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Abstract 

We used NMR techniques to probe the anisotropic properties of stretched Nafion


115 

membranes. The alignment of the polymeric structure under a uniaxial load is at the origin of 

a strong anisotropy of both the water self-diffusion coefficient and the proton conductivity. 

The determination of these two important membrane properties may lead to new fundamental 

information on the nature of the proton transport mechanisms in such oriented weakly-

charged systems. 
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1. Introduction 

Perfluorosulfonic acid (PFSA) membranes are the most used electrolytes in proton 

exchange membrane fuel cells (PEMFCs). Despite the large number of attempts to synthesize 

a better, more durable and cheaper polymer, Nafion


, a PFSA-based membrane 
commercialized by DuPont de Nemours & Co, remains the standard for this application. The 

transport properties of this polymer film are essential to the performance of the system: it 

must be an excellent proton conductor to transfer the charges efficiently from the anode to the 

cathode. The mobility of the water adsorbed in its structure also represents a key property as 

the proton transport mechanisms are all coupled to water dynamics and diffusion. 

 The anisotropy of the transport properties in Nafion have been measured in several studies 

[1] [2] and attempts have been made to orient the structure of the membrane during the 

manufacturing process in order to enhance its conductivity [3]. Here, we first characterize by 

NMR the local order in the structure of uniaxially stretched Nafion membranes. Then, using 

PFG techniques, we measure the impact of the orientation of the structure on the water self-

diffusion and the ionic conductivity. 
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2. Methods and Materials 

The Nafion N115 (thickness = 125 m) membranes were purchased from Ion Power, Inc. 
They were pre-treated following the protocol described in ref. [4], dried 24 hours at 60°C and 

stretched at 80°C using a home-made device at different draw ratios DR (DR = final length / 

initial length). The samples were then cut with a cutting die into 5.66.1 mm
2
 pieces, hydrated 

with D2O or H2O at different water contents and stacked to enhance the signal-to-noise ratio 

of the NMR measurements. The stack of membranes was sandwiched between two PTFE 

half-cylinders and placed in a cylindrical PTFE support. The assembly was inserted in a 10 

mm diameter NMR tube (see the schematic in fig. 2) and could rotate around a direction 

perpendicular to the main magnetic field 
0B which allowed the precise control of the angle  

between
0B and the plane of the membranes. All the NMR experiments have been performed 

at 298 K on a Bruker Avance III 600 MHz spectrometer equipped with a broad band 10 mm 

H-X probe, the X channel being tuned to the 
2
H NMR frequency. The diffusion experiments 

have been carried out using a stimulated spin-echo sequence with bipolar gradients [5]. The 

maximum strength of the magnetic field gradient was 20 G/cm, the gradient duration varied 

between 14 and 18 ms and the diffusion time was fixed to  = 125 ms. The proton 

conductivity was measured at 303 K using a home-made 4-probe conductivity cell [4]. In this 

study, the water content is parameterized by the quantity -

2 3[H O] [SO ]  , which represents 

the number of water molecules per ionic -

3SO   site.  

3. Results 

3.1. Local order induced by the uniaxial stretching 

The 
2
H-NMR spectrum of the almost dry N115 membrane (= 3.8) presents a small 

quadrupolar splitting (fig. 1) typical of a slightly oriented medium [6]. The order parameter S, 

extracted from the fit of the curve (θ)Q  with eq. 1 is 6.310
-4

. The experiment also shows 

that the main direction of the ordering, marked by the direction in eq. 1, is located in the 

plane of the membrane. As noted by Li et al. [7], this moderate in-plane ordering is caused by 

the extrusion process of the N115 membrane. 
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Fig. 1: a) 

2
H-NMR spectra of unstretched (DR = 1) and stretched (DR = 1.5, 2 and 2.5) N115 membranes 

equilibrated at small D2O contents ( =3.8, 2.5, 2.5 and 3.1 respectively). Spectra recorded at 0 is the 

angle between the stretching direction and the magnetic field. b) Evolution of the quadrupolar splitting as a 

function of  for the three stretched membranes and the unstretched (DR = 1) membrane (inset). The dashed 

lines are fitting curves (eq. 1). c) Evolution of the order parameter S and of the biaxiality parameter  extracted 

from fig. 1b). 
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When the hydration of the membrane increases the residual quadrupolar interaction 

vanishes and the splitting is no longer observable. (Data not shown here because of space 

limitations. See reference [7] for supporting data.) In stretched membranes, the residual 

interaction increases first very strongly between DR = 1 and DR = 1.5 then more moderately 

at higher stretching. The increase of the order parameter with DR demonstrates the 

progressive orientation of the structure of the polymer around the stretching direction. The 

biaxiality parameter, however, does not exhibit monotonic behaviour. This quantity is in fact 

very sensitive to the number and the level of noise of the data points in the (θ)Q f  curve 

and is thus not very relevant in our case. 

3.2. Influence of the structural order on the transport properties 

The structural organization of the Nafion membrane strongly influences its transport 

properties in terms of water diffusion and proton conductivity. In order to better understand 

the structure-transport relationships in this material, we performed water self-diffusion 

coefficient (Ds) measurements in stretched samples as a function of the angle () between the 

direction of the magnetic field gradient ( g ) and the stretching direction (fig. 2a). In the 

unstretched membrane,  corresponds to the angle between the gradient and the direction of 
the lamination (i.e. machine direction). We observe in fig. 2a) that the water self-diffusion 

coefficient is strongly dependent on the direction of the measurement. Moreover, Ds is higher 

in the stretching (para) direction than in the transverse (perp) direction. The diffusion 

anisotropy, defined as the ratio Ds(para) / Ds(perp), increases with DR, which shows the 

influence of the structural anisotropy on the diffusion of the adsorbed water: the diffusion is 

faster along the oriented polymer aggregates than it is perpendicular to them. This 

phenomenon is amplified when the structural uniaxial order increases. 
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Fig. 2: Left Schematics of the device allowing the rotation of the stack of stretched membranes around an axis 

orthogonal to the NMR tube. a) Evolution of the water self-diffusion coefficient as a function of . In the parallel 

direction,  = 0 and the gradient direction lies in the plane of the membrane. The values of the diffusion 

anisotropy Ds(para) / Ds(perp) are indicated in the table. b) Evolution of the ionic conductivity, measured in the 

two orthogonal directions of the plane of the membrane, as a function of the relative humidity. The parallel 

direction corresponds to the stretching direction. The ionic conductivity anisotropy (para) / (perp) is indicated 

for each RH in plain symbols. 
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The ionic conductivity, which represents the most pertinent property of the membrane 

regarding the fuel cell application, is also impacted by the stretching-induced orientation of 

the structure. We observe in fig. 2b) that the conductivity anisotropy ((para) / (perp), where 

the two directions are the two in-plane orthogonal directions, para corresponding to the 

stretching direction) is significant in the stretched DR = 1.5 N115 membrane. We remark 

furthermore that (para) / (perp) strongly increases when the relative humidity RH (and thus 

the water content ) decreases. Interestingly, (para) / (perp) is much higher than  Ds(para) / 

Ds(perp) at the same water content (at  ~ 4, Ds(para) / Ds(perp) ~ 1.4 and at RH ~ 0.25, 

(para) / (perp) ~ 2.5). This observation is to be linked to the different mechanisms of 

proton transport: in the so-called “vehicular mechanism”, where H
+
 charges are electrically 

attached to water molecules, the diffusion of water is the factor limiting the proton transfer. 

Here, we observe that, at low hydration, the proton transport is faster than the diffusion of 

water, which indicates that at least one other transport mechanism is involved. This additional 

mechanism, which can involve proton hopping between adjacent water molecules, could be 

linked to the dimensionality of the anisotropic transport. As the membrane is stretched, the 

water diffusion is favoured in the aligned direction and the proton hopping might be 

enhanced. This hypothesis, of course, must be checked against additional experimental data. 

4. Conclusions 

We probed the local order in uniaxially-stretched Nafion 115 membranes. The 
2
H NMR 

spectra reveal that the order is increasing as a function of the draw ratio and that the 

progressive orientation of the polymer aggregates during stretching results in a marked 

anisotropy of the water self-diffusion. Because the dynamics of water is strongly coupled to 

the rate of proton transfer, the parallel determination of the proton conductivity in the 

stretched samples allows us to compare the two phenomena and gain an original insight into 

the nature of the proton transport in the aligned systems. 
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