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Abstract We study the scaling of strength and tough-

ness in function of temperature, loading rate and sys-

tem size, to investigate the difference between tensile

failure and fracture failure. Molecular simulation is used

to estimate the failure of intact and cracked bodies

while varying temperature, strain rate and system size

over many orders of magnitude, making it possible to

identify scaling laws. Two materials are considered: an

idealized toy model, for which a scaling law can be de-

rived analytically, and a realistic molecular model of

graphene. The results show that strength and tough-

ness follow very similar scalings with temperature and

loading rate, but differ markedly regarding the scal-

ing with system size. Strength scales with the num-

ber of atoms whereas toughness scales with the num-

ber of cracks. It means that intermediate situations of
moderate stress concentrations (e.g., notch) can exhibit

not obvious size scaling, in-between those of strength

and toughness. Following a theoretical analysis of fail-

ure as a thermally activated process, we could rational-
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ize the observed scaling and formulate a general rate-

temperature-size equivalence. The scaling law of the toy

model can be derived rigorously but is not representa-

tive of real materials because of a force discontinuity in

the potential. A more representative scaling law, valid

for graphene, is proposed with a different exponent.
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1 Introduction

Understanding mechanical failure is essential for the re-

liability of structures. Yet, the modeling of failure ini-

tiation remains quite debated. Many initiation crite-

ria have been proposed in the literature but no con-

sensus exists (Brochard et al, 2016). The various theo-

ries aim at reconciling two well understood limit cases,

namely tensile strength and fracture toughness. Tensile

strength, which describes the failure of flawless materi-

als, is captured by a stress criterion (failure surface). In

contrast, fracture toughness, which describes the failure

of cracked bodies, is captured by an energy released cri-

terion (linear elastic fracture mechanics). But a general

theory of failure must be able to handle intermediary

situations, that is to combine stress and energy in a

more general criterion. So far, initiation theories have

been postulated; e.g., cohezive zone models (Dugdale,

1960), non-local approaches (Novozhilov, 1969) or fi-

nite fracture mechanics (Leguillon, 2002). But a rigor-

ous approach, necessary to reach a consensus, requires

to understand the elementary physics at the heart of

mechanical failure.

The most elementary scale of mechanical failure is

the scale of atoms and molecules where atomic bonds
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break and crack surface is created. While the physical

evolution of macroscopic systems is described by contin-

uum thermodynamics, at the atomic scale, fluctuations

become significant and need to be accounted for, which

is the purpose of statistical physics. In particular a gen-

eral theory of failure should be able to relate the failure

stress to the temperature-induced fluctuations through

general scaling laws. Such a theory, called kinetic the-

ory of strength, was proposed initially by Zhurkov (see

Regel’ et al (1972) or Zhurkov (1984)). This theory cap-

tures how failure stress σfailure depends on both tem-

perature T and loading time τ through a general scaling

law that has been verified for a wide variety of mate-

rials : τ ∝ exp
(
∆E(σfailure)

kT

)
, with ∆E (σfailure) > 0

the energy barrier to reach the transition state to fail-

ure. One can recognize in this law the Boltzmann fac-

tor characteristic of thermally activated processes. Con-

frontation with experiments shows that, for most ma-

terials, ∆E ≈ E0 − γσ, hence :

σfailure
σfailure (0K)

= 1− T

Tcr
ln

(
τ

τcr

)
(1)

with τcr and Tcr two constants with dimensions of time

and temperature respectively that depend on the mate-

rial. The derivation of Equation 1 assumes that failure is

the consequence of the occurrence of a transition state

(e.g., breaking of a bond) associated with an energy

barrier ∆E and with no reverse process (e.g., reforma-

tion of the bond), which is valid in the limit of small

temperatures (∆Ereverse −∆E � kT ).

Interestingly, thermally activated scaling laws are

not confined to brittle failure but is encountered in

many other failure mechanisms, although the expres-

sion of energy barrier ∆E may vary from one mecha-

nism to another leading to different exponents on T ln (τ)

in Eq. (1) : plasticity of metallic glasses (Argon, 1979;

Johnson and Samwer, 2005; Schuh et al, 2007), dislo-

cation nucleation in ductile crystals (Zhu et al, 2008),

yield by bond rotation in carbon nanotube (Wei et al,

2003; Dumitrica et al, 2006). A particular case of in-

terest here is fracture failure, which has been investi-

gated theoretically in the framework of thermal acti-

vation by Petrov and Orlov (1975, 1976). A key con-

sideration pointed out by Petrov and Orlov is the size

effect. Indeed, many ’competing’ transitions states can

lead to failure. For instance, in a body with many iden-

tical micro-cracks, each micro-crack can be the source

of a macro-crack, but only one does actually become a

macro-crack. This points to a difference in the scaling

between fracture toughness and tensile strength, since

the presence of flaws concentrates the transition states

in the vicinity of the flaws.

In the literature, scaling and size effects of failure

have attracted attention mostly in the context of distri-

bution of flaws (Carpinteri, 1994; Carpinteri and Pugno,

2005) and of large scale yielding (Bazant and Chen,

1997; Brochard et al, 2015). In contrast, the combined

temperature-loading rate-size scaling of the kinetic the-

ory has attracted only little attention. Part of the dif-

ficulty stems to the logarithmic scaling which requires

very large variations in loading rate and system size

for proper investigation. Only the temperature scal-

ing is easily achieved experimentally. In this respect,

molecular simulations techniques offers an interesting

alternative to experiments since one can easily vary

the loading rate and the system size over orders of

magnitudes. Slutsker (2005) propose a detailed study

of Zhurkov’s theory by molecular simulation but, to

the best of our knowledge, the confrontation between

strength and toughness scaling has not been studied

so far. The purpose of this paper is to investigate with

molecular simulation techniques the scalings of strength

(tensile failure) and toughness (fracture failure) and

confront the two scalings. We show, for a toy model

(triangular lattice) and for graphene, that their fail-

ure is a thermally activated process exhibiting the ex-

pected Zhurkov-like scaling. Confronting strength and

toughness, we highlight the essential difference in size

scaling between fracture toughness and tensile strength.

Thus, even though tensile failure and fracture failure

arise both from the occurrence of a transition state,

the distribution of these states differs radically. This

study can serve as a starting point for the elaboration

of a physically-based theory of initiation.

In section 2, we present the systems considered and

the methodology used. In section 3, we present the re-

sults and we propose a theoretical analysis of the ob-

served scaling in section 4.

2 Methods

We use molecular dynamics (MD) simulations to in-

vestigate failure at the atomistic scale. Molecular dy-

namics techniques give access to a space and time res-

olution hardly accessible experimentally. In particular,

in this work, we focus on the scaling of the stress at

failure with respect to temperature, system size and

loading rate. Investigating such scaling requires to vary

all those parameters over several orders of magnitude.

Even though conventional MD is limited to millions of

atoms simulated over nanoseconds, one can reasonably

investigate 4 to 5 decades of scaling, which is enough

for the present purpose.

We study two different materials: a toy model 2D

solid and a realistic model of graphene. The respective
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Fig. 1 Crystal structures of the toy model 2D solid (left)
and of the graphene (right). The basis vectors give the name
of the orientations used throughout this paper.

atomic structures of these two models are displayed in

Figure 1. The toy model is a crystalline material made

of a regular triangular lattice in which the inter-atomic

potential is limited to harmonic interactions between

nearest neighbors: U =
∑
i<j Uharmo (rij) with

Uharmo (r) =

{
K
2 (r − r0)

2 − Ucr if r < rcr

0 otherwise
(2)

where rij is the distance between atoms i and j, K, r0
and rcr > r0 are the force constant, equilibrium dis-

tance and critical distance of the potential. The shift

term Ucr = K
2 (rcr − r0)

2
ensures continuity of the en-

ergy at r = rcr. The potential is made irreversible, that

is, once a bond is broken (r > rcr) then it is removed

from the system and can never reform even if the dis-

tance between the two atoms returns to less than rcr.

Doing so, we avoid any reversibility of the failure pro-

cess (i.e., no ’healing’ of bond).

The interest for such a toy model is that the re-

sults can be easily interpreted and confronted to the-

ory. Toy models (including the triangular lattice) have

been widely studied in the literature since the 1970’s

to understand the physics of failure. Thomson (1986)

treated this type of toy model via Green’s functions

and, notably, identified energy barriers to failure sim-

ilar to the expressions obtained in the present paper.

Slepyan (2002) found analytical solutions for crack dy-

namics and considered in particular the triangular lat-

tice. Many pursued these investigations in the follow-

ing decades. Let us mention Marder and Gross (1994);

Thomson et al (1992); Pechenik et al (2002) among oth-

ers, who worked on the triangular lattice. To the best

of our knowledge, the scaling study we report in this

paper has never been done before.

For the triangular lattice we consider, the elastic

mechanical behavior and tensile strength can be antic-

ipated as follows, under small strain hypothesis at 0K:

elastic behavior:


σxx =

√
3K

(
3εxx+εyy

4

)
σyy =

√
3K

(
εxx+3εyy

4

)
σxy =

√
3
2 Kεxy

(3)

tensile strength:


σyy√

3
+σxy

K ≤ rcr
r0
− 1

σyy√
3
−σxy
K ≤ rcr

r0
− 1

3σxx−σyy
2
√
3K

≤ rcr
r0
− 1

(4)

According to equations (3), one expects a simple lin-

ear elastic isotropic behavior with bulk modulus
√

3K/2

and shear modulus
√

3K/4. The tensile strength (Eq.

4), however, exhibits a non trivial surface. In particular,

the strength is clearly anisotropic. The relations (2), (3)

and (4) call for considering the following dimensionless

quantities: r∗ = r/r0, U∗ = U/
(
Kr20

)
, σ∗− = σ−/K,

T ∗ = kBT/
(
Kr20

)
(kB is Boltzmann constant). The

results presented throughout this paper refer to those

quantities.

The theoretical behavior given by Equations (3) and

(4) assumes static equilibrium of the lattice which is

the limit of low temperature (0K) and quasi-static load-

ing. At finite temperatures and finite loading rate, ther-

mal agitation and lattice vibrations (phonons) give rise

to deviations from this theoretical prediction. In the

following sections, we investigate those deviations. We

perform MD simulations of periodic systems with r∗cr =

1.1 and compute the tensile strength for various load-

ing orientations, system sizes, temperatures and loading

rates. More precisely, we consider 84 different loading

orientations ranging from purely volumetric to purely

deviatoric. We consider sizes ranging from N = 30 to

N = 491520 atoms, temperatures from T ∗ = 10−4 to

T ∗ = 1, and loading rates from ε̇∗ = 6.87 · 10−11 to

ε̇∗ = 2.06 ·10−5. Here, we define the dimensionless load-

ing rate ε̇∗ = dε
dt∗ with respect to the dimensionless time

t∗ = t/
√
K/m where m is the mass of the atom. The

Cauchy stress tensor is computed with the usual virial

estimate (Allen and Tildesley, 1989). All these simu-

lations are performed under isothermal conditions im-

posed by a Langevin thermostat and a velocity-Verlet

integration scheme (Frenkel and Smit, 2002). In this

work, we preferred to use a Langevin thermostat rather

than the more conventional Nose-Hoover thermostat

because the Nose-Hoover thermostat is known to be

non-ergodic in the particular case of the harmonic os-

cillator (Legoll et al, 2007), which is an issue with re-

spect to the toy model we study. Considering isother-

mal conditions is valid in this work because the system

considered exhibit no irreversibilities untill the onset
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of failure. In the general case, the temperature field is

not uniform, for instance, plasticity at a crack tip in-

duces a strong heating (Rice and Levy, 1969), which

can dramatically affect the failure behavior (Zehnder

and Rosakis, 1991; Flores and Dauskardt, 1999; Pon-

son et al, 2006; Wang et al, 2008).

Besides tensile failure, we also study the fracture

failure of the toy model. One can estimate an approxi-

mate theoretical value of the toughness of the toy model

by considering that fracture failure occurs when the

first bond at a crack tip breaks. According to frac-

ture mechanics, for a crack in the x direction and a

loading in the y direction, the stress field is singular

at the tip with an asymptotic stress ahead of the tip

σyy (r) ≈ KIc√
2πr

, where r is the distance to the crack

tip and KIc is the toughness. The first bond at tip

breaks when the force it supports exceeds its carrying

capacity. As a first approximation, one can estimate

the stress it support by the integration of the stress

singularity over the the length supported by the bond:∫ r0/2
0

σyy (r) dr = KIc

√
r0/π (for a crack in the x di-

rection, the first bond is oblique and supports the load

in y over a length r0/2). The carrying capacity is given

by the first two criteria in Equation (4) for the oblique

bonds: r02
√

3K
(
rcr
r0
− 1
)

. We thus obtain the following

estimate of the toughness of the toy model:

KIc ∼ K
√

3π

4
r0

(
rcr
r0
− 1

)
(5)

Note that, unlike Equations (4) for strength, this

is only an estimate that provides an order of magni-

tude. To study the fracture failure by molecular simu-

lations, we simulate flawed systems with initial cracks

initiated inside the material as displayed in Figure 2.

A crack is initiated by removing bonds along a line. As

for tensile failure, we consider periodic boundary condi-

tions for the simulation of fracture failure. This choice

is made to avoid spurious interface effects at non peri-

odic boundaries. As a consequence, the cracked system

is surrounded by periodic replica of the crack. The pres-

ence of a periodic crack has to be accounted for care-

fully in order to estimate the fracture toughness from

the stress at failure. According to linear elastic fracture

mechanics, when the system is submitted to a remote

loading in the direction orthogonal to periodic cracks,

the stress intensity KI in mode I at the cracks’ tips is :

KI = Σ
√
πaC

(
2a

L
,
H

L

)
(6)

whereΣ is the average stress in the direction orthogonal

to the crack, a is the half crack length and L and H are

the x and y dimension of the periodic cell. One can

identify the usual stress intensity for a finite crack in

an infinite body (Σ
√
πa), and the coefficient C

(
2a
L ,

H
L

)
is a correction due to the presence of periodic cracks.

In particular, as 2a/L → 0, C → 1 and one recovers

the non-periodic case; and, as 2a/L → 1, C → +∞
since periodic cracks merge in this limit. There exists no

analytic expression of C
(
2a
L ,

H
L

)
but several numerical

estimate have been proposed. In this work, we use the

numerical estimate of Karihaloo et al (1996). According

to fracture mechanics, failure occurs when the stress

intensity reaches a critical value KIc, called toughness:

Accordingly, the toughness and the average stress Σcr
at failure are related according to:

Σcr =
KIc√

πaC
(
2a
L ,

H
L

) (7)

Equation (7) can be used to estimate the toughness

of the material from the result of a molecular simula-

tion of the periodic system with initial crack. Note how-

ever, that Equation (7) is based on linear elastic frac-

ture mechanics which assumes small scale yielding (An-

derson (2005)). Therefore, it is valid only if the crack

length and the distance between periodic replica is suffi-

ciently large compared to the characteristic length rpl =

(KIc/σstrength)
2

of the process zone at the crack tip.

In practice, rpl is often much larger than the size of

an atom, and using Equation (7) at the atomic scale

is questionable. We investigated this issue in previous

work (Brochard et al, 2015, 2016). Regarding the present

study, the toy model has a very low process zone: us-

ing the toughness estimation (Eq. 5), we obtain rpl =

πr0/4. With the simplistic pair potential considered,

fracture failure arises from a single bond breaking, that

is rpl is about the size of an atom. So we expect Equa-

tion (7) to be reproduced precisely at the atomic scale.

In contrast, the characteristic length rpl is about 1.5 nm

for graphene and capturing the toughness with Equa-

tion (7) is possible for system at least 10 nm large which

starts to be computationally expensive (see Brochard

et al (2016)). So, we limit ourselves to the study of ten-

sile failure for graphene.

We simulate fracture failure of the toy model for

various system sizes, crack lengths, temperatures and

loading rates. In all the simulations, cracks are initi-

ated in the direction x and the systems are loaded in

the y direction. Therefore, one obtains only the mode

I toughness for crack propagation in the x direction.

We consider crack lengths ranging from 2a/L = 0 (i.e.,

tensile failure) to 2a/L = 1 (i.e., fully separated). The

range of system sizes and temperatures considered is

the same as for tensile failure. Regarding loading rates,
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L

2a

Σ

Σ

H

Fig. 2 System considered for the study of fracture failure: an
initial crack is initiated by removing bonds along a line. Due
to periodicity, the same crack exists in the periodic replica of
the system.

we consider rates one order of magnitude smaller than

for tensile failure. Indeed, as will be discussed in section

4, excessive rates tend to introduce bias in our results

and this bias appears more significant for the toughness

estimate than for the strength estimate.

In addition to temperature, size and loading rate,

we also investigate the scaling with respect to the num-

ber of initial crack in the periodic cell. To do so mul-

tiple cracks are initiated periodically in the system as

displayed in Figure 3. The system being periodic, one

recovers a situation similar to that of Figure 2. But the

two situations are not statistically equivalent: in the

original system (Fig. 2) all the periodic cracks experi-

ence an identical time evolution, whereas in the system

of Figure 3 the time evolutions of the cracks in the

primary cell are different. In particular, in the original

system, failure occurs simultaneously at all the cracks,

whereas in the system with multiple cracks, only one of

the cracks in the primary cell fails. As a consequence, at

same reduced crack length 2a/L, temperature, system

size and loading rate, the estimated toughness differs

between the two systems. This points to a specific scal-

ing with respect to the number of initial cracks in the

periodic cell that we address together with the other

factors. In the simulations, we consider a number of

crack ranging from 1 to 256 (i.e., 16 by 16).

In addition to the toy model, we study the more re-

alistic situation of graphene. Graphene is a crystalline

material with honeycomb structure (Fig. 1) which has

attracted a lot of attention because of its exceptional

physical properties. Graphene failure has been the focus

of many studies in the literature (see, for instance, the

review of Zhang et al (2015) and references therein).

It appears that graphene is brittle, i.e., exhibits high

strength (∼ 130 GPa) but relatively low toughness (∼
4 MPa.

√
m). Many molecular simulation studies (Omeltchenko

et al (1997); Belytschko et al (2002); Khare et al (2007);

Zhang et al (2012); Moura and Marder (2013); De-

2L

2a

Σ

Σ

2H

Fig. 3 Type of system considered to investigate the scaling of
toughness with the number of cracks: several periodic cracks
are initiated within the elementary cell actually simulated.
Periodic boundary conditions makes this geometry similar to
that of Figure 2, but the two systems are not statistically
equivalent; in particular, the corresponding toughnesses are
different.

wapriya et al (2014) to mention a few) investigated the

failure properties of graphene from its tolerance to flaw

to the effects of polycrystalinity. In the present paper,

we consider graphene as a realistic case study in con-

trast with the case of the toy model.

Several inter-atomic potentials exist to simulate graphene.

We consider the REBO potential of Brenner (1990).

This potential is known to lead to an excessive strength

due a spurious bump in the aromatic carbon-carbon

interaction force as the material is stretched (Shen-

derova et al, 2000; Belytschko et al, 2002). A way to cir-

cumvent this problem consists in modifying the switch-

ing function performing a smooth cut-off of the C-C

interaction between rmin = 1.7Å and rmax = 2.0Å.

The distance rmin is set to 2.0Å so that the function

performs a sharp cut-off of the energy at 2.0Å (Yaz-

dani and Hatami, 2015). This modification effectively

suppresses the bump and leads to an elasticity and

strength that compares well with ab-initio calculations

(Liu et al, 2007) and experimental measurements (Lee

et al, 2008). Note, however, that this modification intro-

duces a discontinuity in the original formulation of the

energy which must be handled carefully. In the present

work, all the implementation of the molecular dynam-

ics rely on the atomic forces only and the associated

energy potential is the continuous integration of the

force field. The general methodology is the same as for

the simulation of the toy model except that we investi-

gate tensile strength only. The graphene systems stud-

ied contain 2508 to 2618 atoms (about 8× 8 nm2) and

are loaded with a strain rate of 0.001 ps−1 at tempera-

tures ranging from 0K to 2700K. Even though graphene

has a two dimensional structure, the failure behavior

is affected by the third dimension. To investigate this

question we perform both simulations in 3D and simu-

lations in 2D by constraining the material in the plane.
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Fig. 4 Tensile strength obtained for the toy model for various
temperatures and loading directions. No shear is applied to
the material so that σxy = 0 for all the points represented.

All the calculations are performed with LAMMPS soft-

ware (http://lammps.sandia.gov, (Plimpton, 1995)).

3 Results

In this section we present the results of the molecular

simulations. A detailed analysis of the scalings is pre-

sented in section 4.

3.1 Effect of temperature on strength

First of all, we focus on the effect of temperature on ten-

sile strength. We show in Figure 4 the failure surface of

the toy model at various temperatures. For sake of gen-

erality, the displayed results are reduced with respect to

the characteristic tensile strength σ∗0 = σ0/K = r∗cr−1.

Moreover, the temperature scale is given relative to

the characteristic failure temperature T ∗0 = kBT0

Kr20
=

(r∗cr − 1)
2
. At 0K, the theoretical failure surface is given

by Equations (4). This theoretical surface is drawn with

a black line in Figure 4. Note that we display the Pi-

ola I stresses (first Piola-Kirchhoff stress) and not the

Cauchy stresses as is usually done. The reason is that

the theoretical failure surface of Equations (4) is cal-

culated for the undeformed configuration, whereas the

Cauchy stress relates to the deformed configuration. In

order to confront the results of molecular simulation to

the 0K theory, we convert the Cauchy stress tensor (σ)

into the Piola I stress tensor (π) as follows:

π = det
(
F
)
σt · F−t (8)

where F is the deformation gradient tensor. In the limit

of small strains, the Piola I stresses are almost equal to

0 20 40 60 80 100

Piola I stress πzz (GPa)

0
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P
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100K
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1000K

Fig. 5 Tensile strength results for graphene simulated in 2D
(results in 3D are similar). All points are in the plane σxy =
0. The results at 0K are obtained by minimization (static
equilibrium) and not by molecular dynamics.

the Cauchy stresses. But, for the case of the toy model,

the deformations are of the order of r∗cr − 1 = 10%

which is large enough to induce significant differences

between the two tensors. In terms of Piola I stresses,

the simulations results at low temperatures are in very

good agreement with the 0K theory.

One can readily interpret the shape of the tensile

failure surface. It exhibits two modes of failure. The hor-

izontal branch (πyy constant) corresponds to the failure

of the bonds at ±30◦ of the y axis in the crystal struc-

ture (Fig. 1). The oblique branch (3πxx−πyy constant)

corresponds to the failure of the bonds along the x axis

in the crystal structure. As temperature is increased,

one observes a decrease of the tensile strength. Inter-

estingly, this decrease appears almost independent of

the loading direction.

In Figure 5, we display the tensile failure surface

of graphene for various temperatures. As for the toy

model, we represent the Piola stress which differs sig-

nificantly from the Cauchy stress since the deformations

reach ∼ 20% at failure. Again, the tensile strength de-

creases with temperature. However, this decrease is no

more independent of the loading direction: the strength

decreases faster in the zigzag (’zz’) direction than in the

armchair (’ac’) direction. Therefore, the orientational

invariance observed for the toy model is a peculiarity

of this system. One can clearly identify two regimes

in the tensile failure surface of graphene: an horizon-

tal branch (πac almost constant) corresponding to the

failure of the bonds oriented in the armchair direction

in the crystal structure (Fig. 1); and a vertical branch

(πzz almost constant) corresponding to the failure of

the bonds at ±30◦ of the zigzag direction in the crystal

structure. Of course, this bond failure interpretation is

an idealization since the actual atomic interactions in
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mization and not by molecular dynamics.

graphene are many-body and much more complex than

bond interactions.

3.2 Effect of temperature on toughness

In this section, we focus on the toughness estimation.

We perform molecular simulations of pre-cracked sys-

tems as illustrated in Figure 2. When changing the ini-

tial crack length, one expects Equation (7) of fracture

mechanics to apply, thus providing a way to estimate

the toughness. We perform simulations at different tem-

peratures and we display the stress at failure in function

of the initial crack length in Figure 6. Then, we fit each

curve with Equation (7) to derive the evolution of the

toughness with the temperature. For sake of clarity, the

results of Figure 6 are shifted vertically. In an actual

representation, all curves would end at 0 for 2a/L = 1.

Fits with the theory of fracture mechanics are pre-

cise, except at the largest temperatures were deviations

are observed for small crack lengths. At 0K, we ob-

tain a toughness K∗Ic = KIc
K
√
r0

= 0.198. This value

compares well with the theoretical estimate (Eq. 5):

K∗Ic =
√

3π/4 (r∗cr − 1) = 0.153. The tensile strength

in the same loading direction (y) at 0K is given by Eq.

4: σ∗strength =
σstrength

K =
√

3 (r∗cr − 1) = 0.1
√

3. There-

fore the characteristic length of the process zone at 0K

is r∗pl =
rpl
r0
≈ 1.31. As expected, the process zone is

about the size of an atom, and fracture mechanics is ex-

pected to capture well the failure behavior even at the

atomic scale. This is indeed observed in Figure 6. Nev-

ertheless, at high temperature (T/T0 = 30), the same

calculation gives a much larger process zone: r∗pl = 4.69.
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the standard deviation associated to the loading direction.
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deviation associated to the initial crack length.

Hence the deviation from fracture mechanics at high

temperatures.

With this method, we can estimate the evolution of

the toughness with temperature. The next section con-

front the temperature scalings of strength and tough-

ness.

3.3 Trends with temperature

We compare in Figure 7 the scalings of strength and

toughness with temperature. The error bars have dif-

ferent meanings for the two quantities. For strength,

it represent the standard deviation between the vari-

ous loading directions (Fig. 4), whereas, for the tough-

ness, it represents the standard deviation associated to

the estimations from equation (7) at the various val-

ues of 2a/L. In particular, the error bars for toughness

increases with the temperature because of the discrep-

ancy discussed in the previous section. In the following

of the paper, all errors bars refer to these definitions.

As temperature is increased, both strength and tough-

ness decrease. Interestingly, the toughness decreases less

rapidly than the strength. The ratio between tough-

ness and strength is also the size of the process zone

(rpl = (KIc/σstrength)
2
) which, therefore, increases sig-

nificantly. Apart from this difference, strength and tough-

ness exhibit very similar scalings. We draw empirical

scaling laws in Figure 7 (dashed lines) which depends

on the square root of temperature:

σstrength
σstrength (0K)

or
KIc

KIc (0K)
= 1−

√
αT (9)

α is the single fitting parameter and takes a differ-

ent value for strength and toughness. It is notable that
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the same expression captures both strength and tough-

ness trends. It appears that this scaling is not linear as

predicted by Zhurkov’s theory (Eq. 1), but we show in

the following section that this scaling law is consistent

with Zhurkov’s approach.

Likewise, we display in Figure 8 the scaling of graphene

strength with temperature. In contrast with the toy

model, the decrease of strength depends on the orien-

tation. So we distinguish the evolution for the armchair

direction to that for the zigzag direction. We also dis-

tinguish the results for graphene constrained in 2D to

that in 3D. We observe that strength decreases almost

linearly with temperature, in both directions and irre-

spective of 2D constraint, as expected from Zhurkov’s

theory. The difference of scaling with the toy model

shows that the scaling with temperature is closely re-

lated to the nature of the atomic interactions. Since the

linear scaling is common in real materials, one can sus-

pect that some aspects of the toy model are unrealistic.

We discuss this point later on. The strength of graphene

decreases more rapidly in 3D than in 2D. This is ex-

pected since constraining the material in 2D prevents

transition paths to failure that would involve out-of-

plane deformations of the atomic structure. The energy

barrier to failure is expected to be larger in 2D than in

3D, hence the difference in temperature scaling.

3.4 Effect of loading rate and system size

According to the theory of thermally activated pro-

cesses, the scaling of failure should combine tempera-

ture, loading rate and system size. Following Equation

(1) with NTS degenerate transition states, the failure

stress is expected to be a function of T ln
(
NTS
ε̇/ ˙εcr

)
, with

˙εcr a constant of the dimension of a strain rate. One

expects that this rate-temperature-size equivalence is

characterized by a single master curve. So we completed

the toy model scaling by performing a large series of

simulations to investigate the effect of system size and

loading rate, for both fracture failure and tensile failure.

The results are displayed in Figure 9 for tensile failure

and in Figure 10 for fracture failure.

We observe that both strength and toughness in-

crease with the loading rate. However, while strength

decreases with the number of atoms, the toughness ap-

pears almost independent of it. Our interpretation is

that the number NTS of transition states scales with

the number of atoms in a flawless material, and with

the number of cracks in the case of a cracked material.

Accordingly, we investigated the scaling with the num-

ber of cracks as explained in the methods (section 2).

Doing so, we observe a decrease of the toughness with

the number of initial cracks.

In Figure 9, we observe that all the strengths align

very well on a single master curve validating the rate-

temperature-size equivalence with the number of atoms

as a proxy for the number of transition states. On the

top chart, all the simulations are performed at the same

temperature (T ∗ = T ∗0 = (r∗cr − 1)
2
). A few results cor-

responding to large systems submitted to high loading

rates deviates from the master curve. We attribute this

discrepancy to insufficient equilibration that prevents

sampling correctly the phase space of atomic configu-

rations. On the bottom chart, all the simulations are

performed with the same number of atoms (N = 270)

and the strengths relative to 0K are plotted in function

of the quantity ln
(

N
ε̇/ ˙εcr

)
T
T0

. By fitting appropriately

the constant ˙εcr, the data points align very well along

a master curve.

In Figure 10, we observe that the toughness results

also align along a single master curve considering the

number of cracks as a proxy for the number of transi-

tion states. The chart on top represents the toughness

relative to 0K for systems simulated at the tempera-

ture T ∗ = T ∗0 . As for strength, we observe a deviation of

the molecular simulation results from the scaling law at

high loading rates, and the deviation increases with the

system size. The deviation is more pronounced than for

strength: for a system of given size, reaching the scaling

law requires to consider loading rates about two orders

of magnitude smaller than for the strength simulations.

As before, we attribute this deviation to an insufficient

equilibration which introduces a bias in the sampling

of the phase space. Interestingly, cracked bodies seem

to require much more time to equilibrate than flaw-

less systems. The bottom chart in Figure 10 displays

the results for systems of identical sizes with 1 crack
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Fig. 9 Scaling of the strength of the toy model with respect
to the combination of system size, temperature and loading
rate. The top chart displays the results of systems all at tem-
perature T∗ = T∗0 = (r∗cr − 1)2 but of various sizes and load-
ing rates. The strength relative to 0K is plotted in function
of the quantity ln (N/ε̇∗). The bottom chart displays the re-
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(

N
ε̇/ ˙εcr

)
T
T0

. In both

chart, the results align very well on a general master curve
which is accurately fitted by the proposed scaling law (Eq.
12).

at various temperatures and loading rates. We plot the

toughness relative to 0K in function of the quantity

ln
(
Ncrack
ε̇/ ˙εcr

)
T
T0

. Here also, with an appropriate choice of

the constant ˙εcr, the results align well along a master

curve. And, again, the results of systems submitted to

the highest loading rate deviate from the scaling law.

4 Analysis and discussion

One can interpret the observed scaling by adopting a

statistical physics description akin to Zhurkov’s theory.

We develop such an analysis in this section.
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Fig. 10 Scaling of the toughness of the toy model with re-
spect to the combination of number of cracks, temperature
and loading rate. The top chart displays the results for sys-
tems simulated at T∗ = T∗0 with various number of cracks
Ncrack and loading rates ε̇. We plot the toughness relative

to 0K in function of the quantity ln
(
Ncrack

ε̇∗

)
. The bottom

chart for systems with Ncrack = 1 at various temperatures
and loading rates. We plot the toughness relative to 0K in

function of the quantity ln
(
Ncrack

ε̇/ ˙εcr

)
T
T0

. In both chart, the

results exhibit the scaling behavior which is well captured by
the proposed scaling law (Eq. 12).

4.1 Toy model scaling

We consider failure as a thermally activated process

with no reverse process. Following Boltzmann statistics,

the probability of occurrence of a transition state lead-

ing to failure is proportional to exp
(
−∆ETSkBT

)
, where

∆ETS > 0 is the energy barrier that has to be over-

come. In the toy model, failure occurs when one of the

bonds has a length exceeding the critical distance rcr.

At 0K, all atoms are in static equilibrium and failure oc-

curs precisely at the theoretical surface (Eq. 4). At finite

temperature though, failure can occur below this limit

because of thermal agitation. Let us consider the ma-

terial loaded below the theoretical surface (Eq. 4). The

ground state (state of minimum energy) at this loading

is the system at 0K. A transition states leading to fail-
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ure is such that one of the bonds reaches r = rcr. Since

all bonds are harmonic, the energy barrier to reach the

transition state is quadratic1:

∆ETS =
K

2
κ (rcr − r)2 (10)

with κ > 0 a constant. This energy barrier can be

rewritten in term of stress by taking advantage of the

linearity of the mechanical behavior: the length of a

bond depends linearly on the strain and stress. We have:

∆ETS = kBTcr

(
1− σfailure

σfailure (0K)

)2

(11)

where kBTcr = K
2 κ (rcr − r0)

2
= κ

2kBT0 is a carac-

teristic temperature of failure. Expression 11 is valid

for both tensile failure and fracture failure. A differ-

ence appears regarding the number of transitions states.

For tensile failure, by periodicity of the atomic struc-

ture, the number of transition states is proportional to

the number of atoms. For fracture failure, it is propor-

tional to the number of cracks. Therefore, the prob-

ability of failure which is the cumulative probability

of all the degenerate transition states takes the form

∝ NTS exp
(
−∆ETSkBT

)
, with NTS = N for tensile failure

and NTS = Ncrack for fracture failure. This Boltzmann

statistics can also be interpreted as the inverse of the

characteristic time of recurrence of this event during a

time evolution. Equivalently, the probability of failure

over a given time scale is inversely proportional to the

loading rate. We finally obtain the scaling relation:

σfailure
σfailure (0K)

= 1−

√
ln

(
NTS
ε̇/ ˙εcr

)
T

Tcr
(12)

where ˙εcr is a constant which has the inverse dimension

of a time. The ratio
σfailure

σfailure(0K) is the ratio of strength

for tensile failure and the ratio of toughness for frac-

ture failure. This scaling law is precisely of the form of

the empirical law we suggested in the previous section

(Eq. 9). In Figures 9 and 10, we display the best fit

of the master curve with Equation (12) (for strength :

T ∗cr = kBTcr
Kr20

= 1.923 and ln ( ˙εcr
∗) = ln

(
˙εcr
√
K/m

)
=

5.0, for toughness : T ∗cr = 1.923 and ln ( ˙εcr
∗) = 4.3).

This scaling law captures well all the results for the toy

model.

1 ∆ETS is the integration of the repelling force to exert
on the atoms of the failing bond to bring it to failure, while
maintaining all other atoms at static equilibrium. By linearity
of the bond network, this repelling force depends linearly on
the bond length, hence the quadratic energy barrier.

0 20 40 60 80 100

Stress σzz, σac or σac+σzz
2

 (GPa)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
n

e
rg

y 
b

a
rr

ie
r 

∆
E
T
S
 (

e
V

)

zigzag loading

armchair loading

spherical loading

Fig. 11 Energy barrier to reach the transition state for
graphene failing in the armchair direction. The linear trend
suggests a relation ∆ETS ∝ − (σ − σstrength (0K)), hence a

strength scaling
σstrength

σstrength(0K)
= 1− ln

(
NTS

ε̇/ ˙εcr

)
T
Tcr

consistent

with the results of Figure 8.

4.2 Graphene scaling

In the previous section, we derived a scaling law for the

toy model in which the failure depends on the square

root of temperature. This scaling differs markedly from

the linear scaling we obtained for graphene and which

is commonly observed for real materials (Eq. 1). This

difference is a direct consequence of the peculiar expres-

sion of the energy barrier for the toy model (Eq. 11).

This expression holds for perfectly harmonic atomic

interactions (Eq. 2). This idealized potential is con-

venient for theoretical derivations such as that of the

scaling law, but it exhibits a discontinuity in its deriva-

tive at the critical length rcr which, of course, is not

representative of real atomic interactions. Instead, sig-

nificant non linearity is expected in the atomic inter-

actions when approaching failure. This is indeed the

case for graphene simulated with the REBO potential.

How this difference impacts the energy barrier ∆ETS
is hard to anticipate since a formal demonstration is no

more possible. Nevertheless, one can estimate numer-

ically ∆ETS by searching for the minimum transition

path between an initial configuration (intact material)

and a final configuration (broken material).

We can estimate numerically the energy barrier for

graphene failure. The minimum transition path is found

by increasing the length of a bond while relaxing all

other degrees of freedom. We display in Figure 11 the

energy barrier in function of the stress for different load-

ing directions (armchair, zigzag and spherical). The x-

intercept corresponds to the failure at 0K (σfailure (0K)).The

trend is clearly different from the energy barrier of the

toy model (Eq. 11). Instead the energy barrier depends

almost linearly on the stress, that is:
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∆ETS = kBTcr

(
1− σfailure

σfailure (0K)

)
(13)

with Tcr the temperature corresponding to the energy

barrier at zero stress. Combining this expression with

the statistics for thermally activated process, one recov-

ers a linear scaling law for failure, consistent with the

results of Figure 8:

σfailure
σfailure (0K)

= 1− ln

(
NTS
ε̇/ ˙εcr

)
T

Tcr
(14)

This linear scaling is expected to be more relevant

for real materials than that obtained for the toy model

(Eq. 12) since a linear scaling with temperature is com-

monly observed experimentally (Zhurkov, 1984).

5 Conclusion

The analysis of scaling provides a general rate-temperature-

size equivalence for both tensile failure and fracture fail-

ure. The main difference between strength and tough-

ness stems to the number of transitions states NTS
which scales with the number of atoms for tensile failure

and with the number of cracks for fracture failure. Fail-

ure always originates from the occurrence of a transition

state, but the distribution of transition states and the

associated energy barriers is strongly affected by stress

concentration and the presence of flaws. Tensile failure

can occur at any location in the material, fracture fail-

ure is limited to a small number of transition states at

the crack tip.

There are several important implications to this study:

– The rate-temperature-size equivalence relates the fail-

ure properties under very different conditions. One

can easily relate failure at the atomistic level, typi-

cally ∼ 103 − 106 atoms loaded at ∼ 1010 − 107s−1,

and at the macroscopic level, typically ∼ 1023 atoms

loaded at rate ∼ 1s−1. Proper confrontation of fail-

ure properties at different scales can be achieved

by taking advantage of the rate-temperature-size

equivalence.

– Knowing the effect of temperature on failure is enough

to predict the scaling with loading rate and system

size. This is of practical interest, in particular for

molecular simulation studies, in which it is easy to

vary temperature with little or no additional com-

putational cost; whereas increasing the system size

or decreasing the loading rate over orders of mag-

nitudes comes with very significant computational

costs, if not prohibitive.

– Stress concentration at a crack tip strongly local-

izes the transition states. The transition from frac-

ture failure to tensile failure through flaws of more

moderate stress concentrations (e.g., notch, holes

etc.) involves the transition from a regime of very

few possible transition states, to a regime of lots

of transition states. How the number of transition

states and their energy barrier depends on the stress

concentration is thus an important question in the

formalization of a theory of failure initiation.

The scaling law we propose here is not directly ap-

plicable to the prediction of failure of real materials

since one would have to account for the presence of ex-

isting flaws of various length and density. Extending the

type of scaling laws we propose to distribution of flaws

is a perspective.
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