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The Formyl-peptide receptor-2 (FPR2) is a seven transmembrane G protein-coupled

receptor, which plays an important role in sensing of bacteria and modulation of immune

responses. FPR2 is also used by viruses for their own profit. Annexin A1, one of the

multiple ligands of FPR2, is incorporated in the budding virus membrane of influenza

A viruses (IAV). Thereby, once IAV infect a host cell, FPR2 is activated. FPR2-signaling

leads to an increase in viral replication, a dysregulation of the host immune response

and a severe disease. Conversely, experiments using FPR2 antagonists in a preclinical

model of IAV infections in mice showed that blocking FPR2 protects animals from lethal

infections. Thus, FPR2 represents a very attractive host target against influenza. In this

review we will give an overview on the pathogenesis of influenza with a focus on the role

of FPR2 and we will discuss the advantages of using FPR2 antagonists to treat the flu.

Keywords: FPR2, formyl peptide receptor, influenza, human, inflammation mediators, antiviral agents

INTRODUCTION

Influenza virus infection is one of the most important infectious diseases affecting the respiratory
tract (Palese and Shaw, 2007). Influenza outbreaks are usually associated with mild symptoms, but
can also result in millions of cases of severe illness leading to pneumonia, especially among the
elderly and young children. Globally, influenza still accounts for 250,000–500,000 deaths every
winter (Palese and Shaw, 2007). The etiological agents of the disease are the negative sense and
single-stranded RNA influenza viruses, which belong to the family of enveloped viruses. They
are classified into four types (A, B, C, and D), of which influenza A viruses (IAV) are the most
devastating (Kuiken et al., 2012; Ferguson et al., 2016). IAV are also divided into subtypes according
to their hemagglutinin (HA) and neuraminidase (NA) surface proteins. Eighteen different HA and
eleven different NA proteins have been described. Many combinations of HA and NA exist but only
some virus strains (i.e., H1N1 and H3N2) circulate among humans. Other subtypes can also infect
humans but these viruses are hardly, if not at all transmissible from human to human. For example,
H7N9 and H5N1 viruses can be transmitted from the avian reservoir directly to humans but do not
spread between humans (Imai et al., 2013; Richard et al., 2013).

Upon influenza virus infection, the host immune response is activated in order to limit viral
replication and to eliminate infected cells. The innate response is the first line of defense initiated by
the recognition of pathogen-associated molecular patterns (PAMP), which in majority are nucleic
acids that are not typically present in the host cells (Yoo et al., 2013). Recognition of PAMP occurs
through activation of pattern-recognition receptors (PRRs), which include nucleotide-binding
oligomerization domain (NOD)-like receptors, Toll-like receptors and retinoic acid-inducible
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gene-I (RIG)-like helicases. The main specific sensors activated
by influenza viruses are TLR3/7/8, NLRP3 and RIG-I. TLR3/7/8
and RIG-1 trigger NFκB and interferon regulated factor
3 (IRF3) transcription factors allowing the synthesis and
production of pro-inflammatory cytokines and interferon.
NLRP3 inflammasome allows the maturation and release of IL-
1β and IL-18 (Berri et al., 2014a). While interferons are the
major cytokines that inhibit viral replication, influenza viruses
evolved sophisticated strategies to reduce their release (Garcia-
Sastre, 2011). The secretion of pro-inflammatory cytokines and
chemokines attracts and activates innate immune cells such as
natural killer cells, neutrophils and macrophages, that can also
afford an effective protection by eliminating influenza virus-
infected cells (Kuiken et al., 2012). However, during severe
influenza, the virus is inefficiently eliminated, inflammation
is excessive and altogether, this results in lung insult and
deterioration of the clinical outcome of the infected patients
(Peiris et al., 2010; Kuiken et al., 2012). Thus, the main factors
contributing to a severe disease are the high capacity of influenza
virus to replicate and a dysregulated harmful innate immune
response.

CURRENT AVAILABLE TREATMENTS
AGAINST INFLUENZA

To date, two classes of anti-influenza drugs are available:
the inhibitors of neuraminidase (zanamivir and oseltamivir)
and those of M2 (amantadine and rimantadine) (Ison, 2011).
Regarding the viral M2 protein, it is a proton selective channel,
necessary for viral replication. M2 forms tetramers and is
expressed at the plasma membrane of infected cells. After entry
into the cell, the virion is located in endosomes, where the
low pH activates the M2 channel permitting proton flux and
acidification of the interior of the virion. This acidification
dissociates the viral RNA from its bound matrix proteins and is
thus an important step for the release of the virus genome from
the endosome to the cytoplasm (Helenius, 1992). In addition,
M2 has a role in virus assembly, budding and morphogenesis
(Rossman et al., 2010a,b). Amantadine and rimantadine are
FDA (Food and Drug Administration)-approved drugs binding
to M2 and blocking its function. Unfortunately, influenza B
viruses are naturally insensitive to M2 ion channel blockers
since BM2, the ion channel protein of these viruses has almost
no sequence homology with the M2 of IAV. Regarding IAV,
they have acquired subtype wide resistance mutations over time
(Pontoriero et al., 2008). Thus, these drugs do not work against
influenza B and most types of IAV. To date, FDA does not
recommend their use and these antiviral molecules are not
commercialized anymore in western countries. Nowadays, the
market for influenza treatments is thus dominated by the NA
inhibitors.

Regarding the viral NA, it plays a critical role for virus
transmission from cell to cell. The first step of the influenza
virus replication cycle is the binding of the virion to the
host cell. This occurs through the interaction of the viral HA
protein with sialic acids on the membrane of the host cell.

The NA is a glycoside hydrolase enzyme that removes influenza
virus receptor-binding sites and enables the newly synthesized
virions to detach from the infected cells at the end of the viral
life cycle. It also prevents virus self-aggregation. Thus, virions
grown in the presence of NA inhibitors form aggregates near
the cell surface, preventing virus spread (Palese and Compans,
1976). The drugs zanamivir (Relenza; Glaxo Smith Kline) and
oseltamivir (Tamiflu; Roche) are FDA approved for the treatment
and prevention of uncomplicated acute influenza illness. The
recommended duration of treatment is 5 days, which allows a
reduction of the severity of the symptoms but only if taken
early enough after infection. In average, NA inhibitors reduce the
duration of symptoms by 1 day if treatment is started within 24–
48 h after symptoms begin. Oseltamivir treatment is associated
with nausea and vomiting (Treanor et al., 2000) and in some
cases, more significant side effects, such as psychiatric events,
were described (Jefferson et al., 2014).The viral NA protein has
a high mutation rate and influenza viruses also achieve resistance
to drugs that target NA, without affecting their virulence (Hay
and Hayden, 2013; van der Vries et al., 2013). In majority,
mutations that conferred viral resistance were a substitution of
a histidine to a tyrosine at residue 274 of the NA.

Altogether, our current available drugs against influenza target
viral proteins and have the disadvantage to face virus resistance.
Thus, to overcome this resistance challenge (Ison, 2011; van
der Vries et al., 2013), active research has been developed to
find novel molecules targeting the host instead of the virus
to limit the selection pressure on influenza viruses (Ludwig,
2011; Planz, 2013). As an example DAS181, a recombinant
sialidase, which prevents IAV binding to the host cells, has been
evaluated in phase II clinical trials. Treatment with DAS181
diminished viral loads in infected patients, but no improvements
in influenza symptoms were observed (Moss et al., 2012).
Thus, although host-directed antivirals are novel promising
approaches, immune modulatory compounds that will both
prevent viral replication and temper inflammation, such as those
targeting immune receptors or signaling pathways (Khoufache
et al., 2009; Haasbach et al., 2017), might offer a better perspective
regarding the amelioration of the clinical symptoms.

FPR2: A CHECKPOINT RECEPTOR
INVOLVED IN INFLAMMATORY
PROCESSES

Formyl peptide receptors (FPR) are a family of seven
transmembrane domains receptors coupled to G protein.
While three different FPR were described in humans (FPR1-3),
at least eight FPR exist in mice (mFPR), designated FPR1 (FPR1),
FPR-rs1 (FPR3 or LXA4 receptor), FPR-rs2 (FPR2), FPR-rs3,
FPR-rs4, FPR-rs5, FPR-rs6, and FPR-rs7 (Gao et al., 1998; Wang
and Ye, 2002). While no counterparts in human were described
for FPR-rs3-7, the mouse ortholog of FPR1 is encoded by mouse
FPR1 based on sequence similarities and affinity of fMPL ligand
binding (He et al., 2013). Regarding FPR-rs2 (FPR2) and FPR-rs1
(FPR3), they are most likely the orthologs of human FPR2 as
those receptors bind LXA4, in contrast to the others (Takano
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et al., 1997; Vaughn et al., 2002). In addition human and mouse
FPR2 show 76% amino acid identity (Courtin et al., 2017).

In humans, FPR2 (or FPRL1/ALX) is expressed by many cells,
including epithelial and endothelial cells, fibroblasts, most if not
all immune cells as well as neuronal cells. It binds several kinds
of ligands (He and Ye, 2017), i.e., it is activated by chemotactic
formyl peptides (products of bacteria or derived from the
mitochondria), bioactive lipid metabolites of arachidonic acid or
docohexanoic acid (lipoxin A4 and resolvin D1, respectively),
as well as the cellular Annexin A1 protein or urokinase-type
plasminogen activator receptor.

Initially recognized as a pattern recognition receptor,
which detects bacterial microorganisms through formylated
peptides, FPR2 elicits pro-inflammatory responses. In vitro,
FPR2 activation promotes inflammatory responses and increases
monocytes chemotaxis and neutrophils recruitment (Carp, 1982;
De et al., 2000). In vivo, mice deficient in FPR2 display increased
susceptibility to Listeria monocytogenes, increased bacteria load
in the liver and reduced neutrophils infiltration (Liu M. et al.,
2012). In addition, it was demonstrated that FPR2 activation
elicit pro-inflammatory responses upon activation by serum
amyloid A (Ye et al., 2009). These reports highlight the role
of FPR2 in promoting an inflammatory response. However,
a distinct function for FPR2 is also to inhibit and resolve
inflammation. During acute inflammation, FPR2 is activated by
anti-inflammatory lipid mediators such as lipoxin A4 (LXA4),
resolvin D1 or the glucocorticoid-modulated protein Annexin
A1, allowing a resolution of inflammation and return to
homeostasis. The concept that inflammation resolves through
active processes is now commonly accepted (Serhan and Savill,
2005), and FPR2 plays a key role in this process (Perretti
et al., 2002; Chiang et al., 2006; Perretti and D’Acquisto, 2009).
Altogether, FPR2 is thus emerging as a central checkpoint
receptor in inflammatory processes, although its pro vs. anti-
inflammatory functions are not well understood. Most likely,
the versatile function of FPR2 is dependent on the accessible
ligands available, in a spatio-temporal manner. While the pro-
inflammatory potential of formylated peptides would be elevated
early upon injury/infection due to the presence of necrotic cells or
bacteria, the generation of anti-inflammatory mediators such as
LXA4 or resolvin D1may becomemore prominent at later stages,
during inflammation resolution.

ACTIVATION OF FPR2 BY IAV AND
DETERIORATION OF THE DISEASE

After IAV infection of a host cell, the virus replicates, and at the
end of the viral life cycle, the newly formed virions are released
from infected cells. This step occurs through a budding process,
in which the virions incorporate cellular plasma membrane
proteins, such as AnnexinsA1/A2/A4/A5, glypican 4, CD9 or
CD81 or cytoplasmic cellular proteins such as tubulin, enolase
1, actin, tropomyosin 1 and 3, cofilin, cyclofilin or profiling
(LeBouder et al., 2008; Shaw et al., 2008; Berri et al., 2014b).
Among these proteins, Annexin A1 is of particular interest
(Shaw et al., 2008; Tcherniuk et al., 2016). Annexin A1 belongs

to the Annexin family of calcium-dependent phospholipid-
binding protein and has well known anti-inflammatory functions
(Perretti and Dalli, 2009). The upregulation of its expression
upon glucocorticoid treatment is one of the mechanisms
by which glucocorticoids inhibit inflammation (Perretti and
D’Acquisto, 2009). Annexin A1 inhibits leukocyte adhesion
to epithelial cells, migration and chemotaxis. As mentioned
earlier, the main receptor of Annexin A1 is FPR2. Recently,
we have shown that Annexin A1 of IAV binds and activates
FPR2 during the adsorption of IAV to a host cell (Tcherniuk
et al., 2016). More importantly, upon mouse infection, FPR2
activation is associated with an increase in IAV replication,
an exacerbated and harmful pulmonary inflammation and a
severe influenza disease (Tcherniuk et al., 2016). Thus, like
for major receptors involved in immune signaling pathways,
FPR2 is a prototype receptor which is corrupted by IAV for
its own benefit by incorporating Annexin A1. In accord with
these data, a recent report showed that Annexin A1-deficient
mice are protected from IAV replication and virus-induced
lethal infections (Arora et al., 2016). Mechanisms through
which FPR2 mediates increased viral replication is dependent
on the activation of the mitogen-activated protein kinase, ERK
(Extracellular signal-regulated kinases), a pathway absolutely
required for IAV cell cycle (Pleschka et al., 2001; Droebner et al.,
2011; Haasbach et al., 2017). Within the infected cells, FPR2-
signaling leads to ERK activation, thus leading to increased virus
replication (Tcherniuk et al., 2016). In contrast, the mechanism
by which FPR2 promotes severe inflammation during influenza
remains to be determined. Indeed, as mentioned earlier, FPR2 is
a versatile receptor, acting as pro-inflammatory when activated
by formyl peptides but anti-inflammatory when it binds LXA4

or Annexin A1. Several hypotheses might explain the failure
of FPR2 to restore homeostasis and resolve inflammation to
basal levels after acute inflammation (Figure 1). First, since
IAV replicates at very high levels when FPR2 is activated,
the resulting local necrotic infected cells could generate large
amounts of formylated-peptides from mitochondrial proteins.
These pro-inflammatory peptides might overcome the anti-
inflammatory functions mediated by LXA4 / Annexin A1. In
this case, FPR2 would turn pro-inflammatory, by binding at
later stages of infection to pro-inflammatory ligands. Another
possibility is that the initial protective host response to infection
required to eliminate the virus is impaired because FPR2 is
inadequately activated after infection by IAV-expressing Annexin
A1. In consequence, IAV replicates more efficiently, leading
to a greater extent activation of PRR and stronger release of
pro-inflammatory mediators. In this case, the apparent pro-
inflammatory function of FPR2 activation would occur indirectly
through increased viral replication. It is also possible that
during influenza, Annexin A1 activation of FPR2 leads to pro-
inflammatory signaling. Indeed, proteases are present in large
amounts at the site of IAV infection and those proteases could
cleave Annexin A1, modifying its anti-inflammatory function.
Many reports have demonstrated that in contrast to the full
length protein, several products of Annexin A1 mediate pro-
inflammatory functions, including neutrophil transmigration
and leukocytes chemotaxis through FPR2 (Ernst et al., 2004;
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FIGURE 1 | Model of how FPR2 promotes harmful inflammation in a time scale manner. At early stages post-infection, Annexin A1 incorporated into IAV, activates

FPR2 leading to (i) an anti-inflammatory state, which impairs host immune response and provides the mean for IAV to replicate. In addition (ii), FPR2-signaling activates

the ERK pathway, further increasing IAV replication. Altogether, IAV replication fosters PRR activation, leading to a dysregulated and excessive innate immune

response. During the time course of infection, infected cells undergo apoptosis, leading to the release of mitochondrial formylated peptides. In addition, proteases are

released in a large amount by leucocytes that are recruited to the site of infection. Those proteases cleave Annexin A1 incorporated into IAV. FPR2, which is then

activated by formylated peptides and cleaved Annexin A1 turns pro-inflammatory. This further contributes at later stages post-infection to increased inflammation and

IAV pathogenesis.

Williams et al., 2010). In addition, it cannot be excluded that
Annexin A1 adopts a specific structural conformation at the
surface of influenza virions or heterodimerize in an unusual
fashion, thereby promoting FPR2 pro-inflammatory functions.
Altogether, although the precise mechanism still remains to be
fully determined, FPR2 promotes IAV pathogenesis, through
viral replication and dysregulation of the innate immune system.
Thus, FPR2 represents an ideal target to treat influenza.

ANTAGONISTS OF FPR2 EFFICACY
AGAINST INFLUENZA IN VITRO AND IN
PRECLINICAL STUDIES

To examine the suitability of FPR2 antagonists as a
potential novel influenza virus treatment, we have tested
several molecules blocking FPR2 function, namely WRW4
(WRWWWW), PBP10 (ten amino acid phosphoinositide-
binding peptide, RhoB-QRLFQVKGRR) and BOC-2

(tert-butoxycarbonyle-FLFLF-OH). WRW4 is a six amino
acid peptide which specifically impairs FPR2-signaling. It blocks
the binding of agonists to FPR2 and thereby its downstream
signaling pathway (Bae et al., 2004). PBP10 is a ten amino acid
rhodamine-linked peptide which is also highly specific for FPR2.
After passing the cell membrane, it binds to phosphatidylinositol
4,5-bisphosphate (PIP2), disturbing actin filaments and blocking
FPR2-signaling (Cunningham et al., 2001). In contrast toWRW4
and PBP10, BOC-2 is not a specific antagonist of FPR2. It acts
through a competitive inhibition of formyl peptides binding to
both FPR1 and FPR2 (Colucci et al., 2011). All three compounds
have an antiviral activity in lung epithelial A549cells (Tcherniuk
et al., 2016; Courtin et al., 2017). This effect was observed against
influenza A subtypes H1N1, H3N2, H6N2 as well as influenza
B viruses. Of particular interest, the effect of FPR2 antagonists
used in combination with oseltamivir was additive, showing that
the combined therapy of FPR2 antagonists with current antiviral
drugs is of particular interest. This effect was not surprising
given the non-redundant mechanisms of FPR2 molecules
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(inhibitor of ERK pathway) and oseltamivir (NA inhibitor). In
vivo, influenza virus-infected mice were protected from lethal
infection upon treatment with WRW4 or BOC2. The effect
was significant either when the molecules were administered 1
day before infection (prophylaxis), the day of infection or 1/2
days post-infection (treatment). Typically, using a lethal dose
of A/PR/8/34 (H1N1) virus infection, 100% of mice reached
the experimental endpoints while only 20–40% attained the
endpoint after BOC2 or WRW4 treatment (Tcherniuk et al.,
2016; Courtin et al., 2017). As expected, this was correlated with a
significant inhibition of lung viral titers along with a reduction of
the harmful pulmonary inflammation. Interestingly, a previous
report showed that cyclosporine A, a specific inhibitor of FPR1
inhibits IAV replication, in vitro (Liu X. et al., 2012). Since all
FPR have a high degree of sequence homology, these results
are consistent with the protective effect of FPR2 antagonists
against flu and suggest that other FPR might be involved in
IAV pathogenesis. Altogether, these data are a proof of concept
that FPR2 antagonists are highly potent novel anti-viral and
immunomodulatory agents that could be investigated further to
treat influenza virus infections.

ADVANTAGES TO TREAT THE FLU WITH
FPR2 ANTAGONISTS WITH REGARD TO
OTHER APPROACHES

Host factors represent useful targets for therapy to overcome the
challenge of virus resistance. Some interesting molecules have
been identified and this approach appears particularly relevant to
treat influenza. The first class of novel promising antivirals are
related to their capacity to block cellular functions supporting
the virus life cycle. Many targets with antiviral properties
were identified, including inhibitors of cytoskeleton, autophagy,
proteasome, nuclear export or regulators of transcription (de
Chassey et al., 2014). Although these molecules could greatly
benefit the development of our arsenal of novel therapeutics,
most of them only act on viral replication. Since inflammation
is also an important trait of influenza pathogenesis, blocking viral
replication would only benefit patients that are treated during the
first days of infection.

Another class of molecules aims at the protection of the tissues
from damage induced by excessive inflammation. This novel
approach concerns mainly all molecules with anti-inflammatory
properties. These molecules could benefit patients with severe
influenza at later stages post-infection but would not act on viral
replication. In this regard, molecules such as statins (Kwong et al.,
2009), sphingosine (Teijaro et al., 2011) or anti-platelet drugs (Le
et al., 2015) are worth mentioning. These drugs are not expected
to be effective when used in prophylaxis or soon after a mild
infection.

In contrast, novel opportunities are currently emerging with
the novel class of drugs that both inhibit virus replication and
temper inflammation. For example, the antagonists of Protease-
activated receptor-1 (Khoufache et al., 2013), calpain proteases
(Blanc et al., 2016), NFkB or ERK (Pinto et al., 2011; Haasbach
et al., 2013, 2017), which block viral replication and temper

FIGURE 2 | Model of the contribution of FPR2 in influenza virus pathogenesis

and effect of FPR2 antagonists. Cellular Annexin A1 incorporated in the

envelope of IAV, activates FPR2 during virus absorption to the host cell.

FPR2-signaling through the ERK pathways increases infectious virus

production (1) contributing to a proinflammatory state via the recognition of

viral RNA by PRRs. In addition, FPR2-signaling also directly promotes a

pro-inflammatory state (2), by enhancing the release of cytokines/chemokines

and impairing the resolution of acute inflammation. Altogether, the excessive

recruitment and activation of immune/inflammatory cells contributes to tissue

damages and flu pathogenesis. Thereby, by inhibiting virus replication and

preventing deleterious inflammation of the lungs, FPR2 antagonists emerge as

a novel promising strategy to protect from influenza virus pathogenesis.

inflammation might be a real opportunity for novel therapeutics
against flu. Regarding FPR2, it is also a pivotal receptor involved
in IAV replication and harmful inflammation of the lungs
during severe influenza (Figure 2). Thereby targeting FPR2 is
of particular interest. In addition, although this remains to be
investigated, FPR2 is not a critical factor involved in cellular
function. Thus, one can expect that FPR2 antagonists will not
provide many side effects, in comparison to other targets.

CONCLUSION

Preclinical studies have proven that FPR2 antagonists efficiently
protectmice against IAV infections, by inhibiting viral replication
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and deleterious inflammation of the lungs. FPR2 is a host
receptor and thus targeting such protein is of particular interest
in order to limit the emergence of IAV resistance. In addition,
FPR2 antagonists will most likely generate a long lasting
protection since it tempers inflammation which is responsible for
tissue injury at later stages of the infection. Used together with
oseltamivir, FPR2 antagonists might also have a much stronger
effect in blocking IAV replication. Altogether by inhibiting viral
replication and protecting the lungs from destruction, FPR2
antagonists appear as an appealing strategy to treat or prevent
influenza in the future.
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