¸

d
ÝÑ γ2

a

γ´1 ´ 1

ż 1

0
W ptq t´γ´1 dt

where W denotes a standard Brownian motion. The right-hand side is a
centered Gaussian random variable, whose variance is

γ3p1´ γq

ż 1

0

ż 1

0
minps, tqpstq´γ´1 ds dt “

2γ3

1´ 2γ
.

We do therefore recover Theorem 1, subject to the additional condition
a

np1´ τnqApp1´ τnq
´1q “ Op1q, but under the reduced moment condition

E|Y´|2 ă 8. Note that the bias condition
a

np1´ τnqApp1´τnq
´1q “ Op1q is

also required in order to establish the desired approximation (6) for the tail
quantile process. Because the tail expectile process is, for small s, arbitrarily
close to the tail quantile process (since rξ1 “ Yn,n “ pq1, and s ÞÑ rξ1´p1´τnqs

is a sample-wise continuous function), it is unlikely that the powerful and
flexible approximation in Theorem 2 can be established without resorting to
the same bias condition as in the quantile case. Besides, this bias condition
appears naturally in the estimation of proper expectiles ξτ 1n with extreme
levels τ 1n Ñ 1 such that np1´ τ 1nq Ñ c P r0,8q (see Daouia et al. [11]).

Note also that the asymptotic approximation of the tail expectile pro-
cess in Theorem 2 contains all the error terms obtained in the asymptotic
expansion of high population expectiles (see Proposition 1(ii)). These two
approximations differ only by the presence of a Gaussian process and the
uniform error weighting s´1{2´ε{

a

np1´ τnq. The Gaussian process appears

due to the randomness in rξ1´p1´τnqs, while the term s´1{2´ε{
a

np1´ τnq
appears because, in contrast to Proposition 1(ii), Theorem 2 is a uniform
result. In both approximations, the presence of bias terms proportional to
1{qτn and App1 ´ τnq

´1q may, however, be inconvenient when the ultimate
interest is in comparing directly the tail empirical expectile process with its
population counterpart s ÞÑ ξ1´p1´τnqs. This is particularly the case when
developing the asymptotic theory for integrals of the tail expectile process,
as will be seen below in Section 5. Our second main result is devoted to an-
alyzing directly the gap between the tail empirical expectile process and its
population counterpart. This result cannot be obtained as a direct corollary
of Theorem 2, because Proposition 1(ii) is not a uniform result.

Theorem 3. If the conditions of Theorem 2 hold with ρ ă 0, then there
exists a sequence Wn of standard Brownian motions such that, for any ε ą 0
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10 A. DAOUIA, S. GIRARD AND G. STUPFLER

sufficiently small,

rξ1´p1´τnqs

ξ1´p1´τnqs
“ 1`

1
a

np1´ τnq
γ2
a

γ´1 ´ 1 sγ´1

ż s

0
Wnptq t

´γ´1 dt

` oP

˜

s´1{2´ε

a

np1´ τnq

¸

uniformly in s P p0, 1s.

Compared to Theorem 2, the extra condition ρ ă 0 is unlikely to be
restrictive in practical applications, since most extrapolation results formu-
lated in the extreme value literature under condition C2pγ, ρ,Aq actually
assume that ρ ă 0 (see, e.g., Chapter 4 of de Haan and Ferreira [12] regard-
ing extreme quantile estimation and Daouia et al. [11] for extreme expectile
estimation). This condition is needed in the proof of Theorem 3 to get a
uniform equivalent for ξ1´p1´τnqs{ξτn , which translates, in virtue of (5), into
obtaining a uniform equivalent for q1´p1´τnqs{qτn . The derivation of such
an equivalent is then straightforward since, under ρ ă 0, the quantile qτ is
asymptotically proportional to p1´τq´γ , as τ Ñ 1, according to de Haan and
Ferreira ([12], p.49). Most importantly and in contrast to Theorem 2, Theo-
rem 3 avoids the error terms in the approximation of Proposition 1(ii) that
are proportional to 1{qτn and App1´ τnq

´1q. This comes as a consequence of
examining directly the difference between rξ1´p1´τnqs and ξ1´p1´τnqs, the for-
mer being an asymptotically unbiased estimator of the latter. Finally, note
that the Gaussian term appearing in Theorem 3 is exactly the same as in
the approximation of the tail expectile process in Theorem 2.

Theorems 2 and 3 open the door to the analysis of the asymptotic proper-
ties of a vast array of functionals of the tail expectile and quantile processes.
We discuss in the next sections particular examples where these results can
be used to construct general weighted estimators of the tail index and ex-
treme expectiles, as well as of an expectile-based analogue for the Expected
Shortfall risk measure. Theorems 2 and 3 will be the key tools when it comes
to unravel the asymptotic behavior of these estimators.

3. Estimation of the tail index. In this section, we first construct
purely expectile-based estimators of the tail index γ and derive their asymp-
totic distributions. We shall then construct a more general class of estima-
tors by combining both intermediate empirical expectiles and quantiles. The
basic idea stems from Proposition 1(ii) which suggests the following approx-
imation:

ż 1

0
log

ˆ

ξ1´p1´τnqs

ξτn

˙

ds «

ż 1

0
logps´γq ds “ γ
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APPROXIMATIONS OF THE TAIL EXPECTILE PROCESS 11

where τn Ñ 1 is such that np1´ τnq Ñ 8. One can then estimate γ by

qγτn :“

ż 1

0
log

˜

rξ1´p1´τnqs

rξτn

¸

ds.

A computationally more viable option is to use a discretized version of the
integral estimator qγτn on a regular l´grid of points in r0, 1s, namely:

rγτn,l :“
1

l

l
ÿ

i“1

log

˜

rξ1´p1´τnqpi´1q{l

rξτn

¸

where l “ lpnq Ñ 8. A particularly interesting example is

(7) rγτn :“
1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

log

˜

rξ1´pi´1q{n

rξ1´tnp1´τnqu{n

¸

or, equivalently, rγτn “ rγ1´tnp1´τnqu{n,tnp1´τnqu. This simple estimator has ex-
actly the same form as the popular Hill estimator (Hill [24])

(8) pγτn “
1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

log

ˆ

pq1´pi´1q{n

pq1´tnp1´τnqu{n

˙

with the tail empirical quantile process pq in (8) replaced by its asymmetric
least squares analogue rξ. Beirlant et al. [5] and de Haan and Ferreira [12]
give an extensive overview of the asymptotic theory for the Hill estimator
pγτn . The next theorem gives the asymptotic normality of the three new
estimators qγτn , rγτn,l and rγτn . Its proof essentially consists in writing

log

˜

rξ1´p1´τnqs

rξτn

¸

“ log

˜

rξ1´p1´τnqs

ξτn

¸

´ log

˜

rξτn
ξτn

¸

before integrating and crucially using Theorem 2 twice in order to control
both of the logarithms on the right-hand side.

Theorem 4. Suppose that E|Y´|2 ă 8. Assume further that condition
C2pγ, ρ,Aq holds, with 0 ă γ ă 1{2. Let τn Ñ 1 be such that np1´ τnq Ñ 8,
and suppose that the bias conditions

a

np1´ τnqApp1´τnq
´1q Ñ λ1 P R and

a

np1´ τnq{qτn Ñ λ2 P R are satisfied. Then:

(i)
a

np1´ τnqpqγτn ´ γq

d
ÝÑ N

ˆ

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2,

2γ3

1´ 2γ

˙

.
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12 A. DAOUIA, S. GIRARD AND G. STUPFLER

(ii) If l “ lpnq fulfills
a

np1´ τnq logpnp1´ τnqq{lÑ 0, then (i) holds with
qγτn replaced by rγτn,l. Especially, (i) holds with qγτn replaced by rγτn.

Before using the estimator rγτn to construct a more general class of tail-
index estimators, we formulate a couple of remarks about its theoretical and
practical behavior.

Remark 1. The conditions involving the auxiliary function A in The-
orem 4 are also required to derive the asymptotic normality of the conven-
tional Hill estimator pγτn in (8), with asymptotic bias λ2{p1´ ρq and asymp-
totic variance γ2 [see Theorem 3.2.5 in de Haan and Ferreira ([12], p.74)].
Theorem 4 also features a further bias condition involving the quantile func-
tion q; this was to be expected in view of Proposition 1(ii), of which a conse-
quence is that the remainder term in the approximation ξ1´p1´τnqs{ξτn « s´γ

depends on both A and q. Yet, it is straightforward to eliminate this bias
component: note that the centered variable Z “ Y ´ EpY q is also heavy-
tailed, with the same extreme value parameters as Y , and thus the estimator
qγZτn constructed on the Zi “ Yi ´ EpY q satisfies

a

np1´ τnqpqγ
Z
τn ´ γq

d
ÝÑ N

ˆ

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1,

2γ3

1´ 2γ

˙

.

This suggests to define pZi “ Yi ´ Y n, where Y n is the sample mean, and

then to consider the estimator qγ
pZ
τn . Due to the translation equivariance of

expectiles, the gap between qγ
pZ
τn and qγZτn has the same order as |Y n´EpY q| “

OPp1{
?
nq. It follows that qγ

pZ
τn has the same asymptotic distribution as qγZτn ,

and is therefore a bias-reduced version of qγτn which eliminates the quantile
component of the bias.

Remark 2. The selection of τn is a difficult problem in general, since
any sort of optimal choice will involve the unknown parameter ρ as well as
the function A; for a discussion about the optimal choice of τn in the Hill
estimator based on mean-squared error, see Hall and Welsh [23]. A usual
practice for selecting a reasonable estimate pγτn is, in the reparametrization
τn “ 1´ k{n, to plot the graph of k ÞÑ pγ1´k{n for k P t1, 2, . . . , n´ 1u, and
then to pick out a value of k corresponding to the first stable part of the plot
[see, e.g., de Haan and Ferreira ([12], Section 3)]. There have been a number
of attempts at formalizing this procedure, including Resnick and Stărică [34],
Drees et al. [17], and more recently El Methni and Stupfler [20, 21]. The Hill
plot may be, however, so unstable that reasonable values of k (which would
correspond to estimates close to the true value of γ) may be hidden in the
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graph. The least squares analogue rγ1´k{n in (7) is, in contrast to pγ1´k{n,
based on expectiles that enjoy superior regularity properties compared to
quantiles (see Proposition 1 in Holzmann and Klar [25]). One may thus
expect that rγ1´k{n affords smoother and more stable plots compared to
those of the Hill estimator pγ1´k{n. This advantage is illustrated in Section A
of the Supplementary Material document, where we examine the behavior
of pγ and rγ on two concrete actuarial and financial data sets. It can be seen
thereon that the plots of k ÞÑ rγ1´k{n are indeed far smoother than the
arguably wiggly plots of k ÞÑ pγ1´k{n.

It could, however, happen that rγ has a higher bias than the Hill estimator.
This is for instance the case if |ρ| is large, since a large |ρ| means that the
underlying distribution is, in its right tail, very close to a multiple of the
Pareto distribution for which the Hill estimator is unbiased. An efficient way
to take advantage of the desirable properties of both rγ and pγ in a large class
of models is by using their linear combination for estimating γ. For α P R,
we then define the more general estimator

(9) γτnpαq :“ αpγτn ` p1´ αqrγτn .

We shall call this linear combination the expectHill estimator. For example,
the simple mean γτnp1{2q would represent an equal balance between the use
of large asymmetric least squares statistics in (7) and top order statistics
in (8). The convergence of the expectHill estimator is, however, a highly non-
trivial problem as it hinges, by construction, on both the tail expectile and
quantile processes. The explicit joint asymptotic Gaussian representation of
these two processes, obtained in Theorem 2, is a pivotal tool for our analysis,
and enables us to address the convergence problem in its full generality. We
establish below the asymptotic normality of the expectHill estimator, along
with its joint convergence with intermediate sample quantiles and expectiles.

Theorem 5. Suppose that the conditions of Theorem 4 hold. Then, for
any α P R,

a

np1´ τnq

˜

γτnpαq ´ γ,
pqτn
qτn

´ 1,
rξτn
ξτn

´ 1

¸

d
ÝÑ N pmα,Vαq

where mα is the 1ˆ 3 vector mα :“ pbα, 0, 0q, with

bα “
λ1

1´ ρ

ˆ

α` p1´ αq
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ

˙

´p1´ αqEpY q
γ2pγ´1 ´ 1qγ

γ ` 1
λ2,(10)
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14 A. DAOUIA, S. GIRARD AND G. STUPFLER

and Vα is the 3ˆ 3 symmetric matrix with entries

Vαp1, 1q “ γ2

ˆ

α2

„

3´ 4γ

1´ 2γ
´ 2

pγ´1 ´ 1qγ

1´ γ



´ 2α

„

1

1´ 2γ
´
pγ´1 ´ 1qγ

1´ γ



`
2γ

1´ 2γ

˙

,

Vαp1, 2q “ p1´ αqγrpγ´1 ´ 1qγ ´ 1´ γ logpγ´1 ´ 1qs,

Vαp1, 3q “
γ3

p1´ γq2

„

αpγ´1 ´ 1qγ ` p1´ αq
1´ γ

1´ 2γ



,

Vαp2, 2q “ γ2, Vαp2, 3q “ γ2

ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

, Vαp3, 3q “
2γ3

1´ 2γ
.

As an immediate consequence, we have for any α P R,

(11)
a

np1´ τnq
`

γτnpαq ´ γ
˘ d
ÝÑ N pbα, vαq where vα “ Vαp1, 1q.

This remains valid if rγτn is replaced in (9) by the continuous version qγτn , or
any other discretized version rγτn,l provided

a

np1´ τnq logpnp1´τnqq{lÑ 0.

Remark 3. The optimal value of the weighting coefficient α in (9),
which minimizes the asymptotic variance vα of γτnpαq, only depends on the
tail index γ and has the explicit expression

αpγq “
p1´ γq ´ p1´ 2γqpγ´1 ´ 1qγ

p1´ γqp3´ 4γq ´ 2p1´ 2γqpγ´1 ´ 1qγ
.

Its plot against γ P p0, 1{2q is given in Section B of the Supplementary Ma-
terial document. It can be seen thereon that the simple mean γτnp1{2q of
pγτn and rγτn , with α “ 1{2, affords a middle course between pγτn ” γτnp1q
and rγτn ” γτnp0q in terms of asymptotic variance. In terms of smoothness,
γτnp1{2q offers a middle course as well, as shown in Section A of the Sup-
plementary Material document, where the plot of γτnp1{2q is superimposed
in green line with the plots of pγτn and rγτn .

4. Extreme expectile estimation. In this section, we first return to
intermediate expectile estimation by making use of the general class of γ es-
timators tγτnpαquαPR to construct alternative estimators for high expectiles
ξτn such that τn Ñ 1 and np1 ´ τnq Ñ 8 as n Ñ 8. Then we extrapolate
the obtained estimators to the very high expectile levels that may approach
one at an arbitrarily fast rate.
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Alternatively to the direct nonparametric estimator rξτn defined in (2),
one may use the asymptotic connection ξτn „ pγ

´1 ´ 1q´γqτn between ξτn ,
γ and the intermediate quantile qτn , described in (5), to define the following
indirect semiparametric estimator of ξτn :

pξτnpαq :“
`

γτnpαq
´1 ´ 1

˘´γτn pαq
pqτn .

More generally, one may also combine the two estimators pξτnpαq and rξτn to
define, for β P R, the weighted estimator

ξτnpα, βq :“ β pξτnpαq ` p1´ βq
rξτn .

The two special cases α “ β “ 1 and β “ 0 correspond to the unique existing
intermediate expectile estimators in the literature, namely, the estimators
pξτn and rξτn in Daouia et al. [11]. These were coined, respectively, “indirect
estimator” and “direct estimator” to reflect the asymmetric least squares
nature of the latter and the reliance of the former on quantiles. The next
result provides the limit distribution of ξτnpα, βq for an intermediate level τn.
Its proof crucially relies on the asymptotic dependence structure between the
tail expectile and quantile processes established in Theorem 2, since ξτnpα, βq
is built on both of these processes. More specifically, we use the asymptotic
dependence structure between γτnpαq, pqτn and rξτn proved in Theorem 5.

Theorem 6. Suppose that the conditions of Theorem 4 hold. Then, for
any α, β P R,

a

np1´ τnq

˜

ξτnpα, βq

ξτn
´ 1

¸

d
ÝÑ β

`

bα ` rp1´ γq
´1 ´ logpγ´1 ´ 1qsΨα `Θ

˘

` p1´ βqΞ

where the bias component bα is bα “ λ1b1,α ` λ2b2,α with

b1,α “
p1´ γq´1 ´ logpγ´1 ´ 1q

1´ ρ

„

α` p1´ αq
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ



´
pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´
pγ´1 ´ 1q´ρ ´ 1

ρ
,

b2,α “ ´γpγ´1 ´ 1qγEpY q
ˆ

1` p1´ αqrp1´ γq´1 ´ logpγ´1 ´ 1qs
γ

γ ` 1

˙

,

and pΨα,Θ,Ξq is a trivariate Gaussian centered random vector with covari-
ance matrix Vα as in Theorem 5.
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16 A. DAOUIA, S. GIRARD AND G. STUPFLER

Remark 4. When α “ β “ 1, we recover the convergence of the “indi-
rect estimator” ξτnp1, 1q obtained in Corollary 2 of Daouia et al. [11]. When

β “ 0, we recover the convergence of the “direct estimator” rξτn stated in
Theorem 2 of [11].

The use of the weighted estimator ξτnpα, βq is, by construction, most ap-
propriate when it comes to deal with intermediate expectile levels τ “ τn Ñ
1 such that np1 ´ τnq Ñ 8. In the very far tails where the expectile level
τ “ τ 1n Ñ 1 is such that np1´τ 1nq Ñ c P r0,8q, this estimator becomes unsta-
ble and inconsistent due to data sparsity. To estimate an extreme expectile
ξτ 1n , Daouia et al. [11] propose to extrapolate any consistent intermediate

expectile estimator, say qξτn , to the very high level τ 1n by considering the
generic class of estimators

(12) qξ‹τ 1n :“

ˆ

1´ τ 1n
1´ τn

˙´qγn
qξτn ,

where qγn is a suitable estimator of γ. The rationale behind the formula-
tion (12) is to first use the regular variation condition (3), or equivalently (4),
that entails the following classical extrapolation formula for high quantiles:

qτ 1n
qτn

“
Upp1´ τ 1nq

´1q

Upp1´ τnq´1q
«

ˆ

1´ τ 1n
1´ τn

˙´γ

as τn and τ 1n approach one (Weissman [39]). Then, by applying the asymp-
totic connection (5) between quantiles and expectiles, we get ξτ 1n{ξτn „
qτ 1n{qτn , and hence

(13) ξτ 1n «

ˆ

1´ τ 1n
1´ τn

˙´γ

ξτn .

This motivates the extrapolated Weissman-type estimator (12) obtained by
replacing in the approximation (13) the intermediate expectile ξτn and the
tail index γ with consistent estimators qξτn and qγn, respectively. Here, we
choose to use the general expectHill estimator qγn :“ γτnpαq and the weighted
intermediate estimator ξτnpα, βq to define the following class of extreme
expectile estimators:

(14) ξ
‹

τ 1n
pα, βq :“

ˆ

1´ τ 1n
1´ τn

˙´γτn pαq

ξτnpα, βq.

The two special cases α “ β “ 1 and α “ 1 ´ β “ 1 correspond to the
unique existing extreme expectile estimators in the literature, namely, the
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extrapolated indirect and direct expectile estimators suggested in Daouia et
al. [11]. The next theorem gives the asymptotic behavior of the generalized
extreme expectile estimators ξ

‹

τ 1n
pα, βq.

Theorem 7. Suppose that the conditions of Theorem 4 hold. Assume
also that ρ ă 0 and np1´ τ 1nq Ñ c ă 8 with

a

np1´ τnq{ logrp1´ τnq{p1´
τ 1nqs Ñ 8. Then, for any α, β P R,

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ξ
‹

τ 1n
pα, βq

ξτ 1n
´ 1

¸

d
ÝÑ N pbα, vαq

with pbα, vαq as in (10) and (11).

One can observe that the limiting distribution of ξ
‹

τ 1n
pα, βq is controlled by

the asymptotic distribution of γτnpαq. In particular, in the cases α “ β “ 1
and α “ 1 ´ β “ 1, we exactly recover Corollaries 3 and 4 of Daouia et
al. [11] on the convergence of the extrapolated indirect and direct expectile
estimators. This is a consequence of the fact that the convergence of ξ

‹

τ 1n
pα, βq

is governed by that of the extrapolation factor rp1 ´ τ 1nq{p1 ´ τnqs
´γτn pαq.

The latter approximates the theoretical factor rp1 ´ τ 1nq{p1 ´ τnqs
´γ in the

extrapolation (13) at a slower rate than both the speed of convergence of
ξτnpα, βq to ξτn , given by Theorem 6, and the speed of convergence to 0 of
the bias term that is incurred by the use of (13) and that can be controlled
by Proposition 1(ii).

5. Estimation of tail Expected Shortfall.

5.1. Background. The risk of a financial position Y is usually summa-
rized by a risk measure %pY q, where % is a mapping from a space of random
variables to the real line. Value at Risk (VaR) is arguably the most common
risk measure used in practice. It is given at probability level τ P p0, 1q by
the τ -quantile VaRτ pY q :“ qτ . Hereafter, we adopt the convention that Y
is a real-valued random variable whose values are the negative of financial
returns. The right-tail of the distribution of Y , for levels τ close to one, then
corresponds to the negative of extreme losses.

One of the main criticisms of VaRτ is that it does not account for the size
of losses beyond the level τ , since it only depends on the frequency of tail
losses and not on their values (Dańıelsson et al. [10]). Furthermore, VaRτ

fails to be subadditive, since the inequality VaRτ pY1 ` Y2q ď VaRτ pY1q `

VaRτ pY2q does not hold in general (Acerbi [2]). It is therefore not a coherent
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18 A. DAOUIA, S. GIRARD AND G. STUPFLER

risk measure in the sense of Artzner et al. [4], which is problematic in risk
management.

An important alternative to VaRτ is Expected Shortfall at level τ . This
risk measure is defined as (Acerbi [2])

(15) QESτ :“
1

1´ τ

ż 1

τ
qt dt.

When Y is continuous, QESτ is identical to the Conditional Value at Risk
(Rockafellar and Uryasev [35, 36]), known also as Tail Conditional Expec-
tation (TCE), defined as QTCEτ :“ ErY |Y ą qτ s. Both QESτ and QTCEτ
can then be interpreted as the average loss incurred in the event of a loss
higher than VaRτ . We note, however, that QESτ defines a coherent risk
measure but QTCEτ does not in general (see Wirch and Hardy [40] and
Acerbi and Tasche [3]).

5.2. Expectile-based Expected Shortfall. Motivated by the merits and good
properties of expectiles, Taylor [38] has introduced an expectile-based form
of Expected Shortfall (ES) as the expectation XTCEτ :“ ErY |Y ą ξτ s of
exceedances beyond the τth expectile ξτ of the distribution of Y . The inter-
pretability of this risk measure is therefore straightforward, but its coherence
has been an open problem so far. This problem is now elucidated below in
Proposition 2, showing the failure of XTCEτ to fulfill the coherence property
in general. Alternatively, by analogy to the coherent quantile-based version
QESτ , we propose to use the new expectile-based form of ES

(16) XESτ :“
1

1´ τ

ż 1

τ
ξt dt,

obtained by substituting the expectile ξt in place of the quantile qt in the
standard form (15) of ES. It turns out that, in contrast to XTCEτ , the new
risk measure XESτ is coherent in general.

Proposition 2. For all τ ě 1{2,

(i) XESτ induces a coherent risk measure;
(ii) XTCEτ is neither monotonic nor subadditive in general, and hence

does not induce a coherent risk measure.

The coherence property of XESτ , contrary to that of QESτ , is actually
a straightforward consequence of the coherence of the expectile-based risk
measure ξτ , for τ ě 1{2.
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Next, we show under the model assumption (3) that XESτ is asymptoti-
cally equivalent to XTCEτ as τ Ñ 1, and hence inherits its direct meaning
as a conditional expectation for all τ large enough.

Proposition 3. Assume that E|Y´| ă 8 and that Y has a Pareto-type
distribution (3) with tail index 0 ă γ ă 1. Then

XESτ
QESτ

„
ξτ
qτ
„

XTCEτ
QTCEτ

and
XESτ
ξτ

„
1

1´ γ
„

XTCEτ
ξτ

as τ Ñ 1.

Propositions 2(i) and (3) then afford additional convincing arguments
that the expectile-based ES may be a reasonable alternative to the classical
quantile-based version. Indeed, the new form XESτ is coherent and keeps
the intuitive meaning of XTCEτ as a conditional expectation when τ Ñ 1,
since XESτ „ XTCEτ . As is the case in the duality (5) between the expectile
ξτ and the VaR qτ , the choice in practice between the expectile-based form
of ES and its quantile-based analogue will then depend on the value at hand
of γ ž 1

2 . More precisely, the quantity XESτ is more extreme (respectively,
less extreme) than its quantile-based version QESτ , for all τ large enough,
when γ ą 1

2 (respectively, γ ă 1
2).

The connections in Proposition 3 are very useful when it comes to inter-
preting and proposing estimators for XESτ . Also, by considering the second-
order regular variation condition C2pγ, ρ,Aq, one may establish a precise
control of the remainder term which arises in the asymptotic equivalent
XESτ {ξτ „ p1´ γq

´1. This will prove instrumental when examining asymp-
totic properties of our tail expectile-based ES estimators.

Proposition 4. Assume that E|Y´| ă 8. Assume further that condi-
tion C2pγ, ρ,Aq holds, with 0 ă γ ă 1. Then, as τ Ñ 1,

XESτ
ξτ

“
1

1´ γ

ˆ

1´
γ2pγ´1 ´ 1qγ

qτ
pEpY q ` op1qq

`
1´ γ

p1´ γ ´ ρq2
pγ´1 ´ 1q´ρApp1´ τq´1qp1` op1qq

˙

.

The asymptotic expansion in Proposition 4, like the asymptotic expansion
of expectiles in Proposition 1(i), includes a term proportional to the function
A and another term proportional to the inverse of the quantile function q.
This guarantees that the bias conditions in the estimation of an extreme
XESτ , at a proper extreme level τ “ τ 1n Ñ 1 such that np1´ τ 1nq Ñ c ă 8,
will be similar to those assumed in the estimation of an extreme expectile
ξτ .
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5.3. Estimation and asymptotics. Propositions 1(i) and 4 indicate that
the expectile-based ES satisfies a regular variation property in the same way
as quantiles and expectiles do. To estimate an extreme value XESτ 1n , where
τ 1n Ñ 1 and np1´τ 1nq Ñ c ă 8, we may therefore start by estimating XESτn ,
with τn being an intermediate level, before extrapolating this estimator to
the far tail using an estimator of the tail index γ. A natural estimator of
XESτn is its direct empirical counterpart:

ĆXESτn :“
1

1´ τn

ż 1

τn

rξt dt,

obtained simply by replacing ξt in (16) with its sample version rξt described
in (2). Since this estimator is a linear functional of the tail empirical expec-
tile process, Theorem 3 is more adapted than Theorem 2 for the analysis
of its asymptotic distribution. Technically, using Theorem 2 would involve
connecting ĆXESτn to ξτn , before connecting ξτn back to XESτn via Proposi-
tion 4. In doing so, the second step adds another level of complexity related
to the control of bias terms proportional to the auxiliary function A and
to the inverse of the quantile function q. Using Theorem 3 is much less de-
manding as it allows us to avoid these superfluous bias terms and to address
the convergence problem directly by comparing ĆXESτn with XESτn .

Theorem 8. Under the conditions of Theorem 3,

a

np1´ τnq

˜

ĆXESτn
XESτn

´ 1

¸

d
ÝÑ N

ˆ

0,
2γ3p1´ γqp3´ 4γq

p1´ 2γq3

˙

.

On the basis of Proposition 3 and then of the approximation (13), we
have for τn ă τ 1n Ñ 1 that

XESτ 1n
XESτn

„
ξτ 1n
ξτn

«

ˆ

1´ τ 1n
1´ τn

˙´γ

.

Therefore, to estimate XESτ 1n at an arbitrary extreme level τ 1n, we replace
γ by the expectHill estimator γτnpαq and XESτn at an intermediate level τn

by the estimator ĆXESτn to get

(17) ĆXES
‹

τ 1n
pαq :“

ˆ

1´ τ 1n
1´ τn

˙´γτn pαq
ĆXESτn .

The next result analyzes the convergence of this Weissman-type estimator.
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Theorem 9. Assume that the conditions of Theorem 7 hold. Then

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ĆXES
‹

τ 1n
pαq

XESτ 1n
´ 1

¸

d
ÝÑ N pbα, vαq,

with bα and vα as in (10) and (11).

One can also design alternative options for estimating XESτ 1n by using
the asymptotic connections in Proposition 3. The asymptotic equivalence
XESτ 1n „ p1 ´ γq´1ξτ 1n , established therein, suggests that XESτ 1n can be
estimated consistently by substituting the tail quantities γ and ξτ 1n with their
consistent estimators described in (9) and (14), respectively. This yields the
following extrapolated estimator:

(18) XES
‹

τ 1n
pα, βq :“ r1´ γτnpαqs

´1 ξ
‹

τ 1n
pα, βq

for the weights α, β P R. Another option motivated by the second asymptotic

equivalence XESτ 1n „
ξτ 1n
qτ 1n

QESτ 1n , as established in Proposition 3, would be

to estimate XESτ 1n by

(19) zXES
‹

τ 1n
pα, βq :“

zQES
‹

τ 1n
pαq

pq‹τ 1n
pαq

ξ
‹

τ 1n
pα, βq

for the estimators pq‹τ 1npαq of qτ 1n and zQES
‹

τ 1n
pαq of QESτ 1n defined as

pq‹τ 1npαq :“

ˆ

1´ τ 1n
1´ τn

˙´γτn pαq

pqτn ,(20)

zQES
‹

τ 1n
pαq :“

ˆ

1´ τ 1n
1´ τn

˙´γτn pαq 1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

Yn´i`1,n.(21)

In the special case α “ 1, the latter estimators are identical to the popular
qτ 1n estimator of Weissman [39] and to the extrapolated QESτ 1n estimator of
El Methni et al. [19], respectively.

Theorem 10. Assume that the conditions of Theorem 7 hold. Then, for
any α, β P R,

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

XES
‹

τ 1n
pα, βq

XESτ 1n
´ 1

¸

d
ÝÑ N pbα, vαq

and

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

zXES
‹

τ 1n
pα, βq

XESτ 1n
´ 1

¸

d
ÝÑ N pbα, vαq
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with pbα, vαq as in (10) and (11).

Theorems 9 and 10 are, like Theorem 7, derived by noticing that, on the one

hand, the asymptotic behaviors of ĆXES
‹

τ 1n
pαq, ξ

‹

τ 1n
pα, βq, zQES

‹

τ 1n
pαq and pq‹τ 1npαq

are controlled by the asymptotic behavior of tp1´ τ 1nq{p1´ τnqu
´γτn pαq, which

is itself governed by that of γτnpαq. On the other hand, the nonrandom re-
mainder term coming from the use of Proposition 3 can be controlled thanks
to Proposition 4.

5.4. Extreme level selection. A major practical question that remains to
be addressed is the choice of the extreme level τ 1n in the tail risk measure
XESτ 1n . Since XESτ 1n „ ErY |Y ą ξτ 1ns, this problem translates into choosing
ξτ 1n itself.

When moving from the conventional VaR qpn , for a pre-specified tail prob-
ability pn Ñ 1 with np1´ pnq Ñ c ă 8, to the expectile ξτ 1n , Bellini and Di
Bernardino [7] have suggested to pick out τ 1n so that ξτ 1n ” qpn . The expectile
ξτ 1n then inherits the same intuitive probabilistic interpretation as the quan-
tile qpn while keeping its coherence. This idea was, however, implemented
for a normally distributed Y . Instead, Daouia et al. [11] have suggested to
estimate nonparametrically the level τ 1n that satisfies ξτ 1n “ qpn , without re-
course to any a priori distributional specification apart from the standard
assumption (3) of heavy tails. By taking the derivative with respect to θ in
the L2 criterion (1) and setting it to zero, we get

τ “
E t|Y ´ ξτ |1IpY ď ξτ qu

E |Y ´ ξτ |
for all τ P p0, 1q.

The extreme expectile level τ 1nppnq :“ τ 1n such that ξτ 1n ” qpn then satisfies

1´ τ 1nppnq “
E t|Y ´ qpn | 1I pY ą qpnqu

E |Y ´ qpn |
.

Under the model assumption of Pareto-type tails (3), it turns out that the
resulting level τ 1nppnq asymptotically depends only on the quantile level pn
and on the tail index γ, but not on the value of the extreme quantile qpn .

Proposition 5 (Daouia et al., 2018). If Y has a Pareto-type distribu-
tion (3) with tail index 0 ă γ ă 1, then

1´ τ 1nppnq „ p1´ pnq
γ

1´ γ
as nÑ8.
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The proof of this result can be found in Daouia et al. ([11], Proposition 3).
Built on the expectHill estimator γτnpαq of γ, we can then define a natural
estimator of τ 1nppnq as

(22) pτ 1nppnq :“ 1´ p1´ pnq
γτnpαq

1´ γτnpαq
.

By substituting this estimated value in place of τ 1n ” τ 1nppnq in the extrapo-

lated estimators ĆXES
‹

τ 1n
pαq, XES

‹

τ 1n
pα, βq and zXES

‹

τ 1n
pα, βq described in (17),

(18) and (19), we obtain composite estimators that estimate XESτ 1nppnq „
QESpn , by Proposition 3. It is actually easily seen that the quantile-based

estimator zQES
‹

pnpαq, defined in (21), is identical to the composite expectile-

based estimator zXES
‹

pτ 1nppnq
pα, 1q, obtained for the special weight β “ 1. The

convergence results in Theorems 9 and 10 of the extrapolated estimators
ĆXES

‹

τ 1n
pαq, XES

‹

τ 1n
pα, βq and zXES

‹

τ 1n
pα, βq still hold true for their composite

versions as estimators of QESpn , with the same technical conditions.

Theorem 11. Suppose the conditions of Theorem 7 hold with pn in place
of τ 1n. Then, for any α, β P R,

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

ĆXES
‹

pτ 1nppnq
pαq

QESpn
´ 1

¸

d
ÝÑ N pbα, vαq,

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

XES
‹

pτ 1nppnq
pα, βq

QESpn
´ 1

¸

d
ÝÑ N pbα, vαq,

and

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

zXES
‹

pτ 1nppnq
pα, βq

QESpn
´ 1

¸

d
ÝÑ N pbα, vαq

with pbα, vαq as in (10) and (11).

6. Numerical simulations. In order to illustrate the behavior of the
presented estimation procedures of the tail index γ and the two expected
shortfall forms XESτ 1n and QESpn , we consider the Student t-distribution

with degree of freedom 1{γ, the Fréchet distribution F pxq “ e´x
´1{γ

, x ą 0,
and the Pareto distribution F pxq “ 1 ´ x´1{γ , x ą 1. The finite-sample
performance of the different estimators is evaluated through their relative
Mean-Squared Error (MSE) and bias, computed over 200 replications. All
the experiments have sample size n “ 500 and true tail index γ P t0.35, 0.45u
(motivated by our real data applications where the realized values of γ were
found to vary between 0.35 and 0.45). In our estimators we used the extreme
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levels τ 1n “ pn “ 1´ 1{n and the intermediate level τn “ 1´ k{n, where the
integer k can be viewed as the effective sample size for tail extrapolation.
To save space, all figures illustrating our simulation results are deferred to
Section C of the Supplementary Material document.

6.1. Estimation of the tail index. Our Monte-Carlo simulations in Sup-
plement C.1 indicate that the expectHill estimator γ1´k{npαq, introduced
in (9) with the weight α “ 1{2, is more efficient relative to the standard
Hill estimator pγ1´k{n, given in (8), for both Student and Fréchet distribu-
tions. In the case of the real-valued Student distribution, it may be seen
therein that γ1´k{np

1
2q performs better than pγ1´k{n in terms of MSE, for

all values of k, without sacrificing too much quality in terms of bias, espe-
cially for the larger value of γ. We arrive at the same tentative conclusion
in the case of the Fréchet distribution. By contrast, in the special case of
the Pareto distribution, the Hill estimator pγ1´k{n is exactly the maximum
likelihood estimator of γ and is unbiased, whereas the expectHill estimator
γ1´k{np

1
2q “

1
2ppγ1´k{n ` rγ1´k{nq is biased in this case. Unsurprisingly, the

Monte Carlo results obtained in this case indicate that pγ1´k{n is, as expected,
the winner.

6.2. Expected Shortfall estimation.

6.2.1. Estimates of XESτ 1n. Before comparing the finite-sample perfor-

mance of ĆXES
‹

τ 1n
pαq described in (17), XES

‹

τ 1n
pα, βq in (18) and zXES

‹

τ 1n
pα, βq

in (19), as estimators of XESτ 1n , we first investigated the accuracy of each
estimator in terms of the associated weights α and β. Then we compared
the three estimators with each other by using the best choice of α and β
in each scenario; see Supplement C.2. In particular, we arrive at the follow-

ing tentative conclusion: ĆXES
‹

τ 1n
pαq seems to be the winner in the case of

the real-valued Student distribution for α “ 1, while zXES
‹

τ 1n
pα, βq appears

to be the most efficient in the case of the non-negative Fréchet and Pareto
distributions, for α P t0.5, 1u and β “ 1.

6.2.2. Estimates of QESpn. We have also undertaken simulation exper-
iments to evaluate the finite-sample performance of the composite versions
ĆXES

‹

pτ 1nppnq
pαq, XES

‹

pτ 1nppnq
pα, βq and zXES

‹

pτ 1nppnq
pα, βq studied in Theorem 11,

with pτ 1nppnq being described in (22). These composite expectile-based estima-
tors estimate the same conventional expected shortfall QESpn as the direct

quantile-based estimator zQES
‹

pnpαq defined in (21). In Supplement C.3, we
first examined the accuracy of each estimator for various values of α and β,
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and then we compared the four estimators with each other. We arrive at the
following tentative conclusions:

• In the case of the (real-valued) Student distribution, the best estimator

seems to be ĆXES
‹

pτ 1nppnq
pα “ 0q;

• In the cases of Fréchet and Pareto distributions (both positive), the
best estimators seem to be, respectively, XES

‹

pτ 1nppnq
pα “ 0.5, β “ 1q

and zQES
‹

pnpα “ 1q ” zXES
‹

pτ 1nppnq
pα “ 1, β “ 1q.

6.2.3. Confidence intervals for QESpn. By Theorem 11 we have

?
k

logrk{np1´ pnqs

˜

ĆXES
‹

pτ 1nppnq
pαq

QESpn
´ 1

¸

d
ÝÑ N pbαpγq, vαpγqq,

where bαpγq :“ bα and vαpγq :“ vα are described in (10) and (11), respec-
tively. Under the bias condition λ1 “ λ2 “ 0 in Theorem 4, the asymptotic
bias in (10) reduces to bαpγq “ 0. With this condition, the (symmetric)
expectile-based asymptotic confidence interval with confidence level 100ϑ%

has the form ĂCIϑpkq “ ĆXES
‹

pτ 1nppnq
pαq ˆ I, where I stands for the interval

I :“

„

1˘ zp1`ϑq{2 log

ˆ

k

np1´ pnq

˙

c

vα

´

γ1´k{npαq
¯

{k



,

with zp1`ϑq{2 being the p1 ` ϑq{2´quantile of the standard Gaussian dis-
tribution. Likewise, the confidence intervals derived from the asymptotic

normality of XES
‹

pτ 1nppnq
pαq and zXES

‹

pτ 1nppnq
pα, βq, in Theorem 11, can be ex-

pressed respectively as

CIϑpkq “ XES
‹

pτ 1nppnq
pα, βq ˆ I, xCIϑpkq “ zXES

‹

pτ 1nppnq
pα, βq ˆ I.

Note also that the quantile-based confidence interval, derived from the asymp-

totic normality of zQES
‹

pnpαq ”
zXES

‹

pτ 1nppnq
pα, 1q, is just xCIϑpkq for β “ 1. In

Supplement C.4, we compared the average lengths and the achieved cover-
ages of the three 95% asymptotic confidence intervals ĂCI0.95pkq, CI0.95pkq

and xCI0.95pkq. It follows that

• ĂCI0.95pkq performs best in the case of the Student distribution, for the
selected weight α “ 1;
• xCI0.95pkq performs quite well in the case of the Fréchet distribution,

for the selected weights α “ 1 and β “ 1;
• CI0.95pkq performs quite well in the case of the Pareto distribution, for

the selected weights α “ 1 and β “ 0.5.
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7. Application to medical insurance data. The Society of Actuar-
ies (SOA) group Medical Insurance large claims database contains 75,789
claim amounts exceeding 25,000 USD, collected over the year 1991 from 26
insurers. The full database which records about 3 million claims over the
period 1991-92 is available at http://www.soa.org. The scatterplot and
histogram of the 1991 log-claim amounts, displayed in Figure 1(a), exhibit
a considerable right-skewness. Beirlant et al. ([5], p.123) have argued that
the underlying distribution is heavy-tailed with a γ estimate around 0.35. A
traditional instrument to assess the magnitude of future unexpected higher
claim amounts is the expected shortfall QESpn described in (15). Insurance
companies typically are interested in an extremely low exceedance proba-
bility of the order of 1{n, say, 1 ´ pn “ 1{100,000 for the sample size n “
75,789. This corresponds to rare events that happen on average only once
in 100,000 cases.

In this situation of non-negative data with heavy right tail, our expe-
rience with simulated data indicates that XES

‹

pτ 1nppnq
pα “ 0.5, β “ 1q and

zQES
‹

pnpα “ 1q provide the best extrapolated pointwise estimates of the
extreme value QESpn in terms of MSE and bias. As such, these are the es-
timates we adopt here. For the sake of simplicity, they will be denoted by

XES
‹

pτ 1nppnq
and zQES

‹

pn , respectively.

The path of the composite expectile-based estimator XES
‹

pτ 1nppnq
against

the sample fraction k is shown in Figure 1(b) as the rainbow curve, for the
selected range of intermediate values of k “ 10, 11, . . . , 700. The effect of the
expectHill estimate γ1´k{npα “ 0.5q on XES

‹

pτ 1nppnq
is highlighted by a colour-

scheme, ranging from dark red (low γ1´k{n) to dark violet (high γ1´k{n).
This γ estimate seems to mainly vary within the interval r0.35, 0.36s, which
corresponds to the stable (green) part of the plot. The curve k ÞÑ XES

‹

pτ 1nppnq

exceeds overall the sample maximum Yn,n “ 4.51 million (indicated by the
horizontal pink dashed line). To select a reasonable pointwise estimate, we
applied a simple automatic data-driven device that consists first in comput-
ing the standard deviations of XES

‹

pτ 1nppnq
over a moving window large enough

to cover 20% of the possible values of k in the selected range 10 ď k ď 700.
Then the k where the standard deviation is minimal defines the desired sam-
ple fraction. The resulting estimate XES

‹

pτ 1nppnq
“ 5.99 million is obtained for

the value k “ 208 in the window r119, 259s.

The path of the direct quantile-based estimator zQES
‹

pn against k is graphed
in the same figure as dashed black curve. It is broadly similar to that of
XES

‹

pτ 1nppnq
, but the latter is smoother and more stable. The pointwise esti-

mate zQES
‹

pn “ 6.37 million is indicated by the minimal standard deviation
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achieved at k “ 222 over the window r119, 259s. It is more pessimistic (in
risk assessment terminology) than XES

‹

pτ 1nppnq
“ 5.99 million, probably due

to the instability of the quantile-based plot in dashed black.
Our experience with simulated data also indicates that reasonably good

asymptotic 95% confidence intervals for QESpn , in terms of average lengths

and achieved coverages, are provided by xCI0.95pkq, constructed via zQES
‹

pn ,

and CI0.95pkq constructed on XES
‹

pτ 1nppnq
pα “ 1, β “ 0.5q. The two confi-

dence intervals CI0.95pkq and xCI0.95pkq are superimposed in Figure 1(b) as
well, respectively, in dotted blue and solid grey lines. Though CI0.95pkq gives

slightly more pessimistic confidence bounds than xCI0.95pkq, both confidence
intervals point towards similar conclusions. In particular, the stable parts of
their lower boundaries (around k P r100, 500s) remain quite conservative as
they are very close from the maximum recorded claim amount.

Finally, we would like to comment on the estimator pτ 1nppnq of the extreme
expectile level τ 1nppnq which ensures that XES

‹

pτ 1nppnq
estimates XESτ 1nppnq „

QESpn . The plot of pτ 1nppnq versus k is graphed in Figure 1(c) as rainbow
curve, and the corresponding optimal pointwise estimate is indicated by the
horizontal dashed black line. This selected optimal level pτ 1nppnq “ 0.9999944
is much higher than the pre-specified relative frequency pn “ 0.99999 indi-
cated by the horizontal dashed pink line. This is actually in line with our
theoretical findings in Proposition 3 that lead in conjunction with (5) to

XESpn
QESpn

„
ξpn
qpn

„ pγ´1 ´ 1q´γ as pn Ñ 1.

Since γ ă 1{2, it follows that XESpn is less extreme than QESpn „ XESτ 1nppnq,
for all pn large enough. Therefore pn ă τ 1nppnq by monotonicity of τ ÞÑ XESτ ,
which follows from the fact that XESτ “ p1´ τq

´1
ş1
τ ξt dt, where the expec-

tile function t ÞÑ ξt is continuous and strictly increasing by Proposition 1 in
Holzmann and Klar [25].

Supplementary Material. The supplement to this article contains
simulation results and a second application to financial data, along with
technical lemmas and the proofs of all our theoretical results.
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Fig 1. (a) Scatterplot and histogram of the log-claim amounts. (b) The ES plots k ÞÑ

XES
‹

pτ 1
nppnq

pα “ 0.5, β “ 1q as rainbow curve, and k ÞÑ zQES
‹

pn
pα “ 1q in dashed black,

along with the constant sample maximum Yn,n in horizontal dashed pink. The confidence

intervals CI0.95pkq in dotted blue lines and xCI0.95pkq in solid grey lines. (c) The plot
of k ÞÑ pτ 1nppnq as rainbow curve, along with the selected optimal pointwise estimate in
horizontal dashed black line, and the constant tail probability pn in horizontal dashed pink.
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